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Abstract— This paper presents the digital design of a versatile 

and low-power broadband impedance spectroscopy (IS) system 

based on pseudo-random binary sequence (PRBS) excitation. The 

PRBS technique allows fast, and low-power estimation of the 

impedance spectrum over a wide bandwidth with adequate 

accuracy, proving to be a good candidate for portable medical 

devices, especially. This paper covers the low-power design of the 

firmware algorithms and implements them on a versatile and 

reconfigurable digital platform that can be easily adjusted to the 

specific application.  It will analyze the digital platform with the 

aim of reducing power consumption while maintaining adequate 

accuracy of the estimated spectrum. The paper studies two main 

algorithms (time-domain and frequency-domain) used for PRBS-

based IS and implements both of them on the ultra-low-power 

GAP-8 digital platform. They are compared in terms of accuracy, 

measurement time, and power budget, while general design trade-

offs are drawn out. The time-domain algorithm demonstrated the 

best accuracy while the frequency-domain one contributes more to 

save power and energy. However, analysis of the energy-per-error 

FOM revealed that the time-domain algorithm outperforms the 

frequency-domain algorithm offering better accuracy for the same 

energy consumption. Numerical methods and microprocessor 

resources are exploited to optimize the implementation of both 

algorithms achieving 27 ms in processing time, power 

consumption as low as 1.4 mW and a minimum energy 

consumption per measurement of 0.5 mJ, for a dense impedance 

spectrum estimation of 214 points. 

 
Index Terms— Bioimpedance; Digital system; Digital signal 

processing; Impedance measurement; Impedance spectroscopy; 

Internet-of-Things; Low-energy; PRBS. 

 

I. INTRODUCTION 

HE impedance spectroscopy (IS) technique allows 

characterizing complex material systems by analyzing their 

electrical properties. Electrochemical impedance spectroscopy 

(EIS) and biomedical impedance spectroscopy (BIS) 

implemented on portable devices have applications in many 

different contexts, such as electrochemistry (material corrosion 

[1], fuel cell and Lithium-Ion battery characterization [2], [3]), 
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biotechnology (DNA or specific molecules detection) [2,3] and 

health monitoring [4]–[7]. In the latter case, the electrical 

impedance of human tissue is significant for diagnostic 

purposes, such as for skin, prostatic, and breast cancer detection 

(impedance tomography) [7]–[9]. In fact, it is possible to infer 

useful information about the hydration level, the concentration 

of some electrolytes, or the general health status of a subject 

from skin impedance and sweat analysis [10], [11]. IS approach 

is also widely used for quality inspection of materials, 

especially in the food industry, and non-invasive wearable 

sensing technology [12].  

IS is based on the excitation of the system-under-test (SUT) 

with a proper excitation signal and analysis of the related 

response. It is possible to classify IS systems on the basis of the 

excitation signal as narrowband or wideband. Sinusoidal waves 

and slow chirps compose the first category while the latter 

category comprises pulse, spread spectrum chirp, and noise-like 

excitations. In portable applications, especially in real-time 

monitoring, the time and power required to make a single 

measurement are crucial. The measurement time depends on the 

lowest excited frequency point but also on the used IS technique 

[13]–[16]. From this standpoint, wideband IS is preferable to 

narrowband IS [14], [17], and pseudo-random-binary-sequence 

(PRBS)-based IS deserves special attention because of its 

straightforward implementation. Another key requirement in 

portable applications is the total power consumption of the 

monitoring devices, consisting of the power consumption of 

both the analog front-end (AFE) and the digital platform. 

A. Related works 

The majority of low-power IS systems reported in the 

literature are based on single-sine excitation, with long 

measurement times [11], [18]–[24], or focus only on the design 

of the AFE, with state-of-the-art AFE achieving power 

consumption down to tens of µW [25]–[32]. PRBS-based IS 

technique mostly relies on digital processing; thus, the digital 

platform and the digital algorithms deserve the same attention 

as the AFE. This topic is not well covered in the literature since 
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the implementation of the digital processing is usually referred 

to as a-posteriori implementations on general 

FPGA/DSP/microprocessor platform without no details on the 

power consumption [14], [15], [29], [33]–[38].  

Xu et al. [25] presented a low-power, reconfigurable IC for 

wearable health devices that is capable of PRBS-based IS while 

consuming only 155 µW, but the system integrates only the 

AFE and all the digital elaboration is allocated into a backend 

DSP. Ivanisevic et al. [38] implemented a PRBS-based IS 

system on a custom board and validated the system on skin 

impedance measurements; however, all the digital processing is 

implemented off-line in MATLAB. Recently, Radogna et al. 

[36] published a preliminary study analyzing the capability and 

the accuracy of the PRBS-based IS system for gas sensors. The 

paper also analyzed the implementation of the digital algorithm 

but only simulation results are reported, with no information on 

the implementation and the power consumption.  

This paper aims to fill this void by focusing on digital signal 

processing in PRBS-based IS and presenting an energy-

efficient implementation on an ultra-low-power (ULP) digital 

platform (GAP-8) adaptable to many portable applications. It 

deals with the implementation of the two most used algorithms 

for PRBS-based IS and compares them in terms of power 

consumption, measurement time and accuracy. 

B. Paper outline 

The rest of the paper is organized as follows: section II 

reviews the theory behind linear time-invariant (LTI) system 

analysis and how PRBS can be exploited to directly estimate 

the impulse response (time-domain algorithm) or the frequency 

response (frequency-domain algorithm). Section III outlines the 

hardware architecture by presenting the GAP-8 ULP digital 

platform and how it should be connected to AFE circuits. 

Section IV is the core of the manuscript and describes the low-

power implementation of the two PRBS-based IS algorithms. 

Finally, experimental results are shown in Section V and 

conclusions are drawn in Section VI. It should be declared that 

this paper reuses some content from the Ph.D. thesis of the first 

author [39] with permission. 

II. THEORY 

A. Generalities on LTI system analyses 

We assume the LTI system shown in Fig. 1 characterized by 

the input x(t) and the response y(t), which is given by the 

convolution between the input and impulse response (IR) h(t): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡)                               () 

 

 
Fig. 1 Representation of the signals involved in the characterization of the LTI 
system. 

