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Abstract: In the ongoing process of telecommunications systems  softwarization  , a key role is
played by Virtual Network Functions deployed in Cloud environments and
interconnected through Software Defined Networks. The separation between data,
control and service logic changes the way in which those systems are designed,
operated, and capitalized, and also enables elasticity, flexibility and cost-efficiency in
the whole ICT ecosystem. However, dedicated and reliable monitoring tools are
required to take full advantage of software-based telecommunication systems. Such
tools are expected to effectively combine metrics about various assets to provide a
global view over the infrastructure, offload control plane from monitoring tasks to
improve scalability, and be seamlessly integrated with the existing control plane
through the interface.
In this paper, we propose a monitoring module that meets the requirements imposed
by the  softwarization  process. We present the reference architecture for the proposed
solution, along with the fundamental assumptions we have based our work upon, and a
Proof-of-Concept implementation. Our solution has been designed as a standalone
Virtual Network Function, fully decoupled from the existing control plane. As a result,
new features and degrees of freedom are available, especially in terms of adaptability
to the heterogeneous softwarized infrastructure, with no modifications needed in the
existing software or hardware components. The proposed modular architecture,
supported by proper interfaces, can be integrated with a variety of tools to collects
statistics from different assets, relieving the control plane from the burden of
computational-intensive monitoring tasks. 
In order to carefully validate the design of the proposed unified and standalone
monitoring module numerous scenarios addressing various aspects and potential
impediments were considered, in a series of experiments run on our internal testbeds
and on an auxiliary public cloud environment. The obtained results prove that our
monitoring tool provides significant advantages with respect to the existing solutions
which are integrated in the control plane. Therefore, it is able to cooperate with
sophisticated traffic steering and cloud management mechanisms operating on the
combined network and computing resources. Furthermore, we demonstrate that our
solution is easily portable, for instance to a public cloud environment.
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Abstract

In the ongoing process of telecommunications systems softwarization, a key
role is played by Virtual Network Functions deployed in Cloud environments
and interconnected through Software Defined Networks. The separation be-
tween data, control and service logic changes the way in which those systems
are designed, operated, and capitalized, and also enables elasticity, flexibility
and cost-efficiency in the whole ICT ecosystem. However, dedicated and re-
liable monitoring tools are required to take full advantage of software-based
telecommunication systems. Such tools are expected to effectively combine
metrics about various assets to provide a global view over the infrastructure,
offload control plane from monitoring tasks to improve scalability, and be
seamlessly integrated with the existing control plane through the interface.

In this paper, we propose a monitoring module that meets the require-
ments imposed by the softwarization process. We present the reference archi-
tecture for the proposed solution, along with the fundamental assumptions
we have based our work upon, and a Proof-of-Concept implementation. Our
solution has been designed as a standalone Virtual Network Function, fully
decoupled from the existing control plane. As a result, new features and
degrees of freedom are available, especially in terms of adaptability to the
heterogeneous softwarized infrastructure, with no modifications needed in
the existing software or hardware components. The proposed modular ar-
chitecture, supported by proper interfaces, can be integrated with a variety
of tools to collects statistics from different assets, relieving the control plane
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from the burden of computational-intensive monitoring tasks.
In order to carefully validate the design of the proposed unified and stan-

dalone monitoring module numerous scenarios addressing various aspects and
potential impediments were considered, in a series of experiments run on our
internal testbeds and on an auxiliary public cloud environment. The obtained
results prove that our monitoring tool provides significant advantages with
respect to the existing solutions which are integrated in the control plane.
Therefore, it is able to cooperate with sophisticated traffic steering and cloud
management mechanisms operating on the combined network and computing
resources. Furthermore, we demonstrate that our solution is easily portable,
for instance to a public cloud environment.

Keywords:
monitoring module, unified NFV/SDN, universal tool, ICT softwarization.

1. Introduction

The ongoing softwarization process in telecommunications is changing the
way networks are designed, operated, and capitalized [1]. Software-Defined
Networking (SDN) [2], Network Function Virtualization (NFV) [3] and cloud
computing [4] are outstanding examples of a trend toward the full separation
of all network services and functions from the underlying physical infrastruc-
tures. The features of each of those concepts represent a catalyst for the
others, and foster the transition of ICT ecosystems into software-based solu-
tions. Network Functions (NFs) are intended to be dynamically deployed as
Virtual Machines (VMs) or containers, and interconnected via SDN within
a cloud environment. The resulting architecture is expected to be flexible,
easily scalable, reliable, and thus, cost-efficient [5].

However, reliable resource monitoring tools are required to take full ad-
vantage of the softwarization process by adjusting the infrastructure to the
changing conditions. In particular, considering the convergence of SDN, NFV
and cloud computing technologies, such a monitoring system should be able
to collect metrics that are typical of network domains and of a variety of
computing assets [6]. Moreover, the possible impact on the performance of
existing control plane solutions, and the integration with the related, often
heterogeneous components, must be thoroughly considered. Fortunately, the
aforementioned challenges, further confirmed in a recent survey [7], can be
faced in a way that takes advantage of the features offered by the softwarized
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environment itself: global view over combined resources, on-demand resource
provisioning, and integration between control planes of different domains are
not only enabling, but also demanding the design of a unified and standalone
monitoring tool.

In this work, we propose a monitoring module designed as a standalone
Virtual Network Function (VNF) and compatible with a generic SDN/NFV
infrastructure deployed in a cloud environment. The solution is separated
from the existing control plane components and collects measurements for dif-
ferent assets. Decoupling the monitoring module from the control plane and
considering it as a standalone VNF not only spares critical elements such as
the controllers from additional workload, but also brings further advantages
in terms of new features and degrees of freedom. For example, such a mod-
ular architecture enables flexible integration with a variety of control plane
components or tools gathering particular metrics on behalf of the proposed
platform. No modifications are needed in the existing software or hardware
solutions for the purpose of such integration, as only well-known and widely
implemented protocols and interfaces are used. Finally, updates in the moni-
toring module do not trigger any changes in other components. The proposed
standalone monitoring module could be used to feed monitoring information
to a service orchestrator, or to a traffic steering mechanism operating over
complex infrastructures comprising both network and computing resources
(as, for example, presented in [8]). Additionally, our solution may be useful
to discover the limitations and real performance of a virtualized infrastruc-
ture managed and controlled by a third-party provider. The proposed system
has been implemented, deployed, and thoroughly validated in three different
experimental environments. Two of them are real testbeds, the first one
based on the OpenStack (OS) cloud platform and the second one built on
container technology. Furthermore, we have also run our solution in a public
cloud environment using an automation tool to prove portability.

The rest of the paper is organized as follows. Section 2 presents the cur-
rent state of the art on network/compute resource monitoring as well as on
integrated monitoring. Section 3 provides the reference scenario of combined
SDN/NFV and discusses the background for the design of a unified and stan-
dalone resource monitoring module. Section 4 presents the architecture of the
unified monitoring module proposed in this paper, whereas the implementa-
tion of the proposed solution is described in detail in Section 5. Section 6
reports results and analysis of the experimental validation performed under
numerous scenarios. Section 7 concludes the paper.
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2. Related Work

A very broad and comprehensive survey on network data collection has
been proposed in [9] and also numerous solutions have been proposed for the
purpose of monitoring SDN networks and most of them are surveyed in [10]
and [11]. On the other hand, isolated NFV monitoring frameworks have
been widely studied and analyzed in the literature, e.g. both the most recent
survey [12] and also the older one [3] address this issue. Additionally, the
most popular Virtualized Infrastructure Managers (VIMs) and hypervisors
comprise metering modules able collect information about utilization of host
machines and VMs. Furthermore, in general purpose public cloud computing
infrastructures detailed monitoring of resource utilization is a mandatory
feature for cloud providers to ensure precise billing with high granularity [13].

However, as the main scope of this paper is a unified approach to monitor
NFV/SDN infrastructures, we will not concentrate on the solutions designed
for general purpose and separated SDN and NFV entities. Instead, we refer
to the approaches suitable for NFV/SDN infrastructures, which are pointed
out to be one of the most important challenges in a very recent survey [7].
Solutions that are based on both network- and computing-originated metrics
are presented in Section 2.1, as they are the most similar to our approach.
However, also works that, in contrast to our solution, assume collecting solely
network or computing metrics are presented in Sections 2.2 and 2.3, respec-
tively.

2.1. Integrated monitoring

A generic framework aimed at constructing service chains in NFV/SDN
infrastructure is presented in [14]. Unified monitoring for both networking
and computing resources is designed. However, due to the tutorial nature of
this work, implementation details are not provided to make the concept useful
from a practical point of view. Furthermore, authors in [14] assumed that
monitoring modules are integrated with NFV manager and SDN controller,
which may deteriorate the performance of the control plane.

The monitoring framework that represents the closest solution to the
one proposed in this paper was presented in [15] and released as an open-
source project1. In terms of architecture design, the authors assumed that

1https://github.com/T-NOVA/vim-monitoring
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SDN is one of the most important enablers for the Virtual Network Func-
tion Chain (VNFC). Regarding the monitoring module, it was assumed that
any candidate monitoring framework should limit the amount of information
being exchanged with the control plane in order to offload it, as scalabil-
ity is a crucial issue in NFV and Data Centre (DC) environments. Thus,
a monitoring solution should be effective, accurate, and is expected to uti-
lize basic mechanisms in order to be as lightweight as possible. However,
despite the mentioned similarities, two significant architectural differences
exist between the framework presented in [15] and our work. First of all, we
use the dedicated but well known and widely implemented sFlow protocol to
collect network metrics instead of gathering OpenFlow statistics, which may
lead to network control plane overloading. OpenFlow statistic accuracy and
efficiency strongly depend on the network load, imposing higher utilization
of the SDN controller and switches. The second difference regards the fact
that in [15] the authors considered the deployment of a monitoring agent
module within the VNF instance to collect VNF-specific metrics as an ad-
dition to existing cloud platform monitoring facilities (e.g., the OpenStack
Ceilometer module). This makes that solution more challenging in terms
of deployment and integration with existing infrastructures. In [15] some
limited experimental results are presented and are slightly extended in the
project deliverable [16]. Basic evaluation was performed and was focused
on two aspects: load reduction in the control channel, and accuracy of an
anomaly detection system implemented on top of the monitoring module.
Differently, in this work we present a detailed and comprehensive experimen-
tal study of the effectiveness of our framework.

