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Evaluation of reproductive 
performances of the common 
octopus (Octopus vulgaris) reared 
in water recirculation systems 
and fed different diets
Antonio Casalini1, Alessandra Roncarati2*, Pietro Emmanuele1, Niccolò Guercilena1, 
Alessio Bonaldo1, Luca Parma1 & Oliviero Mordenti1

The reproductive performance of Octopus vulgaris broodstocks fed two different diets (mixed fish 
[F group, BW 1,048.14 g] or mixed crustaceans [C group, BW 998.44 g]) was analyzed using an 
experimental recirculating aquaculture system consisting of a tank equipped with spawning and 
incubation chambers. A total of 8 females (F1–4; C1–4), and 8 males (M1–M8) were selected. DI of 
the C group females was significantly (p < 0.05) higher (3.0 ± 0.29%) than the F group (2.16 ± 0.67%). 
SGR in C group was significantly higher (1.43 ± 0.12%) than the F group (1.18 ± 0.25%). Egg clusters, 
number of clusters, number of clusters/kg BW, and total length were more favorable in the C group 
than the F group. The number of clusters/kg BW of C females was 2.5 times higher than that of F 
females (78.1 ± 6.5 vs 31.1 ± 13.3). The total eggs number, number of eggs/cm, number of eggs/kg BW 
in the C group were significantly (p < 0.05) higher compared with the F group; the number of eggs/kg 
BW and paralarvae/kg BW were 5 times higher in the C group (115,928 ± 12,513 C vs 22,109 ± 7912 F 
and 114,953 ± 12,591 vs 20,729 ± 7104, respectively). Hatching rate of the C group was significantly 
(p < 0.05) higher compared to the F group.

Abbreviations
BW	� Body weight
DI	� Daily increase
SGR	� Specific growth rate

Commercial interest in the development of octopus breeding (Octopus vulgaris, Cuvier 1797) has increased 
because cephalopod molluscs are important components of European and Italian fish markets due to high 
consumer demand. However, cephalopod molluscs are relatively scarce in nature due to excessive and uncon-
trolled harvesting, with consequent intense fluctuations in prices between periods of abundant versus inadequate 
supply1,2.

Currently, octopus is considered an innovative species for aquaculture due to a number of interesting bio-
logical traits, such as its short life cycle, high growth rate, favourable food conversion index, high fertility rate, 
easy adaptation to captivity, good variability in the diet, characterized by acceptance of food of low commercial 
value1,3–9. Based on these factors, there is increasing interest in Europe concerning the development of new 
techniques for octopus rearing, using both closed and semi-closed systems or floating cages7. However, several 
bottlenecks remain, and these have impeded the transition of technologies from pilot to full scale. One such 
limitation is represented by the optimization of standardized methods for controlled reproduction to obtain 
sufficient paralarvae production. In particular, methods of the management of paralarvae during the first part 
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of the rearing cycle, passage from planktonic to benthic phase, need improvement due the absence of a suitable 
live food source to cover the paralarvae requirements10.

The use of a recirculating aquaculture system (RAS) could enable full control of reproduction in captivity, but 
various technical drawbacks associated with current methodology must be overcome to facilitate the application 
of these systems on an industrial scale. With respect to the common octopus, the use of hydrodynamic tanks 
maximizes the well-being of the paralarvae during breeding10. The lack of standardized reproduction techniques 
for use in captivity still limits aquaculture of cephalopod species (Sepia officinalis, Loligo vulgaris, Octopus 
mimus), but suitable optimized methods for embryonic development are available11–13.

Another critical factor that must be addressed is development of a diet for octopus broodstocks that will 
promote offspring production. Previous studies focused on optimizing the type of feed and its administration. 
Several types of foods, including bogue (Boops boops), and crustaceans such as the green crab (Carcinus maenus), 
yielded the best results in terms of growth, especially when using live food5,14–16.

Many authors are in agreement regarding the importance of a suitable diet for maximizing the reproductive 
performance of adult octopus15,16 as the same occurred in fish species17–21. Several studies evaluating Octopus 
sp. have highlighted the effect of maternal diet on egg quality and embryonic and paralarval development2,22. 
However, few studies have investigated the effects of diet on reproductive performance in terms of offspring 
production23 (number of eggs and paralarvae obtained).