 

Let us now assume that x(t) is a real signal with an 

autocorrelation function that behaves approximately like a 

Dirac’s delta, as follows: 

𝑥(𝑡) ∗ 𝑥(−𝑡) ≈ 𝐸𝑥𝛿(𝑡)                           (2) 

where Ex is the energy of the signal. Then, from the output y(t) 

we can estimate the IR by the convolution with the time-

reversed signal 𝑥(−𝑡): 

ℎ̂(𝑡) = 𝑦(𝑡) ∗ 𝑥(−𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) ∗ 𝑥(−𝑡) ≈ 𝐸𝑥ℎ(𝑡)        (3) 

More generally, we can look for two signals x(t) and x(inv)(t), 

whose convolution behaves (approximately) like a Dirac’s delta 

as in (2), which implies that in the frequency domain, at least in 

the band B of ℎ(𝑡), it must be: 

 

𝑋(𝑗𝜔) 𝑋(𝑖𝑛𝑣)(𝑗𝜔) = 1, 𝜔 ∈ 𝐵              (4) 

where with capital letters we indicate the Fourier transforms of 

the signals. Thus, the excitation signal x(t) must have a 

sufficiently wide spectrum, covering at least the band of the LTI 

systems to be characterized [40], [41]. If this condition is 

fulfilled, we design 𝑋(𝑖𝑛𝑣)(𝑗𝜔)=1/𝑋(𝑗𝜔) in the band of 

interest, and arbitrary elsewhere. Then, we compute the 

corresponding time-domain signal: 

𝑥(𝑖𝑛𝑣)(𝑡) = ℱ−1 (𝑋(𝑖𝑛𝑣)(𝑗𝜔))           (5) 

where ℱ−1(. ) is the inverse Fourier transform operator. In this 

way, the estimate ℎ̂(𝑡) of the IR is obtained as: 

    ℎ̂(𝑡) = 𝑦(𝑡) ∗ 𝑥(𝑖𝑛𝑣)(𝑡)                                 = 

 = ℎ(𝑡) ∗ 𝑥(𝑡) ∗ 𝑥(𝑖𝑛𝑣)(𝑡) = ℎ(𝑡)                  (6) 

Other than describing the system under test in the time 

domain, we may look for describing it in the frequency domain 

by means of its transfer function (TF) 𝐻(𝑗𝜔) = ℱ(ℎ(𝑡)). From 

(6) we see that the estimate of the TF can be calculated as: 

𝐻̂(𝑗𝜔) = 𝑌(𝑗𝜔) ∙ 𝑋(𝑖𝑛𝑣)(𝑗𝜔)                      (7) 

where Y(jω) is the Fourier transform of the response signal.  

For impedance spectroscopy of an electrical bipole, we may 

consider in (1) a current excitation i(t) as the input x(t), and the 

voltage drop v(t) as the response y(t); the transfer function 

𝐻(𝑗𝜔) is then the impedance 𝑍(𝑗𝜔) of the bipole. For a more 

general discussion, we will maintain the notation of 

input/output signals in the next sections, keeping in mind the 

extension to the impedance estimation.  

As observed, the above technique for the analysis of LTI 

systems is valid if the input signal has a sufficiently wide band. 

To this purpose, there are many possibilities to build a proper 

excitation (e.g., chirp, pulse). In this paper we propose  PRBS 

which combines simplicity in processing with a straightforward 

digital implementation on an embedded platform. 

B. Discrete-time formulation 

Discrete-time formulation of the above analysis over a 

limited time window is mandatory when the processing should 

be implemented on an embedded digital platform. According to 

the Nyquist-Shannon theorem, we sample at rate fs > 2B, where 

B is the bandwidth of h(t). Thus, the impulse response h(t) spans 

approximately fs /B time samples. In the following we assume 

N> fs /B so that an impulse response duration is less than N 

samples. Thus, all the continuous-time signals in the previous 

section should be replaced with vectors of N elements, the 

Fourier transforms become Discrete Fourier Transforms 

(DFTs), and the correlation operations become cyclic 

SUT
h(t)

x(t) y(t)



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

correlations.  

Let us now define a sequence xn with n = 0,…,N-1 as the 

discrete-time version of the input signal, and its cyclic-

convolutional inverse 𝑥𝑛
(𝑖𝑛𝑣)

 obeying: 

𝑥𝑛
(𝑖𝑛𝑣)

⊛ 𝑥𝑛 = 𝛿𝑛,                                      (8) 

where δn is the Kronecker delta. The cyclic convolution is 

defined as: 

𝑥𝑛
(𝑖𝑛𝑣)

⊛ 𝑥𝑛 = ∑ 𝑥𝑘
(𝑖𝑛𝑣)

𝑥(𝑛−𝑘) 𝑚𝑜𝑑 𝑁 ,𝑁−1
𝑘=0                   (9) 

and mod is the modulo operator (signed remainder after 

division). In the frequency domain, the DFTs of the two 

sequences above, 𝑋𝑛 = 𝐷𝐹𝑇(𝑥𝑛), and 𝑋𝑛
(𝑖𝑛𝑣)

= 𝐷𝐹𝑇(𝑥𝑛
(𝑖𝑛𝑣)

), 

are therefore related by: 

𝑋𝑛𝑋𝑛
(𝑖𝑛𝑣)

= 1,       𝑛 = 0, … , 𝑁 − 1.                       (10) 

This means that we can estimate the IR in the discrete-time 

domain using the discrete output sequence 𝑦𝑛 cyclically 

convoluted with 𝑥𝑛
(𝑖𝑛𝑣)

:  

ℎ̂𝑛 = 𝑦𝑛 ⊛ 𝑥𝑛
(𝑖𝑛𝑣)

,                                    (11) 

or we can estimate the sampled version of the TF as follow: 

𝐻̂𝑛 = 𝐷𝐹𝑇(𝑦𝑛) ∙ 𝐷𝐹𝑇(𝑥𝑛
(𝑖𝑛𝑣)

) = 𝑌𝑛 ∙ 𝑋𝑛
(𝑖𝑛𝑣)

,  (12) 

where 𝐻̂𝑛 , 𝑌𝑛, 𝑋𝑛
(𝑖𝑛𝑣)

 are all vectors of complex data. Eq. (11) 

and (12) are the discrete-time formulations of the time- and 

frequency-domain IS algorithms, respectively. In the following, 

we will refer to these two equations for the implementation of 

the impedance extraction algorithms in the embedded platform. 