Edge data centers interconnected through SDN networks, controlled by
OpenStack and hosting VNFs are considered in [17]. Dedicated probes are
assumed to be installed on servers to report VNF-specific parameters to
the VIM. At the same time, the SDN controller collects information about
network utilization from software switches and also provides it to the VIM.
The strongest aspect of the paper is a Proof of Concept (PoC) being similar
to the prototype proposed in this work. However, the approach engages both
SDN and VNF control planes in the monitoring activities imposing additional
resource utilization, which is the main drawback compared to our solution.

2.2. Network-based monitoring

Solutions such as [18], [19], and [20] that are based solely on network
metrics suffer from the fact that NFV-specific metrics are neglected. In [18]
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a monitoring module was proposed as an integrated component of the Flood-
light2 SDN controller. It performs periodical network measurements using
OpenFlow statistics with the aim to monitor bandwidth usage and identify
congested links. Then, based on those network metrics VM migration is
performed by the VIM according to the proposed algorithm. Neglecting in-
formation about, for example, CPU or RAM utilization during those actions
seems to be a significant limitation in terms of VM deployment. Addition-
ally, such an architecture adds further overhead to the network control layer,
differently from our proposal which is to separate monitoring and control
functions.

In [19] the integrated orchestration of cloud and SDN network is being
considered. Monitoring is mentioned as one of the three core functions of
the orchestrator, which is especially important in DC environments where
complex traffic patterns occur. However, two important limitations must
be mentioned. The first one regards the fact that solely network measure-
ments are performed while cloud-specific metrics are neglected. It may have
negative impact on optimization performed in further steps. The second dis-
advantage is related to the validation of the solution. It is performed using
simulation techniques and, differently from our work, no PoC or prototype
on a realistic experimental environment is proposed.

Finally, the authors in [20] developed a distributed network monitoring
framework leveraging information collected from software switches to iden-
tify bottlenecks between tiers in cloud-scale applications. Again, no measure-
ment is performed in the computing domain, and the collector is integrated
with the control plane component, which imposes additional resource utiliza-
tion. Both aspects make the proposed solution different from our monitoring
framework.

The computing infrastructure is not considered at all in [21], where au-
thors described a solution dedicated to data center networks and focused
on efficient flow-oriented counters. Despite this significant difference with
respect to our work, the approach is worth to be mentioned due to some sim-
ilarities, including the design of the monitoring module as a separate entity
for scalability and independence of the SDN architecture.

2http://www.projectfloodlight.org/
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2.3. Computing-based monitoring

Similarly to [15], the work reported in [22] is the result of the T-Nova
project3 and is partially based on the framework designed in [15]. Thus ar-
chitectural similarities to our work still exist. The aim of the SDN-based
monitoring system proposed in [22] is to detect and report abnormal con-
ditions in the NFV infrastructure. For that purpose CPU and memory
utilization as a function of traffic handled by VNF is analyzed. However,
network metrics are not being considered, which is a significant limitation
when compared to our work. A second issue regards the fact that technical
details provided in [22] are limited. Conversely, we thoroughly report the
experimental assessment of our framework in a realistic testbed. The most
recent publication from the T-Nova project [23] summarizes all of the project
achievements, but does not include any novel results or concepts.

Cloud-related metrics are also considered in [24], where a monitoring
framework is proposed to control probes in both network and cloud infras-
tructures. The aim is to use information originating from layers 4-7 as-
suming it is valuable from the NFV point of view. However, fundamental
network-based metrics are neglected. Furthermore, the solution is based
on the emerging Network Service Header (NSH) protocol, recently defined
by the IETF [25]. Unfortunately, production-level implementations of NSH
nodes are still limited. On the contrary, in our approach we use well-known
and widely deployed protocols (such as sFlow), and universal communication
interfaces.

3. Unified Monitoring in SDN/NFV Infrastructure

The very basic principles of SDN [2] can be summarized as follows: (1)
the data plane (carrying user data traffic) is decoupled from both control and
management planes, (2) control plane functionalities are logically centralized
and performed by the entity known as the SDN controller, and (3) the SDN
infrastructure can be effectively programmed through the controller itself by
means of a northbound interface offered to the application layer. On the
other hand, NFV [3] adopts virtualization techniques in the process of Net-
work Function (NF) deployment. Numerous types of NFs can be virtualized,
depending on the specific service being deployed and infrastructure being

3http://www.t-nova.eu/

7

http://www.t-nova.eu/


used. A set of VNFs connected in the desired order, according to the service
to be provisioned, defines a VNFC, which falls under the more general class of
Service Function Chain (SFC). Those VNFs are deployed in a cloud environ-
ment [4] where computing, storage and networking resources are provisioned
on-demand and are managed by a cloud orchestration/controller entity.

The features of each of the SDN, NFV and cloud computing paradigms en-
hance the potentialities of the others. The mutual advantages between these
three building blocks of network softwarization are summarized in Fig. 1.
More specifically, on-demand cloud resource provisioning makes it possible
to elastically deploy both VNFs and SDN control plane components, preserv-
ing multi-tenancy capabilities [26]. The cloud-based approach allows scaling
the allocated resources according to current requirements, ensuring perfor-
mance and reliability, and eliminating the need for over-provisioned expensive
dedicated hardware (costs reduction). Additionally, SDN takes advantage of
a global view over the network infrastructure to easily implement sophis-
ticated and programmable traffic steering mechanisms that can reduce the
overall load in a cloud environment and ensure efficient connectivity between
VNFs. Finally, NFV enables the development of application-aware archi-
tectures combining computing and networking functions in a cloud-like en-
vironment, with great elasticity and cost-efficiency. The softwarized nature
of these three building blocks allows for close integration and cooperation
among them.

Each of the three building blocks (i.e., SDN, NFV, and cloud comput-
ing) offers some kind of monitoring capabilities. Regarding the cloud infras-
tructure, it is possible to monitor any specific physical or virtual machine
deployed in the cloud and hosting VNFs. Additional monitoring agents may
report more detailed metrics specific for each VNF (e.g. rate of packets be-
ing inspected and their average size). Finally, the SDN infrastructure should
collect data about network load in a flow-aware manner, mapping flows into
the relevant VNFC.

However, to fully benefit from the described ecosystem, the monitoring
module has to be able to conduct unified measurements over distributed
heterogeneous resources. Such a monitoring tool should be able to effectively
combine all the metrics and formulate comprehensive conclusions on resource
usage. Furthermore, to fully decouple control plane from monitoring tasks,
the monitoring tool is expected to be separated from SDN, VNF and cloud
controllers/orchestrators. Thus, it should be considered as a special case of
VNF, taking advantage of virtualization capabilities enabled by the cloud
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Figure 1: Mutual advantages of SDN, NFV and cloud computing paradigms and respective
monitoring capabilities.

infrastructure. Finally, the monitoring module should utilize well-known
protocols to allow seamless integration with existing infrastructures and to
introduce some redundancy. The unified monitoring system proposed in this
paper is designed to meet the aforementioned requirements and, as a result,
be advantageous in the perspective of new features and degrees of freedom
compared to existing solutions.

As a result, the monitoring module can enable several features, including
optimization of complex infrastructures from the global point of view, full
automation of service deployment combined with the capability to react to
the changes in the data plane, on-demand placement of VNFs [27] or dy-
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namic modification of VNFCs combined with SDN-enabled traffic steering
mechanisms to ensure the desired Quality of Service (QoS) level [6]. Fur-
thermore, energy-aware issues in terms of joint online resource provisioning
can be effectively addressed, as proved in [28] and [29]. The same approach
can also be extended to the fog computing paradigm, which offers latency-
aware traffic management based on the global knowledge of networking and
computing resource conditions [30].

4. Unified Monitoring System Architecture

The description of the proposed unified monitoring system is divided into
two parts. The first part, reported in this Section, describes the architecture
of the solution and the fundamental assumptions, highlighting advantages
with respect to previously existing solutions. The second part, reported in
Section 5, describes the PoC implementation. The description shows the
compatibility of our solution with generic SDN/NFV infrastructures, and
emphasizes the usage of existing protocols for monitoring, which do not op-
erate in the control plane. Additionally, versatility and portability were
proven by deployment in three different environments: two real-life testbeds
and a public cloud. These features are key to achieving the improvements
demonstrated by experimental validation and described in Section 6.

One of the most significant properties of the proposed unified and stan-
dalone monitoring module is the separation of the monitoring functions from
other control and management plane components. As such, the monitoring
module is a software element that can be deployed as one of the VNFs, with
all the advantages that this choice implies, as discussed in section 3. First
of all, decoupling it from the control and management plane components
makes our solution independent of the specific cloud and network controller
technology. Any interaction needed with the control/management plane can
take place through the northbound interfaces offered by the majority of SDN
controllers, e.g., Ryu4, ONOS5 or OpenDayLight6, as well as by different
cloud orchestrators/Virtual Network Function Managers (VNFMs)/VIMs,

4https://osrg.github.io/ryu/
5http://onosproject.org/
6https://www.opendaylight.org/
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such as OpenStack7 or Kubernetes8. Thus, there is no need for complex,
time consuming and technology-dependent integration with specific control
planes. Moreover, such an approach offloads the existing control plane from
monitoring tasks and, consequently, from the decisional burden over possi-
ble actions to take. Additionally, from the perspective of possible commer-
cial implementations, any update to the monitoring module will not require
integration efforts in the customer’s SDN controller or VNF orchestrator.
Thanks to the unified design approach, such a standalone monitoring mod-
ule can provide consistent information to automatically trigger traffic steering
mechanisms that jointly take into account network and computing resources,
interacting with both the network controller and cloud orchestration software
in a coordinated manner.