The aim of the present study, therefore, was to evaluate the reproductive performance of common octopus (O. 
vulgaris) broodstocks fed two different diets, one based on mixed fish and the other based on mixed crustaceans. 
For this purpose, we employed an experimental RAS, characterized by an innovative hydrodynamic circuit, with 
incubation chambers, was designed with the aim of favoring spontaneous spawning of the common octopus.

Materials and methods
Animals.  Wild sub-adult Octopus vulgaris were caught at the end of February using traditional “polpara” 
(a non-invasive catch system) in the Jonio Sea (Gallipoli, Puglia—Italy). Larger animals (> 700 g body weight 
[BW]) were selected at the catch site and then transported to the laboratory of Cesenatico, where they were 
categorized by weight and sex. Mean BW was recorded using an electronic scale (model WLC 20/A2, ± 0.1 g, 
RADWAG, Poland). Male sex was confirmed by inspecting the hectocotylus. Finally, a lot consisting of 8 females 
(F1–4 and C1–4, 1,094 ± 77.9 g BW) and 8 males (M1–M8, 952.6 ± 109.8 g BW) was selected.

The animals were stocked by sex in two 700-L tanks connected to a recirculating water system and allowed to 
acclimate for 2 days. In this system, the initial seawater temperature (15 ± 0.5 °C, salinity 35‰) and photoperiod 
(10.5 h light:13.5 h dark) corresponded to the octopus’ capture conditions. After acclimation, 8 couples were 
formed and transferred into the experimental RAS starting the reproduction trial. This study was performed 
in accordance with all applicable standards regarding space, as indicated in the “Guidelines for the Care and 
Welfare of Cephalopods in Research”24.

Characteristics of the RAS.  An experimental RAS, characterized by an innovative hydrodynamic circuit, 
with incubation chambers, was employed with the aim of favoring spontaneous spawning of the common octo-
pus. This experimental tank (Fig. 1) was obtained by structural modification of a tank originally developed for 
eel reproduction designed by Mordenti et al.25 (Acqua&Co S.r.l. Cadelbosco di Sopra, Reggio Emilia, Italy). The 
RAS had a vertical configuration (rectangular plan; total volume 1.12 m3) and consisted of two fish-rearing tanks 
(0.47 m3/tank), a protein skimmer (0.05 m3), a biological filter (0.21 m3), and a circulating pump (max. delivery 
16,000 L/h). The system was also equipped with a thermal regulation system, a UV-sterilizer lamp, an ozonizer, 
and an aerator. The core of the system was the reproduction tank, which consisted of five components (Fig. 1): 
one spawning chamber (300 L), one transition chamber (20 L), two incubation chambers (52 L), and one outlet 
chamber (90 L). The spawning and transition chambers were separated by a 20 mm-sized grid, raised by 40 mm 
from the bottom to facilitate the removing food waste. The two sectors were connected to the incubation cham-
bers via two 5-mm lengthwise splits located on the top side of the dividing panel.

Two pipes allowed water to enter from the base of the spawning chamber (inlet tube 1) in order to guarantee 
water exchange and promote—once the eggs hatched—entry of the paralarvae into the incubation chambers 
(Fig. 1). The incubation chamber had a cylindrical base and a tube on the top (inlet tube 2), and it was pro-
vided with inlet jets that produced a circular revolving current to retain the paralarvae; an outlet mesh screen 
was located on the dividing panel between the incubation and outlet chambers (Fig. 1). Finally, 2 glass covers 
positioned on the spawning chamber functioned to maintain light conditions and trap the animals in the tank.

The spawning chamber was “naturalized” with grey-coloured walls, the presence of shells, bivalve shells, sand 
and stones on the bottom, and 2 dens were inserted for the octopi (Fig. 1). The spawning chamber was equipped 
with a removable grid to separate the broodstocks. This grid had 20 mm size of opening that was chosen to let 
the courtship but limiting the mating. The RAS system was evaluated for its overall functionality (water flow rate, 
suitability for transferring paralarvae from the reproduction chamber to the incubation chamber, suitability of 
the incubation camber for maintaining paralarvae).