C. Generation of the pseudo-random excitation 

There are several options for the choice of the pseudo-

random wideband excitation sequence xn [41]. One possibility 

consists in randomly generating  the  elements 𝑥𝑛 ∈ {0,1}, with  

n=0,..,N-1, from a uniform binary discrete distribution and 

creating the cyclic inverse 𝑥𝑛
(𝑖𝑛𝑣)

 by implementing (5) in the 

discrete-time domain, which implies the off-line computation 

of the DFT and Inverse Discrete Fourier Transform (IDFT). 

This approach simplifies the signal generation circuit, which 

can be reduced to a simple 1-bit digital-to-analog converter 

(DAC) or even a digital output but requires to store in the 

memory of the embedded system both the sequences xn and 

𝑥𝑛
(𝑖𝑛𝑣)

, which could be an issue as long as the memory space is 

a limited resource. 

 A second possibility consists in randomly generating the 

phases (𝜑0, 𝜑1, … , 𝜑𝑁−1) in the interval [0,2𝜋[ and building the 

vector 𝑋𝑛 = (𝑒𝑗𝜑0 , 𝑒𝑗𝜑1 , … , 𝑒𝑗𝜑𝑁−1). Then, the excitation 

sequence xn could be obtained by computing the IDFT of Xn, 

while xn
(inv) is just the time-reversed version of xn, since 𝑋𝑛

(𝑖𝑛𝑣)
 

is simply given by: 

𝑋𝑛
(𝑖𝑛𝑣)

= (𝑒−𝑗𝜑0 , 𝑒−𝑗𝜑1 , … , 𝑒−𝑗𝜑𝑁−1).             (13) 

By imposing a Hermitian symmetry on Xn, the sequence xn 

can also be constrained to be real. This approach has the 

advantage that we have just one sequence, used both as input 

and for the processing, minimizing the amount of memory 

required. However, it requires the use of an N-bit DAC to excite 

the system instead of 1-bit DAC, since the realized sequence is 

not binary. This leads to more complexity and power 

consumption. A subcase of this class is represented by 

maximum length sequences (MLS), which are binary sequences 

of length 2m-1 [34], [41]. Their antipodal ±1 version plus the 

constant z = 1/(2N/2 +1) has a constant modulus DFT, so again 

their cyclic inverse is the time-reversed sequence. The 

additional advantage of MLS is that the sequence in the time 

domain is binary, simplifying again the signal generation and 

processing. The drawback is that the sequence length is 2m-1, 

which is not an integer power of 2, as usually required for easier 

and efficient implementation of signal processing and FFTs on 

embedded systems. However, padding the excitation sequence 

with only one element is an easy and reasonable approach to 

overcome the problem with a low degradation of the algorithm 

performance, making the MLS the preferred option for 

minimization of the power consumption and memory space. 

Given the advantages of the MLS with respect to other options 

(i.e. binary nature of the sequence and minimization of memory 

occupation), MLS is chosen as the best excitation for energy-

efficient PRBS impedance spectroscopy.   

III. HARDWARE ARCHITECTURE 

The general block-level hardware architecture of the energy-

efficient PRBS-based IS system is shown in Fig. 2. It consists 

of a generic AFE, whose description is out of the scope of this 

manuscript (e.g. we can use the AFE presented in [5] or [29]), 

analog/digital interfaces, and a ULP digital platform on which 

both algorithms are implemented. We chose GAP-8 System-on-

chip as the energy efficient digital platform. It is a RISC-V-

based ULP embedded platform recognized for its energy 

efficiency, wide memory capability, and integrated 

convolutional hardware accelerator. However, any other 

energy-efficient microcontroller unit that has the hardware 

features discussed below (e.g. STM32) can be used as ULP 

digital platform leading to similar results.   

GAP-8 by Greenwaves Technologies is a commercial 

system-on-chip (SoC) that has high flexibility and application 

versatility thanks to the combination of a single control core, 

called fabric controller (FC), and a cluster of 8 parallel cores 

(cluster) for computationally intensive data processing. All the 

available processing units feature an extended instruction set, 

properly designed for digital signal processing [42]. 

The memory hierarchy is divided into two levels, a shared 

tightly coupled data memory (TDCM) area L1 and L2 SRAM, 

of 64 kB and 512 kB, respectively. While the access to L1 is 

very fast (single cycle), L2 has typically a slower response (ten 

cycles) for the cluster, while its access is optimized for the FC. 

This means that the FC usually is the preferred solution to 

process large arrays at low computational intensity, while the 

cluster can be used for computationally-intensive processing of 

data copied in L1 from L2 using double-buffering. The high 

computation performance of the cluster and fabric controller is 

guaranteed by an extended RISC-V ISA subset with optimized 

DSP and SIMD instructions (e.g. MAC instruction 2x16 bit and 

4x8 bit). The support also of RV32IMC instruction set and 

specific bit manipulations boost the calculation power together 

with a convolutional hardware accelerator on-chip. We should 

state that a large array means a long PRBS, implying the 

excitation of low-frequency points and a dense and wide 
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spectrum reconstruction, necessary to reach a high-frequency 

resolution of the impedance spectrum.  

As far as the interface to the AFE is concerned, it consists of 

i) a digital output port that behave as a 1-bit DAC, to excite the 

SUT with the MLS and ii) an M-bit analog-to-digital converter 

(ADC) to sample and quantize the output response. As 

previously stated, the proposed system mainly relies on digital 

processing, due to the binary nature of MLS. Moreover, the 

analog interface could potentially achieve a power consumption 

as low as a few µW, with a marginal contribution to the total 

power budget. Although the analog part is out of the scope of 

this paper, we suggest referring to the state of the art for a 

specific design, such as the one proposed in [25].  