Finally, modularity facilitates potential extensions of the monitoring mod-
ule. For example, in the current version, the proposed solution is focused on
passive monitoring. However, active monitoring features may be provided by
adding separate components responsible for the active monitoring orchestra-
tion, i.e. deployment of traffic generators, configuration of the infrastructure
to handle monitoring traffic (e.g. setup network paths or deploy VNFs), and
measurements scheduling. Thus, the existing component of the monitoring
tool will be only extended with an interface to communicate with these new
components.

Figure 2 shows the architecture of the proposed unified monitoring system
for SDN/NFV infrastructures, as well as the possible interactions with the
SDN controller and the VIM. The dark gray components belong to the con-
trol/management plane, whereas the white ones refer to data plane modules.
The latter include VMs implementing the VNFs, virtual switches (e.g., Open
vSwitch (OvS) instances9) used to interconnect them within the same physi-
cal Host Machine (HM), and hardware switches interconnecting the physical
hosts. The unified and standalone monitoring module is represented by the
light gray box. It is able to collect monitoring data from different sources,
including the VNF orchestrator and the SDN controller through their re-
spective northbound Application Programming Interfaces (APIs), as well as
directly from the network infrastructure elements using existing and widely

7https://www.openstack.org/
8https://kubernetes.io/
9http://openvswitch.org/
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Figure 2: Architecture with dark gray control plane elements, light gray monitoring mod-
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Northbound-API, OFP - Open Flow Protocol, VM - Virtual Machine, OvS - Open vSwitch,
HS - hardware switch. Solid, dashed and dotted lines are used to denote communication-
related to the monitoring module, SDN controller (northbound and OFP), and VIM,
respectively.

supported standard protocols, such as sFlow.
The modular nature of the proposed monitoring system offers an addi-

tional degree of freedom over which data sources should be used and how
often they should be queried. For instance, based on the present conditions
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of a given infrastructure, it is possible to decide whether to rely on detailed
flow statistics collected by the SDN controller through OpenFlow, or to get
sampled flow data from the physical and/or virtual switches using sFlow, re-
sulting in different granularity levels of the monitoring information but also
different loads imposed to the control plane. Therefore, whenever the data
collected directly from the SDN/NFV infrastructure is sufficient for the mon-
itoring module to understand how the resources are being used and whether
any corrective action should be put in place, the proposed approach allows
to offload the control/management planes from the burden to deal with such
operations. Such a redundancy can be also advantageous for uninterrupted
statistics gathering in case of malicious behavior aimed at disrupting monitor-
ing infrastructure. The separate interesting byproduct is that the monitoring
module could also be programmed to react to certain conditions and trigger
either the controller or orchestrator to perform corrective actions aimed at
avoiding performance deterioration.

5. Prototype Implementation

We developed a prototype of the unified and standalone monitoring mod-
ule and deployed it in three experimental setups that implement different
parts of the system architecture displayed in Fig. 2. We first discuss the
technical details of the prototype that are common to all experimental en-
vironments. Then, in the following subsections, we focus on environment-
specific matters.

The monitoring module itself has been developed as a software applica-
tion written in Python, due to the suitability of that language for prototyping
purposes and ease of implementation of a REST API. The monitoring mod-
ule was designed to collect and aggregate information gathered from multiple
sources. In the prototype, the module implements data collection from Open-
stack Ceilometer/Gnocchi as well as flow sampling directly from the network
devices by means of an sFlow collector10. The sFlow protocol was selected
among a number of flow statistics gathering tools, and custom-implemented
in the form of a simple Python application, running as a plugin of the mon-
itoring module. As an alternative, the NetFlow protocol was deemed not
suitable as it is designed as a L3 solution (Layer-3 in the OSI model).

10http://www.sflow.org/
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Another point in favor of the choice of sFlow has been its widespread
support by network devices, including OvS, thus making it readily available,
for example in OpenStack’s virtual switches, eliminating the need to install
sFlow agents on purpose. The main protocol parameters that can be used
to tune the behavior of sFlow are the sampling ratio and the sample aggre-
gation interval. The sampling ratio N denotes that, on average, one out of
N packets handled by the node will be sent by the sFlow agent to the sFlow
collector for the purposes of statistics gathering. The higher the value of
N , the lower the communication and computational overhead. However, by
increasing N the measurements are available with a higher delay and worse
sensitivity. Actually, by default the sFlow agent only sends the first B bytes
of the sampled packet to the sFlow collector, together with an indication of
the total packet size. In fact, the first bytes include the packet headers, which
are then processed for statistical purposes by the collector, whereas the rest
of the packet would contain only payload content without meaningful infor-
mation for flow monitoring purposes. This way the sFlow protocol overhead
is reduced, without impacting the statistical accuracy. The sample aggrega-
tion interval C denotes the interval in which individual sFlow samples are
aggregated, meaning that all samples received within a time window of C
seconds are combined and treated as single measurement entry. This aggre-
gation aims to attribute a group of asynchronous samples to a given moment
in time, thus achieving a tunable “quantization” of the time axis. Similarly
to the sampling ratio, increasing the value of the sample aggregation interval
C reduces the monitoring overhead and deteriorates the monitoring capa-
bilities in terms of measurements sensitivity and time needed to obtain the
collected monitoring data.

The monitoring module was also equipped with a REST-API able to
provide information, gathered by means of sFlow and Ceilometer, regarding
resource utilization in the VMs, as well as data flows observed among them.
In our implementation, a flow was defined by the pair of its source and
destination IP addresses. For each flow, we collect both an instantaneous
data rate estimate value, and an Exponential Weighted Moving Average
(EWMA) value according to the recursive formula

en = αsn + (1− α)en−1 (1)

where en is the EWMA value computed when the n-th instantaneous sample
sn is received and 0 < α < 1 is a weighting coefficient. The EWMA was
introduced to smooth out measurements and make them robust against load
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fluctuations. The α coefficient expresses how fast historical measurements
lose importance: the higher its value, the heavier the weight of instantaneous
samples.

It is important to quantify the overhead caused by a monitoring proto-
col such as sFlow, i.e. the amount of additional signaling traffic exchanged
between network nodes and the sFlow collector to perform the monitoring
operations. For each sFlow packet p received by the collector, we can define
the relative overhead as the ratio of the size of the sFlow packet Lsflow,p over
the total amount of data to which that packet refers. The latter quantity
includes the size of sFlow packet p, plus the full size of each sampled data
packet carried by sFlow packet p, plus the size of N − 1 data packets not
being sampled for each sampled packet in p. Assuming that, on average, the
total size of the N − 1 non-sampled packets is N − 1 times the size of the
sampled packet,11 we can approximate the relative overhead of packet p as:

Osflow,p =
Lsflow,p

Lsflow,p +N
∑np

i=1 Li

(2)

where np is the number of samples carried by sFlow packet p and Li is the
full size of the i-th sampled packet.

The size of a generic sFlow packet is variable and depends on the num-
ber and size of the carried samples, including meta-data associated to each
sample and carried in a sample header. Recalling that sFlow packets are
transported by UDP datagrams, in an Ethernet network we have:

Lsflow,p = heth + hip + hudp + hsflow +
np∑
i=1

(hsample,i +B) (3)

where heth is the Ethernet header size, hip is the IP header size, hudp is the
UDP header size, hsflow is the sFlow header size, hsample,i is the i-th sample
header size, and B is the sample data size.

While we considered sFlow suitable for the purpose of our prototype, it
may not be sufficient to perform detailed real-time monitoring tasks. Thanks
to the modular architecture of the monitoring system, the sFlow protocol can
always be replaced with a different data plane monitoring solution [10].

11This assumption is equivalent to the assumption made by the sFlow protocol, which
considers one sample out of N as an estimation of the monitored bit rate.
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5.1. Testbed based on private cloud platform

A first experimental evaluation of our prototype was performed in a
testbed running in a private cloud environment. The software platform
chosen to implement the SDN/NFV infrastructure is OpenStack (Newton
version), one of the most popular cloud computing platforms used to deploy
NFV. Recent versions of Neutron (the OpenStack networking module) na-
tively integrate SDN solutions in order to increase flexibility and improve
performance of both the control and data planes [31]. Therefore, such a
platform represents the ideal playground to experiment with the proposed
unified monitoring module. The OpenStack cluster used in our implementa-
tion consisted of:

1. a controller node, where all the required cloud services are running,
including the endpoints of the relevant APIs; as such, the OpenStack
controller acts as the VIM in our architecture;

2. two compute nodes, where the VNFs have been implemented as dedi-
cated VMs, managed by the KVM hypervisor12 and supported by the
libvirt library13;

3. a network node, where all networking services to provide external con-
nectivity and traffic filtering features are located.

The telemetry facilities natively provided by OpenStack include metering,
monitoring, and alarming functionality. In particular, the Ceilometer compo-
nent is responsible for polling events and monitoring data notified by different
OpenStack services, and for publishing collected data to suitable data stores
and message queues. In our experimental setup we used Ceilometer to collect
selected metrics related to HMs and VMs resources directly from the com-
pute service. Gnocchi was chosen as metric storage service and time-series
indexing and aggregation tool for data collected by Ceilometer. Its REST
API was used by the monitoring module to retrieve monitoring data from the
VNF orchestrator. With Ceilometer it is possible to define specific metrics so
as to target the specific parameters the monitoring application is interested
in. By default, Ceilometer provides a measurement for each defined metrics
every 10 minutes. However, for real-time monitoring purposes we reduced
this period to 10 seconds and also analyze other values in this work.