Experimental design.  All octopi were submitted to the conditioning programm during the first 5 weeks. 
This time must be included in the growing phase and aimed at reaching the standard experimental conditions: 
temperature of 20 ± 1.0 °C (1 °C/week), photoperiod of 15.5 h light (1 h/week), salinity of 36 ± 1.0‰, pH 8.1 ± 0.1, 
and dissolved oxygen upper limit of 8.0 ppm. Total ammonia nitrogen (TAN), nitrite–nitrogen (NO2–N), and 
nitrate–nitrogen (NO3–N) were checked 3 times/week, collecting 500 cc of water for laboratory-based determi-
nation using a spectrophotometer (Hach mod-2005, Hach Co., Loveland, USA) according to APHA methods 
(1995).
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During the reproductive period, the timing of the sequence of primary biological phases associated with 
reproduction of the common octopus (growing, courtship/mating, denning/spawning, hatching, senescence) 
was recorded. The broodstocks were subdivided into two groups (F, C) of four couples of octopi each, with each 

Figure 1.   Schematic illustration of the closed recirculating system for controlled reproduction of O. vulgaris.
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group receiving a different feeding program: the F Group (F1–M1, F2–M2, F3–M3, F4–M4) received a diet of 
mixed frozen (20%) and fresh (80%) fish (40% horse mackerel [Trachurus trachurus], 40% bogue [Boops boops], 
and 20% thinlip grey mullet [Liza ramada]); the C Group (C1–M5, C2–M6, C3–M7, C4–M8) received a diet of 
mixed frozen (20%) and fresh (80%) crustaceans (40% mantis shrimp [Squilla mantis], 40% common and green 
crabs [Carcinus sp.], and 20% caramote shrimp [Penaeus kerathurus]). The two diets were manually adminis-
tered daily ad libitum in two meals (8 a.m.; 3 p.m.) in the reproduction chamber. When recorded, the waste was 
removed into the transition chamber.

When the 8 couples of octopi were formed, each was kept in the spawning chamber, initially separated by a 
grid, which was removed only during the early courtship stages (first contact with the ends of the arms). The grid 
was removed during the day and re-positioned at the evening. The sucker display from the male was assumed 
as the start of courtship mating phase. At the end of this phase, when the female entered the den for spawning 
and stopped feeding, the male was removed and transferred back to the acclimation tank. At this time, the male’s 
den was taken away in order to offer more space to the female. Every 4 weeks and before denning/spawning, 
corresponding to the end of mating and start of denning phases, usually lasting 2–3 days, the octopi from each 
group were individually weighed by means of an electronic scale employed in the previous activities.

Reproductive performance.  During the study, the suitability of the experimental RAS tank was tested in 
relation to the reproductive performance of the broodstocks and paralarvae management. The sequence of the 
biological phases related to O. vulgaris reproduction (growth, courtship/mating, denning/spawning, hatching, 
senescense) was evaluated in terms of days.

For all phases of the reproductive cycle, the following parameters were determined:
Octopus: female and male growth rate (%/day DI) as follows:

and Specific Growth Rate (SGR) as follows:

Clusters: total number, number/kg BW, total length and medium length; medium length was obtained from 
the average of 20 clusters/female by measuring.

Eggs: total number, number/cm of cluster, number/kg BW. Egg number and egg number/cm were calculated 
taking into account the average number of 5 clusters/female.

Paralarvae: total number, number/kg BW, hatching rate (%), survival rate at 3 dph (%) under starvation 
conditions. The number of paralarvae was recorded daily and calculated via volumetric estimations, counting 
the number of paralarvae in five 2-L samples. The paralarval survival rate at 3 dph for each female was calculated 
based on 3 samples of paralarvae/female just hatched. During the hatching time, (day 3, 6, 9, corresponding to 
start, middle and the end of the hatching) the samples were transferred into 3 incubation chambers with the same 
dimensional characteristics of those used in the reproduction tank and stocked at a density of 10 paralarvae/L 
for 72 h under starvation.

Statistical analyses.  Data concerning reproductive performances (Pre-spawning weight, DI, SGR; Clus-
ters: total number, n./kg BW, medium and total length; Eggs: total number, n./1 cm, n./kg BW; Paralarvae: total 
number, n./kg BW, hatching percentage) of O. vulgaris broodstocks fed mixed fish (F group) and mixed crusta-
ceans (C group) were submitted to one-way analysis of variance (ANOVA) using the model of Smith’s Statistical 
Programme (version 2.80, Software 2005)26. Differences were considered significant at P < 0.05.