 

 
Fig. 2 Block scheme of the hardware architecture. The AFE reported is just a 

possible implementation suitable for high-impedance SUT while GAP-8 is the 

versatile ULP embedded platform that could be used with different AFEs and 
different impedance estimation algorithms. 

A. A/D Interfaces 

In order to be properly applied to the impedance under test, 

the MLS excitation sequence is converted into a continuous-

time signal by a 1-bit DAC; i.e., by means of a zero-order hold 

processing at uniform time intervals ∆t=1/fS. The duration ∆t of 

the intervals is a key parameter that defines the acquisition 

bandwidth. Since the spectrum of the MLS stimulus is a sinc 

function with null points at frequencies 𝑛 ∙ 𝑓𝑆, then its -3 dB 

point set the acquisition bandwidth 𝑓𝑀 = 𝑓𝑆 3⁄  [43]. However, 

the wider bandwidth could be achieved by using appropriate 

digital post-processing techniques. 

For simplicity purposes, the ADC that samples and converts 

the response of the impedance under test is operated at the same 

sampling frequency fS of the DAC, while the ADC resolution M 

is a parameter of the measurement system and can be modified 

in accordance to the target specifications.  

IV. LOW-POWER IMPLEMENTATION OF THE ALGORITHMS 

Besides the intrinsic low-power characteristic of GAP-8 

architecture, the algorithms should be optimized to improve the 

computational efficiency and further minimize the power 

consumption. The cycle-per-instruction (CPI) is minimized by 

exploiting array manipulations and vectorization. For instance, 

using vectors of two 16-bit elements to perform basic 

operations (e.g., sums, subtractions, multiplications) will halve 

the cycle cost, taking one cycle instead of two. This feature is 

allowed by the extended ISA of GAP-8.  

The memory capability of GAP-8 allows using an MLS with 

m = 14 (i.e., a total length of the sequence of 214 − 1 samples), 

but the sequence must be stored in the ampler L2 memory; thus, 

either Direct Memory Access (DMA) should be exploited or the 

algorithm should be executed by the FC. Moving the sequence 

from L2 to L1 through DMA only when required is an efficient 

approach with a good power-consumption/execution-time 

trade-off. It has the double advantage of totally filling L1 (faster 

to access) at each algorithm snapshot and exploiting the DMA, 

which hides the cost of data transfer not involving the 

processing unit. This approach could be used only if the data 

elaboration can be organized in chunks of data. If this is not 

possible, the algorithm must be executed by the FC, which has 

no access to the DMA but features privileged access to L2 

memory, though slower than the access of core cluster to L1 

memory. 

A. Implementation of the time-domain algorithm 

Estimation of the time-domain discrete version of the 

impedance, i.e., the IR of the impedance under test, is obtained 

by (11), which implies the computation of a cyclic convolution. 

In order to perform this cyclic convolution in a straightforward 

way, we excite the system with the sequence xn repeated for K 

times, sample the K-time repeated version of yn, called yn
(K), and 

perform a standard convolution between yn
(K) and the N-length 

sequence xn
(inv) by means of a standard FIR filter with N taps.  

We can express the K-time repeated excitation sequence 

𝑥𝑛
(𝐾)

 as: 

𝑥𝑛
(𝐾)

= ∑ 𝑥(𝑛−𝑘𝑁) 𝑚𝑜𝑑 𝑁
𝐾−1 
𝑘=0  , 𝑛 ∈ ℤ                      (14) 

This is then converted into a continuous-time signal 𝑥(𝐾)(𝑡) by 

a 1-bit DAC. By assuming the corresponding continuous-time 

output of the impedance under test as 𝑦(𝐾)(𝑡) = 𝑥(𝐾)(𝑡) ∗ ℎ(𝑡), 

then its discrete-time version sampled at 𝑛∆𝑡 intervals is 

representable as:  

𝑦𝑛
(𝐾)

= ∆𝑡 ∑ ℎ𝑟𝑥𝑛−𝑟
(𝐾)𝑅−1 

𝑟=0 = ∆𝑡 ∙ ℎ𝑛 ∗ 𝑥𝑛
(𝐾)

                  (15) 

where ℎ𝑛 is the discrete-time IR [19] and 𝑅 = 𝐾 ∙ 𝑁. The 

convolution of the output 𝑦𝑛
(𝐾)

 with the inverse input sequence 

𝑥𝑛
(𝑖𝑛𝑣)

, implemented with a simple FIR filter, gives the K-time 

repeated estimate ℎ̂𝑛
(𝐾)

 of the IR as follows: 

ℎ̂𝑛
(𝐾)

= 𝑦
𝑛
(𝐾) ∗ 𝑥𝑛

(𝑖𝑛𝑣)
= ∆𝑡 ∙ ℎ𝑛 ∗ 𝑥𝑛

(𝐾)
∗ 𝑥𝑛

𝑖𝑛𝑣 = 

= ∆𝑡 ∙ ℎ𝑛 ∗ ∑ 𝛿𝑛−𝑘𝑁 = ∆𝑡 ∑ ℎ𝑛−𝑘𝑁
 𝐾−1
𝑘=0

𝐾−1 
𝑘=0          (16) 

By following this approach, the output of the convolution is 

a K-time repeated version of the IR, with the edge repetitions 

corrupted due to the intrinsic zero-padding of the linear 

convolution. By removing the edge effects, the linear 

convolution returns the central repetition, exactly as the cyclic 

convolution; thus, the repetition value K must be at least 3 to 

obtain (K-2) clean repeated IR. 

Considering the above theory from an implementation point 

of view, the choice of an MLS as excitation is extremely 

advantageous since the convolution can be performed through 

efficient numerical methods such as the Fast M-Transform 

(FMT) that reduces the convolution into a scheme of sums and 

subtractions, called Hadamard algorithm (FHT). The 

underlying idea is to build an M-matrix, which rows and 

columns are shifted repetitions of 𝑥𝑛
(𝑖𝑛𝑣)

, satisfying the 

following formula: 

ℎ̂𝑛
(𝐾)

 = 𝑀 ∙ 𝑦𝑛
(𝐾)

                             (17) 
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Matrix M can be decomposed into three operations which are a 

permutation of the 𝑦
𝑛
(𝐾) (matrix PL), the application of the 

Hadamard scheme (matrix H) and a further permutation (matrix 

PS) of the result obtained: 

 

𝑀 = 𝑃𝐿𝐻𝑃𝑆                                  (18) 

 

 
Fig. 3 Execution scheme of a Fast M-Transform. 