12https://www.linux-kvm.org/
13https://libvirt.org/

16



The SDN controller adopted in our experimental setup is Ryu. The reason
behind this choice is that Ryu is the OpenFlow controller natively integrated
in each OpenStack compute node for managing the virtual network infras-
tructure [31]. With a simple customization of the Ryu instance provided by
OpenStack Neutron we were able to make it expose its Northbound API, thus
enabling the interaction with our monitoring module. The Ryu Northbound
API allows retrieving data about network topology and its current state, in-
cluding flow and meter statistics. Since in our experiments we used only the
virtual switches deployed by OpenStack, we did not have to deploy an exter-
nal SDN controller, which would be necessary in case OpenFlow monitoring
data were to be collected also from physical switches.

A more detailed representation of the prototype monitoring module and
of the interactions between monitoring components is depicted in Fig. 3.
The sFlow agent in each OvS samples one packet out of N for a particular
flow that the OvS forwards in the data plane network – a flow being defined
by the source and destination of the traffic. Sampled packets are assem-
bled in sets comprising two to six units, and sent to the sFlow collector in
a sFlow datagram packet. The rate of arrival of sFlow datagram packets
to the sFlow collector is not steady nor predictable, as it depends on the
intensity of the data plane traffic through the sampling ratio N . Therefore,
there is no synchronization between sFlow agent and sFlow collector. The
collector aggregates sFlow datagrams over temporal windows spanning C
seconds, where C is the aforementioned sample aggregation interval, gener-
ating one measurement entry every C seconds, on the closing instant tn of
the current temporal window. Fig. 3 also visualizes how N and C parame-
ters affect the delay after which measurements are available and sensitivity.
Each measurement entry coming from the sFlow collector is the result of
the combination of the most recent sFlow sample with the recent previous
ones through an EWMA, as detailed in the following paragraph. Parallel to
the sFlow data sampling and collection, the other main component of the
monitoring module, the Ceilometer poller, periodically polls the time series
database (Gnocchi) of the Ceilometer module in the OpenStack controller
to retrieve data measured from there, and generates measurement entries of
its own, to be stored in the measurement database along with the entries
generated through sFlow.
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Figure 3: Inside-view of the prototype monitoring module with a representation of the
main mechanisms. Data packets are represented with ovals, triangles and diamond shapes,
each representing a different traffic flow; sFlow datagrams are represented by rectangles;
measurement entries referred to instant tn are represented with trapezoids.
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5.2. Testbed based on container technology

Container technology has gained immense popularity since its introduc-
tion, owing to the diverse benefits it can offer to a vast range of applications
and services. Containerization enables lightweight and scalable deployments
of service functions in the network, facilitating dynamic service provisioning
and management. This makes the inclusion of container technology mean-
ingful for the thorough evaluation of the capabilities of a monitoring module
such as the one proposed in this paper. Therefore, we evaluated our proto-
type in a testbed based on container technology. The container management
software chosen for this work was Docker, one of the most popular tools for
container management, for its high level of automation in the control and
management processes of containerized resources, and availability of APIs,
making it a valuable instrument for the experimental validation of the moni-
toring approach. In this scenario, Docker acted as VIM, handling requests for
deployment of new VNFs, managing their networking and overseeing their
lifecycle.

Our container-based testbed consisted of four physical machines, all equipped
with 4 CPUs (Intel i5-4460 up to 3.2 GHz) and 8 GB of RAM. All of them
were connected to the same local private network, which served as control
and management network only. Additionally, the machines were arranged in
two pairs, by connecting the first two and the last two of them directly, and
connecting the second and third machines via a physical SDN switch (the
OpenFlow-enabled HP Aruba 2920-48G switch). The first machine hosted
the running instances of the monitoring module and of the SDN controller
(Ryu), as well as the source endpoint of the generated traffic flows. The sec-
ond and third machines hosted the container management software (Docker),
as well as the virtual switches (OvS) required to complete the desired overall
logical topology. The fourth and last machine hosted the destination end-
points of the generated traffic flows. The links between each pair of machines
had a physical capacity of 1 Gbit/s. However, some links in the final logical
topology were limited to different values for evaluation purposes that will be
addressed in Section 6.4. A depiction of the physical testbed, along with a
representation of the intended logical topology, is given in Fig. 4.

5.3. Public cloud environment

As a third evaluation environment for our prototype, three VMs were
deployed in the public cloud infrastructure provided by Amazon Web Services
(AWS). Each VM was a t3.medium instance with 2 vCPUs (2.5 GHz Intel

19



Figure 4: Containerized testbed topology: physical (upper) and logical (lower) setups.

Scalable Processor) and 4 GB of RAM allocated. The monitoring module was
housed by one of the VMs, while the two others served as the endpoints of the
generated traffic. As stated in the provider’s documentation, the instances
were eligible to generate traffic bursts reaching up to 5 Gbit/s. However, the
baseline data rate observed during the experiment was well below 1 Gbit/s.
In contrast to the other testbed environments deployed as a part of the
research presented in this paper, the public cloud exhibited a number of
restrictions typical of such kind of services. Both networking, virtualization
and orchestration layers exposed only a subset of features for the end-user
to manage, while some of the core components remained fully transparent
and solely under the provider’s control. Under these circumstances, our
monitoring module can be used to discover the real performance parameters
of the cloud network, as demonstrated in 6.5.

As users of public cloud are usually provided with a set of defined inter-
faces, i.e., web console, command line, and programming interface, additional
tools can be used to simplify the process of setting up the infrastructure. In
the experiment, the Terraform tool was chosen to define and deploy the
testbed components in accordance with the Infrastructure as Code concept.
A representation of the described scenario is given in Fig. 5.
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Figure 5: Public cloud testbed topology

6. Experimental Validation

In order to carefully validate the design of the proposed unified and stan-
dalone monitoring module for SDN/NFV infrastructures, numerous scenarios
addressing various aspects and potential impediments were considered in a
series of experiments run with our prototype implementation in the three
different environments described in Sec. 5. The following subsections re-
fer to those scenarios, describing the experiments and presenting the results
of quantitative analysis, proving the advantages of using existing protocols
outside the SDN control plane.

In our experiments we used the iperf14 software tool to generate traffic in
the data plane and measure the throughput between VNF instances. Each
quantitative experiment was repeated 10 times for statistical accuracy and
each iperf session lasted at least 30 seconds in order to be able to gather a
“stable” bit rate value from the monitoring module. For each measurement
we calculated 95% confidence intervals to ensure statistical correctness of the
performance evaluation, but we decided not to show them in every figure for
readability reasons. Instead, we discuss the accuracy of our validation cam-
paign in subsection 6.7. Since the throughput measured by iperf refers to
transport layer payload, we reported the link-level bit rate after multiplying

14https://software.es.net/iperf/
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the values measured by iperf by a suitable corrective constant [32]. The iperf
tool was chosen because of its stability and low computation resources uti-
lization. In the private cloud testbed the endpoints of the generated traffic
flows were placed on virtual machines within the same network segment, and
the traffic never had to cross an external network. In the container-based
testbed, physical machines connected to the same network segment as the
machines hosting the VNFs served as endpoints of generated traffic. This
proves the generality of the approach, as the employed monitoring technol-
ogy does not require specific hardware or network configuration choices for
the monitored devices. In fact, the communication between agent and collec-
tor monitoring modules is independent of the forwarding technology of the
network.

In the following presentation of the results we first focus on the crucial
feature of our monitoring module. Thus, subsection 6.1 shows that traffic
monitoring performed at the data-plane with sFlow is strictly correlated to
compute resource consumption measured by the OpenStack telemetry facili-
ties, i.e. Ceilometer + Gnocchi. This proves that our module can actually be
considered “unified” and capable of monitoring both SDN and NFV metrics
of the infrastructure. To further prove the feasibility of our solution on the
SDN/NFV infrastructure, some constraints related to the measurement la-
tency of the Ceilometer module are considered in subsection 6.2, whereas in
subsection 6.3 we compare sFlow and Ceilometer data collection capabilities
in terms of traffic flow granularity. The general message of those experiments
is that use of existing protocols outside the SDN control plane jointly with a
modular architecture provides significant advantages in terms of new features
and degrees of freedom with respect to existing solutions that are integrated
in the control plane. One must also note that both sFlow and OpenStack
telemetry facilities are solely examples of tools that can be easily replaced
thanks to the loose coupling assumed in our solution.

Then in subsection 6.4 we present the potential advantages of the pro-
posed solution by applying suitable traffic steering based on the real-time
measurements collected by the monitoring module. It is therefore shown
that the monitoring module is able to cooperate with the employed SDN con-
troller and VIM to react to changes in the utilization of monitored resources.
The fundamental features of the proposed monitoring solution deployed in
a public cloud were also tested, as described in subsection 6.5. Results in
both subsections 6.4 and 6.5 justify the portability of the module by effortless
integration with a variety of networking and virtualization solutions. Due to
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Table 1: Summary of experiments, evaluation environments and corresponding result
subsections.

Experiment Environment Subsection
Unified monitoring for NFV/SDN Private cloud 6.1

Ceilometer response time Private cloud 6.2
Traffic flow granularity Private cloud 6.3

Monitoring-based traffic steering Containers 6.4
Monitoring in public cloud Public cloud 6.5

sFlow protocol analysis Private cloud 6.6

the popularity of sFlow, in subsection 6.6 we focus on assessing the quality
of this specific data-plane monitoring solution we adopted. In particular, we
study the impact of sFlow configuration parameters on the accuracy of the
measurements as well as on the overhead and sensitivity of sFlow. An auxil-
iary subsection 6.7 proves the statistical correctness of the results presented
here, whereas a final discussion on how to choose the monitoring parameters
is reported in subsection 6.8.

For the sake of clarity, Table 1 summarizes which experiments were con-
ducted in which environment and the corresponding subsection reporting the
results.