 

Permutating a vector consists in exchanging the position of 

vector elements and coincides with a sorting algorithm 

following a fixed table. The Hadamard algorithm is coded with 

an FFT-like implementation where the sequence to be 

transformed is split into subsequences and the “butterfly 

scheme” is applied for various stages, as shown in Fig. 3. As for 

the FFT, such an approach of grouping terms before the FHT is 

called decimation-in-time (DIT), where the number of groups 

determines the radix-2 or radix-4 version. The application of the 

entire FMT allows reducing the computational complexity of 

the convolution between two sequences of N-length from N2 to 

2.5Nlog2N.  For a complete discussion on the FMT and FHT we 

suggest referring to [44]. 

In the realized IS prototype, the MLS pattern is concatenated 

three times (for a total of 49149 samples) and sent to the 

external SUT obtaining the  repeated response 𝑦𝑛
(𝐾)

.  The 

convolution between the central part of such response (16383 

samples) with the inverted MLS 𝑥𝑛
(𝑖𝑛𝑣)

 (16383 samples) is 

performed into the GAP-8 platform by using the FMT 

algorithm, which is described in pseudocode in Fig. 4. Since the 

MLS is binary and 𝑦𝑛
(𝐾)

 is given by the ADC, then the FMT is 

performed between integer values further lightening the 

computation. The chosen implementation for the FHT is a 

radix-4 DIT, which requires fewer instructions than the radix-2 

DIT [45]. As in [45], the code speed is also significantly 

increased by unrolling the loops that typically produce stalls in 

the microprocessor. Moreover, the data format of each stage of 

the FHT is designed so as to allow the data management from 

L2 to L1 by using the DMA. This strategy is also applied for 

the permutations. Once the FHT result is re-permutated, the 

sequence obtained is exactly the IR in the time-domain.  

Note that exploiting the multi-core capability of GAP-8 is not 

the most efficient approach since continuous access to the 

variables from many cores and core synchronization introduces 

many stalls and increases the CPI. Therefore, the algorithm is 

executed by a single core of the core cluster while the others are 

kept in clock-gating mode to not increase the power 

consumption. This approach allows easy scalability to multi-

channel acquisitions required by applications like multi-

parameter monitoring [46] or electrical impedance tomography 

[9], [47]. 

The complete functional diagram of the IS time-domain 

algorithm is shown in Fig. 5 for a possible implementation also 

including an M-bit ADC. The K-time repetition of the 

excitation forces the introduction of the truncation block to 

recover the central portion of the response from the periodic 

repetition. From the estimated discrete-time IR it is possible to 

interpolate the continuous-time IR and to extract specific 

parameters of interest on the basis of the specific application. 

 
Fig. 4 Time-domain algorithm in pseudocode.  

 
Fig. 5 Functional diagram of the PRBS-based IS system based on the time-

domain algorithm. 

B. Implementation of the frequency-domain algorithm 

Estimation of the sampled version of the impedance 

spectrum Z(jω), i.e. the TF of the SUT, is obtained by (12). By 

dividing the complex quantities in (12) into magnitude and 

phase values we obtain: 

{
|𝐻̂𝑛| = |𝑌𝑛| ∙ |𝑋𝑛

(𝑖𝑛𝑣)
| = |𝑌𝑛| ∙ 𝛼

∠𝐻̂𝑛 = ∠𝑌𝑛 + ∠𝑋𝑛
(𝑖𝑛𝑣)

= ∠𝑌𝑛 − ∠𝑋𝑛 
                      (19) 

The property of the PRBS guarantees constant power of the 

excitation signal over a wide spectrum, thus, the computation 

of the equations in (19) is straightforward. Specifically, the 

main computations are entrusted to: i) the calculation of the 

sequence 𝑌𝑛 by computing the DFT, ii) one multiplication 

between the sequence |𝑌𝑛| and a constant value 𝛼 = |𝑋𝑛
(𝑖𝑛𝑣)

 | 

and iii) one sum of phases, as shown by the functional diagram 

of Fig. 6.  
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Fig. 6 Functional diagram of the PRBS-based IS system based on the frequency-
domain algorithm 

 
Fig. 7 Frequency-domain algorithm in pseudocode. 

 

The PRBS excitation is still an MLS but, contrary to the time-

domain algorithm, the frequency-domain algorithm defined in 

(12) does not require the repetition of the excitation sequence 

since no direct convolution is computed and no edge effects are 

considered, providing an intrinsic speed up of the estimation 

process. However, the benefits related to the binary nature of 

xn
(inv) in the data post-processing decay, though the advantages 

about the use of a binary excitation sequence xn are still 

maintained since it can be sent through a simple 1-bit DAC. 

Specifically, the operations involved in (19) are multiplications 

and sums, which do not require boosted elaborations, like the 

FMT, and do not get advantages from the binary nature of the 

PRBS.  

The core of the frequency-domain algorithm is the FFT, 

which can be implemented by using the same radix-4 DIT 

algorithm described for the FHT. The FFT algorithm involves 

the multiplication of the response vector yn by 16383 factors, 

known as twiddles [45], the application of the butterfly scheme, 

and a vector reordering which is another permutation of 16383 

elements. To exploit the GAP-8 resources in the FFT 

implementation, it is necessary that the vector under 

transformation, the twiddle factors, and the reordering table are 

simultaneously available. This constraint forces to work with 

all data in the wider L2 memory and to use the FC for 

implementing the algorithm, at the expense of velocity. 

The main strategy used to boost FFT performance is 

vectorization. With respect to the time-domain algorithm, the 

FFT result is a vector of complex values expressed in fixed-

point annotation adding complexity to the algorithm. However, 

note that the computational cost should consider only the 

computation of one FFT plus the multiplications and sums as in 

(19), since 𝑋𝑛
(𝑖𝑛𝑣)

 can be calculated offline. The pseudocode 

representation of the on-line data-processing required by the 

frequency-domain IS algorithm is shown in Fig. 7. 

V. EXPERIMENTAL RESULTS 

Experimental results are presented in order to study the 

following system performance indicators: 

• Accuracy of the estimates. We will consider as 

sources of uncertainty only those related to the 

general application of the PRBS technique and 

those related to the proposed low-power 

implementations of the impedance estimation 

algorithms. Error sources due to the AFE are not 

considered. 

• Power consumption. We will mainly focus on the 

power consumption of the digital platform for a 

single estimate of the target parameters.  

• Measurement time: We will refer to the 

measurement time as the time required to get the 

final estimate of the target parameters. Since both 

FMT and FFT are not implemented in real-time, the 

measurement time tm can be expressed as 𝑡𝑚 = 𝑡𝑒 +

𝑡𝑝, where te is the time used to generate the MLS and 

collect the response and tp is the time required for 

the digital processing.  

The desired targets for such performance indicators are 

typically defined by the specific application. For instance, 

diagnostic applications require high accuracy while the 

measurement time is not of primary concern [7]–[9]. On the 

contrary, detection of motion artifacts in ECG signals requires 

good time resolution while the accuracy is less stringent [25]. 

Regardless of the specific application, all the portable devices 

require low power consumption. 

By means of numerical simulation in MATLAB, a study on 

the accuracy of the PRBS-based IS system is performed in order 

to identify the system parameters that mainly influence the 

impedance estimation. For this purpose, we assume a second-

order under-damped system as SUT, described by the following 

TF: 

 

𝐻𝑛 =
𝜔𝑛

2

𝑛2+2𝜁𝜔𝑛𝑛+𝜔𝑛
2 =

5∙1011

𝑛2+2.5∙105𝑛+5∙1011            (20) 

 

where 𝜁 is the damping factor and 𝜔𝑛 is the natural frequency. 

This SUT represents a general RLC impedance, though the 

algorithms are applicable to any kind of impedance. In the 

following, we will assume the estimation of these target 

parameters as the goal of the IS system. This will emulate the 

application of the IS system to a sensor scenario, where some 

sensing parameters can be estimated from the IR or the TF. The 

errors in the estimation of the target parameters are defined as 

the relative deviation of the estimates (𝜁, 𝜔̂) from the ideal 

values (𝜁 and 𝜔, which are perfectly known) expressed in 

percentage: 

Yn
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%𝑒𝑟𝑟𝜁 =
|𝜁̂−𝜁|

𝜁
∙ 100                                (21) 

%𝑒𝑟𝑟𝜔 =
|𝜔̂−𝜔|

𝜔
∙ 100                               (22) 

Once the main system parameters have been optimized, 

implementations of the algorithms, as described in Section IV, 

are analysed and compared with the ideal algorithms as well as 

one to each other in terms of accuracy, power consumption, and 

processing time.  

A. Design rationale of PRBS-based IS 

The following discussion is valid regardless of the chosen 

algorithm since it deals with the optimum choice of general 

parameters of the PRBS-based IS system, like the hold time 

interval ∆t (also known as bit time) and the number of elements 

of the MLS. The accuracy of the final estimates depends on the 

parameters used for the generation of the MLS and for the 

sampling of the SUT response, which are dependent on the SUT 

characteristics. In general, the sampling frequency fS must be 

selected in agreement with the target bandwidth and range of 

frequencies of interest, as discussed in section III.B. The 

frequency fS also sets the time resolution in the reconstruction 

of the IR. Specifically, with the aim of estimating both 𝜁 and 

𝜔𝑛 ,  the frequency fS must also be strictly greater than 1/ 𝜏 =
𝜁𝜔𝑛, where τ is the longest time constant of the SUT. Moreover, 

the number of elements N in the MLS must be greater 

than 𝑁𝑥 = 5𝑓𝑆𝜏, where the constant 5 stems from the theory of 

linear systems and it is necessary to estimate the 99.3% 

exhaustion of the IR. If a number lower than 5 is selected, the 

algorithms still work but the IR is reconstructed on a shorter 

time window. If these bounds are satisfied (i.e. 𝑓𝑆 > 1 𝜏 ⁄  and 

𝑁 > 𝑁𝑥), then a quite good accuracy (%𝑒𝑟𝑟𝜁  < 6%, 

%𝑒𝑟𝑟𝜔𝑛
<1%) can be achieved even by employing a 4-bit ADC. 

The resolution of the ADC directly affects the minimum 

achievable error and lower errors can be achieved by increasing 

the ADC resolution. In the following, a standard ADC 

resolution M=8 will be considered since it is a common device 

easy to find in the market; however, the system can work with 

M down to 4 bit in case the accuracy target is relaxed. 

Fig. 8 shows the estimated TF in two different scenarios, 

representing a good and a bad choice of the system parameters, 

respectively. The figure clearly shows how a bad setting of the 

parameters fails in the TF reconstruction, identifying an 

incorrect first-order low-pass system.  

 

 
Fig. 8 Comparison of bad (fS<1/ τ) and good (fS>1/ τ) parameter settings. 

 

Besides the definition of boundary conditions on the general 

parameters of the IS system, it is important to express the trade-

off between the parameters in order to define a general design 

rationale with respect to the target accuracy and measurement 

time. In this perspective, a study of the influence of fS and N on 

%𝑒𝑟𝑟𝜁  and excitation time, which is the time required for the 

MLS generation 𝑡𝑒 = 𝑁𝐾/𝑓𝑆, (K=3 for the time-domain 

algorithm and K=1 for the frequency-domain algorithm) is 

carried out. 