6.1. Unified monitoring for NFV/SDN infrastructure

The main aim of this section is to present the unified monitoring approach
for both NFV and SDN resources and demonstrate that our solution is fea-
sible and effective. Two traffic patterns were considered in this case, and are
presented in Figs. 6 and 7, respectively. The first scenario assumes periodical
traffic spikes of the same intensity, resulting from TCP sessions starting at
times 5, 65, 125 seconds, lasting 30 seconds, and having unlimited through-
put (“unlimited” by the application; the limit is a result of the saturation of
link bandwidth). The second scenario considers traffic spikes with increasing
intensity, given by TCP sessions starting at times 5, 65, 125, 185, 245, 305,
365, 425 seconds, lasting 30 seconds, and having throughput limited by the
application that generates the traffic. The limits are set to 0.1, 0.2, 0.5, 1, 2,
5, 10 Gbit/s respectively to span the most typical transmission rates, while
the last TCP session is again throughput-unlimited.

The figures present both the number of bytes received (histogram) and the
CPU utilization (line) of a selected VNF. The received bytes are measured by
aggregating values found in sFlow samples, corresponding to data forwarded
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by the switch the VNF is attached to. The CPU load metric shows the
percentage of time the CPU is busy in the specific machine running the
selected VNF. As VNFs are running on separate virtual machines with
dedicated resources, CPU denotes virtual CPU associated with a particular
instance, that can be referred to as guest CPU.
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Figure 6: The amount of bytes received (histogram) and the percentage of time the CPU
is busy (line) for a selected VNF stressed by traffic spikes of the same intensity.

The unified monitoring tool should be aware of the fact that network
and computing resource utilization are usually strongly correlated, as indeed
proved by the results shown in Figs. 6 and 7. Examples of cloud metrics as
a function of network traffic for different VNFs were reported in literature
[33]. In our experiments, we did not aim at analyzing specific VNF behavior,
so the CPU load is originated only from handling packet forwarding opera-
tions on the generated flows. Such a simple approach demonstrates that our
monitoring module is able to measure the load on both NFV (computing)
and SDN (network) infrastructures in a unified way.

Similarly to the CPU load, the unified monitoring tool can measure other
computing metrics provided, for example, by Ceilometer, such as memory
or storage utilization, and expose those data to an orchestrator. This way,
a unified and coordinated monitoring of traffic load and resource utilization
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Figure 7: The amount of bytes received (histogram) and the percentage of time the CPU
is busy (line) for a selected VNF stressed by traffic spikes with increasing intensity.

can ensure optimization from the global point of view.

6.2. Ceilometer response time

Collecting monitoring data through Ceilometer has some drawbacks in
terms of response time, due to the multiple layers and interactions needed
to obtain the measurements from the OpenStack platform. In our proto-
type implementation, when we tried to increase the update frequency of the
measured values, the metrics provided by Ceilometer were available to the
monitoring module even several minutes after they had actually been mea-
sured. Such a significant latency was, most probably, caused by the excessive
queuing delay introduced by the data accumulators and the dispatcher used
by the OpenStack components.

The latency with which measured data were accessible through the Ceilome-
ter APIs is presented in Fig. 8 as a function of the experiment time. The
default configuration of Ceilometer makes it collect measurements every 10
minutes. We changed this parameter to 10 seconds, which caused the contin-
uous increase of the latency. The latency always increases linearly, with the
slope displayed in the graph. However, the initial latency of the first sample
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reflects the history of the OpenStack controller. Basically, after a reboot, the
first measurement suffers of almost no additional latency, then the latency
increases with time. The two curves show the difference in terms of latency
between the scenario where the OpenStack controller has just been rebooted,
and the one where the controller has been operational for some time. The
slope of the latency curve depends on the processing power of the server
hosting the OpenStack controller and its overall resource utilization. How-
ever, independently of slope and offset, this latency issue makes Ceilometer
useless for the purpose of a real-time monitoring in the NFV environment.
Therefore, monitoring data collected from Ceilometer can be used only for
long term statistics purposes.

The last finding proves that the deployment of our monitoring solution
as a standalone instance in modular architecture is reasonable. Thanks to
such an approach, we can easily integrate the monitoring module with any
other solution collecting metrics from the underlying NFV infrastructure.
Furthermore, it is possible to integrate more than one monitoring sources.
For example, we can use one tool (e.g. Ceilometer) to collect a wide variety
of available metrics for latency-agnostic, long-term analysis purposes, and
any other lightweight and fast tool which can measure simple CPU, RAM or
network utilization for the purpose of real-time traffic steering. An example
of such a tool, in the network traffic domain, is sFlow, which we adopted and
carefully studied in our PoC implementation.

6.3. Traffic flow granularity

Implementing our monitoring module outside of the control plane en-
ables freedom in terms of integration with external tools. It is an important
advantage over existing solutions that are part of the control plane. How-
ever, to fully benefit from this fact, those tools must be selected according
to the particular needs. Therefore, in this section we present experiments
aimed at studying the difference, in terms of granularity of the traffic flow
measurements, between the monitoring based on sFlow and Ceilometer.

The sFlow agent was configured with sampling ratio N = 10 and sam-
ple aggregation interval C = 10 s while the EWMA was run with weighting
coefficient α = 0.3. Three flows were activated in the network with a fixed
delay of 60 seconds between consecutive flows. The throughput generated
by each flow was equal to 30, 60 and 90 Mbit/s, respectively. However, two
scenarios were considered. In the first one, all three flows were exchanged
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Figure 8: The time after which Ceilometer data is available for collection.

between different pairs of VMs. As can be observed in Fig. 9, the measure-
ments provided by both sFlow and Ceilometer match quite well to the actual
network load. sFlow configured with the given parameters is able to reflect
traffic changes faster but, at the same time, it is slightly less precise.

However, this traffic scenario does not allow to observe the differences
between sFlow and Ceilometer in terms of flow granularity. This is why the
second scenario also assumes that the aforementioned three flows are sent
between a single pair of VMs. Results are presented in the Fig. 10. On one
hand, sFlow is able to distinguish different flows based on the IP address
of the endpoints. On the other hand, Ceilometer monitors traffic with the
granularity of the network interface and it is not able to distinguish every
single flow, providing thus cumulative results. The monitoring modules of
numerous cloud orchestrators operate in the same manner. Therefore, it is
an important conclusion that cumulative interface-based monitoring tools are
less effective when it is needed to distinguish different flows between a single
VM pair. Conversely, the modular architecture of our monitoring module
shows its advantages in terms of new features and degrees of freedom in an
NFV infrastructure where multiple VNFs are running on a single machine.
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Figure 9: Granularity of Ceilometer and sFlow with N = 10, α = 0.3 and C = 1 s,
compared to the actual network load between different pairs of VMs.
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6.4. Monitoring-based traffic steering

The testbed presented in Section 5.2 was employed to perform proof-
of-concept experiments on the ability of the proposed monitoring module
to constructively interact with an SDN controller in order to support the
dynamic steering of traffic flowing in the network, aimed at optimizing the
utilization of physical and virtualized networking and computing resources.
Traffic is generated with iperf using TCP with a specific throughput target,
depending on the experiment.

Two case studies are examined. In the first one, called choose VNF, traffic
steering is performed to mitigate congestion of a particular VNF instance.
This is possible thanks to the monitoring capabilities of the proposed module
in a NFV domain. The desired action is to distribute traffic among different
replicas of the same VNF, no matter what is their location considered from
the network perspective. In the second case study, called choose path, the aim
of traffic steering is to avoid network congestion based on the measurements
performed on a network node representing an SDN domain. The desired
action in this scenario is to change the path of traffic to distribute the load
between different network links.

In both cases, the objective is to achieve the maximum overall through-
put from source to destination, while respecting service policies, such as the
requirement to cross a given VNF. This is achieved in the choose VNF sce-
nario by finding the VNF replica with sufficient computing resources even
if the traffic is directed through the same network path. On the contrary,
in choose path the goal is achieved by finding alternative network links with
sufficient resources even if the destination node is the same. Therefore, the
monitoring module is able to trigger traffic steering based on the measure-
ments performed in both NFV and SDN domains, proving that it is unified
and takes advantage of the involved cooperating paradigms.

The logical topology, shown in Fig. 4, aims at providing a testbed that can
be used to run experiments in both case studies. As results we consider load
distribution in both scenarios, comparing it to the generated load pattern.
Our monitoring module was configured with N = 10, α = 0.4 and C = 1 s.

6.4.1. Case study: choose VNF

All traffic is required to cross a replica of a given VNF. Any network
function can be considered, for example, traffic shaping, packet inspection
for an intrusion detection system, or transcoding for multimedia traffic flows.
In our PoC we measure the traffic load on the interface of the VNF, which is
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Figure 11: Case study: choose VNF. Load of VNFs without traffic steering (upper) and
with traffic steering based on the monitoring in NFV domain (lower).

strongly correlated to the load in computing delay as it was shown in Fig. 7.
We do not consider any particular service and a simple packet forwarding
function is performed. This simplification should be considered as a best case
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because any other function requires more computing resources for each packet
received. Therefore, it is reasonable to assume that the measurements taken
at network level can also give an insight of the computational burden on the
VNF, justifying the actions taken to optimize the load. In these experiments,
a total of four iperf sessions were launched from SRC to DST, all of them
using TCP and aiming at a throughput of 30 Mbit/s. These sessions were
activated sequentially at intervals of 30 seconds, and configured to last until
the end of the experiment.

To begin with, a baseline experiment was run, in order to assess the
behavior of the system when no steering was applied. All the generated traffic
was crossing the same replica of the VNF. The evolution in time of the data
rate of the traffic flow from the source host to the destination host is shown
in Fig. 11. As expected, after the fourth flow started, i.e., at t = 105s, the
traffic saturated the capabilities of the VNF instance, and the flows needed to
compete for the resources, causing the total throughput to be limited by the
capacity of the link to the VNF, i.e., 100 Mbit/s. In the second experiment,
this potential deterioration was avoided by taking advantage of the proposed
monitoring module. The traffic was initially steered through the first replica
of the VNF. The monitoring module kept tracking of the increase in resource
utilization in the VNF, verifying that the traffic was below a predetermined
warning threshold set at 50 Mbit/s. When this threshold was exceeded, i.e.,
at t = 45s, the monitoring module interacted with the VIM to find out the
location of a second replica. Based on that, the monitoring module instructed
the SDN controller to steer the traffic accordingly, in order for it to cross the
second replica. This way, even when the four flows are running at the same
time, they do not have to compete for the shared resources, and the full
overall throughput can be achieved.