Fig. 9 shows how the error %errζ decreases with the increase 

of fs and N but leading to longer 𝑡𝑒 (up to 12 ms for 1/ 𝜏 =125 

kHz). We suggest choosing a minimum fS at least 4 times the 

bound level for better accuracy. We also notice that the 

relationship between fS and Nx, described previously, makes 

constant the ratio  

Nx/𝑓𝑆, thus the excitation time is given by: 

𝑡𝑒 =  5𝐾
𝑁

𝑁𝑥
𝜏,                                             (23) 

which is independent of the frequency fS. For a given SUT type, 

the excitation time depends only on the estimation algorithm, 

through the parameter K, and the target accuracy, through the 

ratio N/Nx. It is also necessary that the parameters are chosen 

far from the forbidden zone where bounds are not satisfied and 

the TF reconstructed is incorrect. The same conclusion can be 

drawn for %𝑒𝑟𝑟𝜔𝑛
. This study defines the guidelines for the 

tuning of the algorithms. For instance, Fig. 9 clearly shows how 

lower errors can be achieved by increasing the length N of the 

MLS, trading off with measurement time. Fig. 9 also shows 

how very low errors in the order of 0.2 % can be achieved by a 

proper choice of the general parameters and increasing the ADC 

resolution (M=8 bit in this case). 
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Fig. 9 %𝒆𝒓𝒓𝜻 as a function of fS and N (K=3, M=8) for the time-domain 

algorithm. 

B. Prototype board 

This paper focuses on the implementation of the signal 

processing algorithms for PRBS-based IS, thus, only the GAP-

8 digital platform is included in the prototype board. Fig. 10 

shows a photograph of the GAP-8 development board GAPuino 

used for the experimental validation of the proposed algorithms. 

A/D interfaces and SUT are emulated in Matlab by ideal 

quantization processes and RLC system. 

 
Fig. 10 Photograph of the GAPuino development board used as prototype board 

for the next experimental tests on the proposed algorithms. 

    

C. Accuracy of the algorithms 

Apart from the effects of the general parameters of the 

PRBS-based IS system on the accuracy, which are the same 

regardless of the specific algorithm selected, the actual 

implementation of each algorithm introduces specific errors 

with respect to the ideal behavior, like errors due to truncation 

or round-off. These errors are evaluated by comparing the 

results of the ideal implementation of the algorithms in 

MATLAB with the results obtained by the algorithms 

implemented in GAP-8 platform under the same general 

parameters N, fS, and M. The comparisons are made by 

assuming the SUT defined in (20) and simulating an output 

response quantized at 8-bits. 

Fig. 11 compares the IR estimated by the time-domain 

algorithm implemented in GAP-8 with the ideal IR obtained in 

MATLAB by using the same general parameters (i.e., N= 

16383, fS= 4 MHz, and M= 8 bit). 

 
Fig. 11 Comparison between ideal behavior (MATLAB) and the estimated IR 

by the time-domain algorithm implemented in GAP-8. 

 

We can observe that the IR estimated by using GAP-8 

perfectly overlaps with the ideal estimate, with null deviation. 

This means that the proposed low-power implementation of the 

time-domain algorithm does not add other noticeable sources of 

error with respect to what is discussed in Section V-A. The main 

reason relies on the nature of the algorithm involving a 

convolution among integers values despite the use of the fast 

transform. Therefore, the overall accuracy of the time-domain 

algorithm could achieve the error levels shown in Fig. 9, down 

to 0.2% error or less. This level of accuracy is defined by the 

general parameters of the PRBS-based IS system, while 

uncertainty sources related to the AFE are not here considered. 

 
Fig. 12 Comparison between ideal behavior (MATLAB) and time-domain 
algorithm in GAP-8. 

 

A similar discussion cannot be applied for the frequency-

domain algorithm since it involves the approximation of fixed-

point values and the computation of the FFT algorithm. These 

two data processes introduce round-off errors in the GAP-8 

implementation of the algorithm that leads to a dispersion of the 

TF estimate around the ideal behavior (Fig. 12). This dispersion 
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in the TF causes an extra error in the estimation of the SUT 

parameters that could be, on average, of the order of 5% and 

2% for %𝑒𝑟𝑟𝜁  and %𝑒𝑟𝑟𝜔𝑛
, respectively. Compared with the 

errors reported in Fig. 9, the round-off error of the frequency-

domain algorithm is about ten times higher, becoming the 

dominant source of error and leading to an overall error of 5%. 

Therefore, the increased value of the error is attributable only 

to the implementation of the algorithm. In the assessment of the 

accuracy of the entire IS platform, this extra error should be 

considered together with the sources of error discussed in the 

previous section as well as the thermal noise, here not 

discussed.  

D. Power and energy consumption and processing time 

To evaluate the algorithms in terms of power consumption 

and processing time, we measure the current consumption on 

the chip and the number of clock cycles performed by GAP-8 

to run the algorithms. Both of them highly depend on the 

working frequency of the core cluster or the FC, which can be 

operated at a maximum frequency of 200 MHz. In the time-

domain algorithm, only a single core of the core cluster is 

activated while all the other cores are enabled but in clock-

gating mode, thus the measured power consumption refers to a 

single IS measurement and could be scaled up to a multi-

channel approach, following almost linear relationship. 

Fig. 13 reports the power/energy performance for both the 

time-domain and frequency-domain algorithms. From the 

analyses of Fig. 13, it is clear that the frequency-domain 

algorithm offers the best performance in terms of power 

consumption, energy consumption and processing time, for a 

given working frequency.  

 
Fig. 13 Evaluation of performances for both algorithms in terms of power 

and energy consumption as well as processing time. 

 

As expected, the power consumption increases with the 

working frequency, up to 40 mW and 17.6 mW for the time-

domain and frequency-domain algorithms when the working 

frequency is 200 MHz. If low power consumption is strictly 

required, the system can dissipate only 1.4 mW at the expense 

of a measurement time of 5.3 s or longer. The figure also shows 

how it is convenient, from an energy perspective, to run the 

system at the maximum allowed clock frequency since the 

energy per measurement drops down to values below 1 mJ (i.e. 

0.5 mJ for the frequency-domain algorithm at 200 MHz clock 

frequency). This is mainly true for the time-domain algorithm 

while the increase of energy consumption at lower speed is less 

evident for the frequency-domain algorithm. 

The intrinsic advantage of high working frequency is the 

short processing time, which could be as low as 50 ms and 27 

ms. Such processing time is calculated as the ratio between the 

GAP-8 cycles (10 M cycles for the time-domain algorithm and  

5.3 M cycles for the frequency-domain algorithm) necessary to 

run the algorithm, and the Core/FC frequency. With respect to 

the general study of Fig.10, the processing times reported in 

Fig. 13 are generally longer than the excitation times, stating 

that the measurement time is mainly limited by the processing 

time. It is worth noticing that this statement is strictly true for 

the specific SUT under consideration in these experiments since 

the excitation time te depends on the time constant τ of the SUT. 