6.4.2. Case study: choose Path

This case study aims at highlighting the benefits of dynamic traffic steer-
ing over multiple paths in the network, in case switches are overloaded or
not utilized optimally.

Similarly to the previous case, a total of four iperf sessions were launched
from SRC to DST, all of them using TCP, this time aiming at a throughput of
200 Mbit/s. Once again, the sessions were activated sequentially at intervals
of 30 seconds and configured to last until the end of the experiment. Initially,
the traffic crossed the upper path, with reference to the logical topology in
Fig. 4, where the link capacity is 500 Mbit/s.
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Figure 12: Case study: choose Path. Load of switch interfaces without traffic steering
(upper) and with traffic steering based on the monitoring in SDN domain (lower).

Similarly to the case examined in Section 6.4.1, the temporal evolution
of the data rate of source-to-destination traffic flow is shown in Fig. 12. The
baseline experiment, without traffic steering, shows that the links became
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saturated after the third traffic flow started, at t = 75s, then the combined
throughput of flows was limited to the capacity of the link with smaller ca-
pacity, i.e., 500 Mbit/s, which acted as a bottleneck. In fact, the impact
of the fourth flow, starting at t = 105s, is practically invisible. The pro-
posed monitoring module enables avoiding this service degradation. In the
second part of the experiment, the monitoring module kept tracking of the
increase in network resource utilization, considering the load on the ports
of the switch. Again, when a predefined threshold was exceeded, after the
second flow started at t = 45s, the monitoring module triggered traffic steer-
ing mechanisms. This time it instructed the SDN controller to steer the
traffic through the alternative path. The traffic was then directed through
the not congested lower path and throughput of flows was no longer limited.
The overall throughput reached its maximum value, equal to the sum of the
throughput of the four flows.

6.5. Monitoring in public cloud

The fundamental aim of the deployment of our module in the public
cloud is to prove its versatility and portability. Results presented below not
only confirm these features, but also reveal additional advantages in terms
of valuable module’s applications in the public cloud. By successfully de-
ploying our module we understood that we were able to seamlessly migrate
our solution towards a general purpose environment not fully managed by
us. We also validated our module and verified that the traffic was properly
sampled by comparing the measurements obtained against those provided
by the renowned sFlow collector sFlow-RT15. sFlow-RT is supported by the
company which invented the sFlow protocol and is widely used in numer-
ous open-source projects. Thus, the sFlow-RT is a reliable tool to justify
that both steady traffic and periodic bursts were correctly measured by our
module16.

To carefully validate and present some additional advantages of the mon-
itoring module two research scenarios were conducted. Both traffic patterns
were identical to those generated in the private cloud testbed (Section 6.1).
The rationale is to ensure correspondence between different deployment en-
vironments. Just as a reminder, the first scenario assumes periodical traffic

15https://sflow-rt.com/index.php
16The results of this validation are not reported here due to space limitation.
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Figure 13: Accuracy of the monitoring module in the first scenario and under different
sampling ratio values N , with α = 0.3 and C = 1 s, compared to the generated load
pattern.

spikes of the same intensity, resulting from TCP sessions starting at times
5, 65, and 125 seconds, lasting 30 seconds, and having unlimited throughput
(“unlimited” by the application; the limit is imposed by the public cloud
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environment). The second scenario considers traffic spikes with increasing
intensity, given by TCP sessions starting at times 5, 65, 125, 185, 245, 305,
365, 425 seconds, lasting 30 seconds, and having throughput limited by the
application that generates the traffic. The limits are set to 0.1, 0.2, 0.5, 1, 2,
5, 10 Gbit/s respectively to span the most typical transmission rates, while
the last TCP session is again throughput-unlimited.

Figs. 13 and 14 show the accuracy of the module in the two scenarios,
respectively. We investigate the effect of different values of N (equal to 10,
100, and 200), with α = 0.3 and C = 1 s, comparing it to the generated load
pattern. The most important conclusion is that the measurements collected
by the module correctly follow the generated traffic pattern in both scenarios.
This proves the applicability of the proposed solution in the public cloud
environment. Similarly to what reported for the private cloud testbed, in the
public cloud environment changing the value of N creates an opportunity to
balance the tradeoff between measurement accuracy and additional resource
utilization (detailed studies on that issue are presented in Section 6.6.2).
The higher N , the smoother and more precise the measurements, but also
the monitoring process becomes more demanding.

Additionally, thanks to the collected results, we can formulate interesting
insights regarding the public cloud environment. The cloud platform limits
the throughput of the iperf session at two levels. Namely, virtual machines
are eligible to generate traffic bursts reaching up to 5 Gbit/s. This is fully
compatible with the specifications of the selected types of virtual instances.
However, persistent traffic bursts are further limited to a bitrate much lower
than 1 Gbit/s.

The plots in Fig. 13 show how N impacts the maximum time that bursty
traffic can be generated before the second-level bitrate limit is applied. How-
ever, the real reason of the differences lies in a limitation imposed by the
cloud provider. Being a proprietary solution, such limitation is not publicly
revealed. Comprehensive investigations led us to the following conclusions: a
certain amount of credits is given to each virtual machine to send traffic with
the maximum throughput declared in the specifications. Once the granted
credits are consumed, more restrictive limits are applied. Since credits are
replenished with a rate unknown to the user, the longer an interface is idle
between traffic bursts, the longer it will be eligible to generate again traffic
at full rate.

The graph at the top of Fig. 13 presents the results of the experiment that
was conducted after a long idle period, thus when all credits were available.
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Figure 14: Accuracy of the monitoring module in the second scenario and under different
sampling ratio values N , with α = 0.3 and C = 1 s, compared to the generated load
pattern.

This was certainly not the case for the experiments presented in the other
graphs, where after a few seconds of transmission at full rate the throughput
dropped to a few hundreds of Mbit/s, clearly showing a traffic shaping effect
imposed by the public cloud infrastructure provider. To eliminate this effect
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a proper idle period between experiments should be introduced. However,
we intentionally present this example to show that the real performance of
the public cloud network is much more sophisticated and less predictable
than the performance of an experimental environment completely under our
control. We validated our findings conducting extensive experiments that we
do not present here for the sake of brevity.

Results collected in the second scenario, presented in Fig. 14, confirm the
existence of two levels of bitrate limits and the fact that N does not impact
the allowable duration of the traffic bursts. Additionally, it can be concluded
that the burst throughput directly affects the credits consumption rate. The
mechanism intuitively allows for longer bursts, if only the throughput of the
burst is lower.

It was shown that our monitoring module may help discover the real per-
formance of the cloud network. Experimenting with different traffic patterns
would allow to obtain the amount of credits available for each instance, the
credit renewal pace, and the impact of the transmission rate on the credit
consumption. This is especially important as cloud providers are usually
vague in documenting the available network resources while consumers may
be interested in actual limitations and SLA fulfilment.

As a final note, to deploy our PoC we used the Terraform17 tool and its
HashiCorp Configuration Language (HCL). This proves that our module can
be integrated with widely used solutions aimed at automation of deployment
in various environments, like public, hybrid, or private clouds.

6.6. Experiments regarding the sFlow protocol

In our prototype implementation, the sFlow protocol was selected, among
a number of tools gathering flow statistics, to sample directly from network
devices. The choice has been already justified, however, due to the popularity
of sFlow it is reasonable to carefully assess the quality of this specific data-
plane monitoring solution.

6.6.1. Impact of sFlow parameters

A first experimental scenario was aimed at investigating the fundamental
properties of the sFlow protocol as a function of three parameters: the sFlow
sampling ratio (N), the sample aggregation interval (C) and the α coefficient

17https://www.terraform.io/
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of the EWMA. We generated a simple traffic pattern including three iperf
data flows starting at times 5 s, 65 s and 125 s, respectively. Each flow lasted
until the end of the experiment and generated a throughput of 30 Mbit/s.
As a result, a stepwise increasing load curve was imposed.

Figure 15 shows the accuracy of the EWMA of the sFlow samples for
different values of N , with α = 0.3 and C = 1 s, comparing it to the generated
load pattern and the instantaneous sFlow sample values collected for N = 10.
Figure 16 reports the same measurements for C = 10 s. For C = 1 s, it
can be seen that the EWMA shows higher variability when N is higher,
because sFlow collects less samples and thus is more affected by temporal
traffic fluctuations. Furthermore, the higher the generated load, the wider the
fluctuations, for any value of N . Thus, the sampling ratio should be adjusted
not only to the required accuracy, but also to the absolute traffic load. In the
case presented in Fig. 15, choosing N = 20 gives quite stable values when the
load is small (30 Mbit/s), but when the load increases (90 Mbit/s) evenN = 5
results in some significant fluctuations. Changing the sample aggregation
interval to C = 10 s reduces the number of sFlow samples, smoothing out
all curves (Fig. 16). The obtained measurements are therefore less sensitive
to load fluctuations, but at the cost of worse responsiveness. Even in the
relatively static case we are considering, where new flows arrive only every
60 s, sampling each packet (N = 1) does not converge sufficiently fast to
provide reliable monitoring results. The first sFlow samples collected after a
significant load change (cross-shaped markers at 70 s and 130 s in Fig. 16)
provide incorrect values as the collected aggregate is affected by historical
values. Thus, increasing the sample aggregation interval is reasonable only
in case of almost static network load. Furthermore, as for C = 10 s the
accuracy does not significantly depend on the sampling ratio, higher values
for N should be considered. The first general conclusion is that any tool
considered for flows statistics gathering should be adjustable to the expected
load and particular needs.

Based on the results presented in the Figs. 15 and 16 it is also possible to
draw conclusions regarding the delay after which the collected measurements
are available and sufficiently credible. This delay may be critical, for exam-
ple, when monitoring is expected to feed a control plane that dynamically
reoptimizes the network configuration. The delay comprises both communi-
cation time between the monitoring module and control plane as well as the
delay introduced by the monitoring module itself. The former component
depends on the infrastructure and, in most cases, is expected to be negligible
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when compared with the second one. The monitoring module introduces a
significant delay that depends on the configuration parameter. Changing the
value of C from 1 to 10 intuitively increases by a factor of 10 the interval with
which samples are generated by the sFlow collector (as it appears by com-
paring the density of sFlow samples presented in Figs. 15 and 16). Thus, the
value of C represents a lower-bound of the delay introduced by the module.
One must also note that receiving sFlow counters does not necessarily mean
that they are always useful, for example to perform network reoptimization.
Namely, as presented in Fig. 16 the first sFlow counters after each increase of
traffic load report worthless and stale values that will not trigger the control
plane to reoptimize the network. Considering the EWMA with increasing
value of N makes this issue even more important.

For both C = 1 s and C = 10 s, sampling every packet (N = 1) provides
accurate results until the third flow is injected in the network. At that point,
the testbed is no longer able to measure network load accurately. This is
caused by several reasons. Firstly, the implementation of the sFlow collector
software is sub-optimal and causes some unnecessary load on the research
infrastructure. Secondly, N = 1 means that the monitoring traffic doubles
the amount of data traffic and all that communication must be handled in our
testbed. Finally, the testbed has some computational limits as we operate in
a virtualized infrastructure. Anyway, the scenario of sampling every packet
presents potential overutilization of the monitoring infrastructure and should
be considered as an unrealistic case which defeats the purpose of applying
packet sampling at all. It was demonstrated in our work only for the sake
of completeness, but it also proves that sFlow is not a good choice if the
objective is to carefully analyse each packet.

Under particular circumstances, the widely-adopted sFlow protocol may
not be able to meet monitoring requirements and other mechanisms should
be considered. Such demanding use cases may be caused by applications im-
posing strict delay and jitter measurements. Also, this observation further
confirms that the inter-component independence assumed in the proposed
monitoring solution may bring significant and valuable advantages with re-
spect to existing solutions that are integrated in the control plane.

As already stated, the EWMA was introduced as an alternative to the
counter sampling mechanism aimed at making measurements less sensitive
to temporal load fluctuations. Figures 17 and 18 show the sFlow EWMA
accuracy for different values of α with N = 10, assuming C = 1 s and
C = 10 s, respectively. When C = 1 s, smaller values of α cause the
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Figure 15: Accuracy of the sFlow EWMA under different sampling ratio values N , with
α = 0.3 and C = 1 s, compared to the instantaneous sFlow samples and the generated
load pattern.

0 20 40 60 80 100 120 140 160 180 200 220
0

20

40

60

80

100

Time [s]

L
oa

d
[M

b
it

/s
]

generated load
sFlow counter
EWMA N = 1
EWMA N = 5
EWMA N = 10
EWMA N = 20

Figure 16: Accuracy of the sFlow EWMA under different sampling ratio values N , with
α = 0.3 and C = 10 s, compared to the instantaneous sFlow samples and the generated
load pattern.
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EWMA to converge slower to the current load as historical samples have
higher weight. In particular, α = 0.02 and α = 0.05 give significantly in-
accurate results even in a scenario with slow load changes. However, the α
parameter may be adjusted to provide substantial improvement in compar-
ison to the sFlow samples, which are heavily affected by load fluctuations,
without harmful degradation in terms of responsiveness (α = 0.2 is a good
choice in our scenario). Analyzing the results obtained for C = 10 we can
see that the measurements are averaged by both the EWMA and the sFlow
counter sampling mechanisms. In such a case the measured values are prac-
tically unaffected by temporal traffic variations (including the sFlow samples
that are aggregated by the counter sampling mechanism), but at the same
time they converge very slowly to the current load levels. The results of
our experiments proved that the EWMA can be an effective method to make
sFlow results less sensitive to the temporal load variations while keeping good
responsiveness, with a proper adjustment of the sFlow parameters to the spe-
cific traffic load dynamics. In particular, α should be assigned higher values
if the sFlow counter sampling mechanism is used to aggregate the measured
samples. These conclusions are generally valid, as the EWMA algorithm,
similarly to our monitoring module, is universal and can be integrated with
tools other than sFlow.

6.6.2. Evaluation of sFlow protocol overhead

The sFlow sampling ratio N affects not only the accuracy (as described in
Section 6.6.1) but also the overhead of the sFlow-based measurement process,
as computed in eq. (2). Network nodes and collector exchange samples of
packets from the overall traffic, plus the sFlow protocol header and the sample
headers, as reported in eq. (3). There is an additional parameter defining
the size B of the packet sample to be included in the sFlow packet, and
this parameter directly affects the overhead. Depending on the processing
performed in the sFlow collector, different sample sizes may be required.
However, in our case we only measure the amount of traffic at the flow
level and do not need to analyze any extraordinary sFlow configurations.
Therefore, we decided to send the first B = 128 bytes of each sampled packet.
The presented results were collected with sample aggregation interval C = 1
s. One must also note that changing the α parameter does not impact the
overhead of the sFlow protocol, as α affects only how samples are processed
in the collector and does not change the amount of data that network nodes
send to the collector. Therefore, we present the overhead results as a function
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Figure 17: Accuracy of the sFlow EWMA under different moving average values α, with
N = 10 and C = 1 s, compared to the instantaneous sFlow samples and the generated
load pattern.
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Figure 18: Accuracy of the sFlow EWMA under different moving average values α, with
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of the sFlow sampling ratio parameter (N).
The sFlow overhead is evaluated under a simple yet sufficient traffic pat-

tern. Namely, it includes a single iperf session of 1 Mbit/s throughput ran for
60 seconds between two different virtual machines. Figure 19 presents the
total absolute amount of sFlow signaling traffic being exchanged between
network nodes and the sFlow collector. The results show how the sFlow
protocol signalling decreases with the sampling ratio N .
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Figure 19: Total absolute amount of sFlow signalling traffic with a single 1 Mbit/s iperf
session running for 60 seconds.

In Table 2 we report the relative overhead, as a percentage of the total
traffic exchanged, for different values of N . The measured relative overhead
was obtained by capturing the traffic at the output of a virtual switch and
reporting the percentage of sFlow traffic over the total traffic captured. The
estimated relative overhead was instead obtained by applying eq. (2) and
assuming the traffic parameters generated by the iperf session, which was
configured to send packets of Li = 1432 bytes, ∀i = 1, . . . , np. Considering
the case when N = 1, each data packet was sampled by sFlow and the first
B = 128 bytes were sent to the sFlow collector. We used the sFlow protocol
version 5, which adds to each data sample some meta-data that amount to
a sample header of hsample,i = 88 bytes. Therefore, each sample carried by
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Table 2: Measured and estimated relative overhead introduced by the sFlow protocol
under different sampling ratio values N

N Measured relative overhead Estimated relative overhead
1 15.07% 13.74%
2 8.17% 7.37%
5 3.50% 3.09%
10 1.83% 1.57%
20 0.98% 0.79%
50 0.46% 0.32%
100 0.28% 0.16%

the sFlow packet adds a total of 216 bytes to the packet size. Considering
an sFlow packet carrying np = 6 samples and adding the standard proto-
col header sizes (i.e. heth = 14 bytes, hip = 20 bytes, hudp = 8 bytes, and
hsflow = 28 bytes), then the size of the sFlow packet is Lsflow,p = 1366 bytes.
From eq. (2) we obtain Osflow,p = 13.72% for np = 6. While more than 90%
of the captured sFlow packets carried 6 samples, the rest included from 1
to 5 samples. The estimated relative overhead reported in Table 2 shows
the weighted average of Osflow,p for np = 1, . . . , 6. The approximate formula
(2) is very close to but underestimates the measured relative overhead. The
reason is that the captured traffic included also some packets due to back-
ground traffic and whose size was smaller than 1432 bytes, thus increasing
the actual overhead. However, the formula is able to capture quite well the
behavior of the overhead as a function of the sampling ratio, with an ap-
proximation error of 1.33% in the worst case (N = 1). Thus, one can easily
estimate the expected overhead, consider the trade-off against accuracy, and
properly configure the monitoring tool making it suitable to the requirements
of a particular SDN/NFV infrastructure. Applicability and usefulness of the
proposed formula are further increased by the fact that it can be adjusted to
any other data plane monitoring solutions, making it possible to theoretically
estimate the monitoring overhead.

We validated our conclusions under different traffic scenarios (including
the one considered in Section 6.6.1). Based on the results we can confirm
that changing the amount of traffic being exchanged in the network impacts
only the absolute value of signaling traffic and does not affect the relative
overhead.

44



6.6.3. Sensitivity study

As previously mentioned, the counter sampling parameter can be in-
creased in order to reduce the sFlow overhead. However, careful consid-
erations are required in doing so, due to the impact on sensitivity analyzed
in this section. We performed a set of experiments where we generated two
traffic flows. The first one was sending 30 Mbit/s for the whole experiment
duration, while the second one produced traffic spikes of 60 Mbit/s starting
at times 25, 45, 65, 85 and 105 seconds, and lasting 1, 2, 3, 4 and 5 seconds,
respectively.