In general, we can say that processing time limits the 

measurement time in the estimation of impedances 

characterized by short time constants, while the excitation time 

limits the measurement time in the opposite case.   

E. Figure of merit 

The performance indicators should be considered altogether 

in a single figure of merit (FOM) in order to properly assess the 

quality of the measurement system, defined as its ability to 

achieve good accuracy with low power consumption in short 

measurement time. To this end, we borrow the FOM introduced 

in sensor interface techniques [48], which derives from the 

Schreier’s FOM of ADC [49], [50], and it could be adapted to 

our system as: 

 

𝐹𝑂𝑀 = 𝑝𝑜𝑤𝑒𝑟 ∙ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 ∙ (𝑒𝑟𝑟𝑜𝑟 %)2   (24) 

 

We cannot apply the above-defined FOM to the digital platform 

only since it is a performance indicator of the global 

measurement system. Thus, we decided to assess the FOM 

assuming the integrated circuit described in [25] as the AFE, 

which is a good example of state-of-the-art AFE for IS. Table 1 

reports the power consumption and the measurement time for 

the AFE and the digital platform, separately, and the average 

percentage error as defined by (21). The data refers to the GAP-

8 running at the maximum clock frequency of 200 MHz, 

reporting the best energy performance.  

 
Tab. I FOM of the PRBS-based IS measurement system based on the AFE 

proposed in [25] and the digital platform proposed in this manuscript. The 

values refer to GAP-8 running at the maximum clock, M= 8 bit, N= 16383, and 

fs= 4 MHz)  

Algorithm 
Te 

(ms) 

PAFE 

(mW) 

Tp 

(ms) 

PDIG 

(mW) 
%errξ 

FOM 

(mJ·%2) 

T.-domain 12 0.15 50 39.5 0.2 0.08 

F.-domain 4 0.15 27 17.6 5 12 

   

 Table 1 clearly shows the importance of the digital platform 

in the definition of the energy consumption of PRBS-based IS 

systems. The energy dissipated by the digital platform is 

hundreds of times higher than the one dissipated by the AFE. 

Eeven by relaxing the sampling frequency and extending the 
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excitation time up to hundreds of ms, the digital platform still 

limits the energy/power performance of the PRBS-based IS 

system. Moreover, the FOM reveals how the time-domain 

algorithm outperforms the frequency-domain algorithm thanks 

to the ten times better accuracy. Note that the considered errors 

stem from the proposed digital implementations and from the 

general application of the PRBS technique, while analog 

sources of error and uncertainty (e.g., electronic noise) are 

neglected. Thus, the reported FOM values should be considered 

as boundary limits. 

VI. CONCLUSIONS 

This paper presented a low-power and energy-efficient 

implementation of PRBS-based IS on a versatile ULP digital 

platform (GAP-8) for portable IS applications, which require 

low power consumption and short measurement time in a 

compact form factor. The high versatility of the GAP-8 

platform, together with the possibility to tune the general 

parameters of the PRBS excitation (e.g. bit frequency fS and 

number of samples N), makes the proposed IS architecture 

easily customizable to the target application. General trade-offs 

between accuracy and measurement time were outlined in order 

to define a project rationale allowing to select the optimum 

values for fS and N on the basis of the target application. 

The paper dealt with the energy-efficient implementation of 

the two most used algorithms for impedance estimation in 

PRBS-based IS, providing technical solutions and approaches 

to minimize the computational cost, the processing time, and 

the power consumption. In this way, the paper covered a core 

topic of low-power PRBS-based IS that was not properly 

addressed by the scientific literature. The paper demonstrated 

that the digital platform has an important impact on the energy 

budget of portable IS systems, thus it must be properly 

accounted for and designed. 

 All the features and resources provided by GAP-8 platform 

were exploited to minimize the CPI and make the algorithms 

fast and energy-efficient. As far as the time-domain algorithm 

is concerned, the ampler L2 memory was used to memorize a 

long PRBS, while vectorization and DMA access were 

exploited to speed up the access to the memory. Further 

optimizations were applied by boosting the elaboration through 

efficient numerical methods like the FHT. Conversely, the 

frequency-domain algorithm mainly relied on FFT computation 

that requires continuous access to L2 memory precluding the 

exploitation of DMA. However, GAP-8 is provided of a 

specific core named fabric controller that features privileged 

and faster access to the L2 memory, speeding up the execution 

of the frequency-domain algorithm. 

The two impedance extraction algorithms implemented in 

the ULP platform are also comparatively analyzed in terms of 

power, energy, accuracy, and processing time. On the one hand, 

the time-domain algorithm, executed by a single-core 

belonging to a cluster of 8 cores, showed a power consumption 

down to 6.7 mW when the core is working at 1 MHz. By 

enabling the whole core cluster, it is possible to replicate the 

algorithm on all the parallel cores available, increasing the 

consumption but drastically reducing the processing time for 

multi-channel measurements. The main benefit of this strategy 

relies on the possibility to perform up to 8 parallel 

measurements, which is very interesting in various applications 

such as impedance tomography or multi-parameter 

measurements. On the other hand, the frequency-domain 

algorithm offered a power consumption as low as 1.4 mW 

(working at 1 MHz) or a processing time equal to 27 ms 

(working at 200 MHz). This is possible thanks to the 

optimization introduced in the algorithms and the use of the FC 

which, however, does not allow parallel measurements.  

As far as the accuracy is concerned, the time-domain 

algorithm provides much lower errors in the estimation of target 

parameters with respect to the frequency-domain algorithm. 

Moreover, the time-domain algorithm demonstrated an energy-

per-error FOM one hundred times better than the frequency-

domain algorithm, making it the preferred choice in terms of 

overall efficiency.  

In summary, both algorithms could be employed for PRBS-

based IS and one of them must be selected on the basis of the 

target performance. The time-domain algorithm demonstrated 

to be more accurate and easier to scale up in a multi-channel 

approach, while the frequency-domain algorithm is faster and 

consumes less power, for a given working frequency.     
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