Figures 20 and 21 show the accuracy of the EWMA applied to sFlow
sampled measurements for different values of α, with N = 10, and C = 1 s
and C = 10 s, respectively. For C = 1 s, even the instantaneous sample values
collected by sFlow are partially affected by this basic one-second aggregation
performed by the protocol, as the measured spike intensity is higher when
the spike duration is longer. Also, Figure 20 shows an apparent overshoot of
the measured data in correspondence to the traffic spikes (the actual traffic
never exceeds 30 + 60 = 90 Mbit/s). However, that is only another effect
of the mentioned basic aggregation that directly affects the interval between
collected samples. In fact, in presence of abrupt variations of the traffic, the
protocol will have to associate a large quantity of samples to the sampling
instant that is closest to the traffic variation. This may result in associating
to that instant a larger quantity of samples than necessary, resulting in an
apparent overshoot of the measured data, which then is smoothed out in the
following sampling instants. Moreover, the spikes are hardly detected by the
EWMA with the α parameter equal to 0.02 and even 0.05. Choosing α = 0.2
or 0.4 allows to detect traffic spikes, although with reduced accuracy. The
measurement is even less sensitive when C = 10 s, as the increased sample
aggregation interval makes historical samples more significant. In fact, with
a 10 times longer aggregation period, the spike intensity value reported by
all measurement configurations (including the sFlow instantaneous sample
values) is lower than the case with C = 1 s. When designing a real-time
monitoring system, the granularity of collected samples, expressed by the C
parameter, should be carefully determined to properly detect traffic spikes.
Therefore, choosing proper values of α and C allows to balance the accuracy,
overhead and sensitivity of the sFlow protocol and the EWMA computation.
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Figure 20: Accuracy of the sFlow EWMA under additional traffic spikes and different
moving average values α, with N = 10 and C = 1 s, compared to the instantaneous sFlow
samples.
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Figure 21: Accuracy of the sFlow EWMA under additional traffic spikes and different
moving average values α, with N = 10 and C = 10 s, compared to the instantaneous
sFlow samples.
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6.7. Statistical correctness

Each quantitative experiment reported in the previous sections was run 10
times to ensure statistical correctness of the performance evaluation. Thus,
all data presented in the figures above were obtained as the mean value
calculated on those 10 repetitions. We also calculated the 95% confidence
intervals but we decided not to show them in the figures for readability
reasons. Instead, separate figures are provided in this section. Namely,
the statistical correctness of sFlow measurements is displayed in Figs. 22
and 23. The former assumes C = 1 s and α = 0.3 while N is variable. The
latter assumes C = 1 s and N = 10 while α is variable. The considered
scenarios are the same as those in Figs. 15 and 17, respectively. By selecting
different combinations of α and N parameter values, we intend to present
the extreme cases. The colored area corresponding to each curve represents
the 95% confidence interval. We have validated all the results collected by
sFlow in the same way and no anomaly was observed.
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Figure 22: Statistical considerations for the sFlow EWMA under different sampling ratio
values N , with α = 0.3 and C = 1 s, compared to the instantaneous sFlow samples and
the generated load pattern.

Similar statistical considerations are also provided for the measurements
originating from Ceilometer. Figures 24 and 25 show the CPU utilization
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Figure 23: Statistical considerations for the sFlow EWMA under different moving average
values α, with N = 10 and C = 1 s, compared to the instantaneous sFlow samples and
the generated load pattern.

and network load metrics, respectively. The considered scenario is the same
as the one presented in Fig. 7, with traffic spikes increasing in time. An
anomaly in the CPU utilization can be observed between 150 and 225 seconds
since the start of the experiment. It originates from the fact that in one of
the experiment runs the CPU was additionally loaded by operating system
activities not related to the traffic handling.

To sum up, the number of 10 repetitions for each of the quantitative
experimental scenarios may seem to be too small. However, thanks to the
system stability, the obtained narrow confidence intervals prove that our
results are credible and justified conclusions can be drawn based on them.

6.8. Discussion

To sum up, the presented multidimensional evaluation of sFlow proto-
col for the purpose of efficient SDN/NFV infrastructure monitoring leads to
the formulation of some best practises. The very first step is to determine
limitations and our studies revealed two possible issues. The first one con-
cerns the maximum acceptable signalling overhead. As we demonstrated in
Section 6.6.2, if one can tolerate 15-20% of additional traffic in the control
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Figure 24: Statistical considerations for the Ceilometer measurements of time the CPU is
busy for a selected VNF stressed by traffic spikes with increasing intensity.
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Figure 25: Statistical considerations for the Ceilometer measurements of network load for
a selected VNF stressed by traffic spikes with increasing intensity.
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channel, then there is no need to increase the sampling ratio above N = 1 and
the sample aggregation interval above C = 1 with the aim to limit the sig-
nalling overhead, at the cost of accuracy and sensitivity. The second possible
limitation was described in Section 6.6.1 as sFlow saturation, which can be
much more invasive as it originates from the architectural constraints of the
sFlow protocol. In our PoC implementation, we observed this issue for N = 1
regardless of the sample aggregation interval being C = 1 or C = 10. Those
values depend on the expected network load and performance of computing
infrastructure hosting the sFlow software. Thus, one should determine mini-
mal values of sampling ratio and sample aggregation interval to avoid sFlow
saturation for the highest possible traffic rates expected to be measured. On
the other hand, increasing both C and N values increases also a delay after
which credible measurement results are available. In case when immediate
measurements and detailed analysis of each packet are needed, for instance,
due to strict delay or jitter requirements, other network monitoring protocols
should be used.

Next, when configuring the sFlow parameters, it must be determined
whether the network load to be precisely measured is expected to be approx-
imately constant (typical of static core networks) or highly variable (typical
of data center networks and programmable infrastructures with numerous
degrees of freedom). For static scenarios both sampling ratio and sample
aggregation interval can be easily increased to a certain point for which ac-
curacy and sensitivity are not deteriorated, while the signalling overhead is
limited not to overload sFlow infrastructure. In our PoC, N = 5 and C = 10
can be considered as a good choice. On the other hand, for dynamic net-
work loads one must consider two interdependent trade-offs. The first one
concerns the question of how fast the monitoring tool should respond to the
changing traffic, which is directly affected by the interval between reported
measurements. If real-time measurements are required, for example, to per-
form online traffic engineering or analyze the delay of each packet, then the
maximum reasonable value for the sample aggregation interval is C = 1.
The sampling ratio may be reasonably assigned having in mind the identi-
fied limitations, signaling overhead, and the fact that smaller values of N
will also bring stronger fluctuations of collected samples traffic. In our PoC,
N = 5 should be considered as a choice that brings significant reduction in
terms of signaling overhead, reasonably stable measurements, and sufficient
response time to the traffic changes. The second trade-off is related to the
question if transient network states and traffic spikes should be detected by
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the sFlow tool. If so, C and weighting coefficient α can be properly adjusted
to detect spikes of expected traffic volume and width while measurements
overshoot should be considered. If the measurements are expected to feed
traffic-engineering mechanisms, the granularity of the collected metrics is
critical to achieve expected sensitivity. One must note that, although the
EWMA approach has the same objective as the sample aggregation interval
parameter, significant differences occur. The EWMA is computed by the
monitoring module instead of being part of the sFlow protocol. As a re-
sult, changing the α parameter does not affect the signalling overhead, but
it can simplify the dynamic adjustment of sensitiveness to changing network
conditions. Furthermore, we designed our module to include the EWMA
computation in order to integrate it with any network monitoring protocol
or tool, which may not be equipped with configuration options analogous to
the ones offered by sFlow. In the case of our PoC, reasonable values that can
be applied are C = 1 and α = 0.2.

The proposed monitoring module was deployed in three different eval-
uation environments without any modifications. For that purpose, it was
easily integrated with an open-source cloud platform, basic container tech-
nology, and a public cloud environment. Furthermore, it was successfully
integrated with a widely used infrastructure automation tool. All these facts
prove that the solution is portable, universal, and thanks to the modular
architecture, can be easily combined with a wide variety of external systems.
The monitoring capabilities were presented in a testbed based on the pri-
vate cloud platform, whereas in the testbed based on container technology
we showed how the monitoring module can be used to apply traffic steering
mechanisms and avoid potential service disruptions. Two different research
scenarios show that both NFV and SDN domains can take advantage of the
unified measurement solution. Finally, the real performance of the public
cloud network may be discovered using the proposed monitoring module.

7. Conclusion

In this paper we proposed and verified a unified and standalone moni-
toring module designed to monitor combined SDN/NFV infrastructures in
a cloud environment. The module communicates with the control plane el-
ements through well-known and universal interfaces. Thus, the module can
be easily integrated with a variety of controllers as well as tools aimed at
collecting metrics specific to particular assets. The proposed approach does
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not impose a significant load on existing control plane components, due to
the full independence of it, and the possibility of deploying the module in
the form of a VNF.

The proposed solution has been deployed and validated in real-life testbeds
and public cloud environment under numerous scenarios addressing various
aspects and potential impediments regarding accuracy, granularity, sensi-
tivity, overhead, latency, versatility, and portability. With these prototype
implementations, it was possible to prove the feasibility and effectiveness of
our solution for various SDN/NFV infrastructures. Although we analyzed
in detail the specific case of sFlow as a network monitoring protocol, our
findings can be generalized to any other specific technical solution. The
whole set of experiments confirms that the modular architecture provides
significant advantages in terms of new features and degrees of freedom with
respect to existing solutions integrated in the control plane. For example,
some limitations of the selected tools can be overcome by proper configu-
ration (e.g., sFlow adjustments to the expected load and particular needs),
while others will require replacing those components (e.g. Ceilometer mod-
ule for real-time monitoring), which is easily enabled by the loosely coupled
architecture. Furthermore, deployment in a public cloud environment proves
the versatility and portability of our solution, as well as compatibility with
infrastructure automation tools. Additional advantages and usage scenarios
of the proposed module were revealed in a virtualized cloud infrastructure
managed by third-party providers.

As proved with the experiments performed in a container-based environ-
ment, we believe that the proposed solution may provide measurement data
to traffic steering mechanisms aimed at avoiding congestion and improving
service provisioning in softwareized ICT infrastructures. Therefore, in the
nearest future, we plan to deploy selected virtual network functions, e.g.,
Deep Packet Inspection, WAN Accelerator, or Traffic Conditioner, and use
the proposed monitoring module to feed optimization algorithms aimed at
improving infrastructure utilization and avoiding congestion. Another pos-
sible research avenue is to develop mechanisms for adaptive adjustments of
monitoring parameters. Finally, we also consider extending the monitor-
ing module with separate components orchestrating active measurements in
SDN/NFV infrastructures.
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