All octopi were handled in accordance with the European Union regulations concerning the protection of 
experimental animals (Dir. 2010/63/EU). Approval for this study was obtained from the Ethics Committee of 
Bologna University (prot. 19/6912).

Results
The suitability of the experimental tank was verified by monitoring water quality parameters to ensure they 
remained under the limits suitable to maintain the welfare of common octopus in controlled environments. 
During the trial, TAN was maintained at 0.08 ± 0.2 mg/L, NO2–N remained at 0.07 ± 0.03 mg/L, and NO3–N 
remained at 2.1 ± 0.7 mg/L. RAS function was also evaluated at a water flow rate of 1.1 ± 0.05 L/s (0.7 ± 0.05 L/s 
in the reproduction chamber and 0.4 ± 0.05 L/s in the incubation chamber).

The circular water flow provided by the inlet jets kept the paralarvae in suspension in the incubation chamber 
and guaranteed constant cleaning of the filter mesh (i.e., self-cleaning). Neither the presence of paralarvae in the 
outlet chamber nor return of paralarvae from the incubation to the spawning chamber were observed.

With regard to reproductive performance in the F and C groups, the times at which the reproductive phases 
(growth, courtship/mating, denning/spawning, hatching, senescence) occurred are reported in Fig. 2. The 
reproductive cycle (from the formation of couples to the death of the females) lasted 148–167 days and was 
rather homogeneous among all 8 couples monitored. Also, the behaviour of all the females before spawning 
did not show differences in terms of loss of appetite contrary to what observed on denning. The growth phase 
accounted for approximately 50% of the time (49.2 ± 2.6%), whereas the courtship/mating phase accounted 
for approximately 10% of the time (9.2 ± 2.2%), and the denning/spawning phase represented approximately 
15% of the time (15.3 ± 3.9%). In the C group, hatching lasted significantly longer (28.8 ± 2.2 days) than in the 
F group (19.3 ± 4.7 days). Growth rate was significantly (p < 0.05) higher in the C group females (DI 3.0 ± 0.29, 
SGR 1.43 ± 0.12) than F group females (DI 2.16 ± 0.67, SGR 1.18 ± 0.25) (Table 1). Considering average octopus 

[(

PreSpawning weight − Initial weight
)

÷ Days Ongrowing
]

÷ Initial weight × 100

[(

lnPreSpawning weight − ln Initial weight
)

÷ Days Ongrowing
]

× 100
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growth in relation to sex, independent from diet (Table 1), the data did not show notable differences: 2.73%/day 
(SGR 1.36) in males and 2.40%/day (SGR 1.24) in females. 

Regarding egg clusters, the total number of clusters, number of clusters/kg BW, and total length of clusters 
were more favorable in the C group than the F group. The number of clusters/kg BW was 2.5 times higher in C 
group females than F group females (78.1 ± 6.5 vs 31.1 ± 13.3). Similarly, the total number of eggs, number of 
eggs/cm, and number of eggs/kg BW observed in the C group were significantly (p < 0.05) higher than in the F 
group (Table 2). The production of eggs/kg BW and paralarvae/kg BW was 5 times higher in the C group than 
in the F group (115,928 ± 12,513 FG vs 22,109 ± 7912 FC and 114,953 ± 12,591 vs 20,729 ± 7104, respectively).

The total number of paralarvae, number of paralarvae/kg BW, and hatching rate of the C group were sig-
nificantly (p < 0.05) higher compared with the F group (453,263 ± 1134 CG vs 66,160 ± 857 FC, 114,953 ± 12,591 

Figure 2.   Schematic timing related the biological phases to O. vulgaris reproduction during the experiment. 
The sequence was evaluated in terms of days. The broodstocks were subdivided into two groups (Fish, F and 
Crustacean C) of four couples of octopi each. Mean of males (M1–M8) was coincident with relative females 
during the growing and courtship/mating phases.

Table 1.   Growth performances of different groups of O. vulgaris (Fish group, FG and Crustacean group, CG) 
represented in grams (g) and percentage (%) at the beginning of the study and pre-spawning. Different letters 
(a,b) on the same column show significant differences (P < 0.05) between Crustacean and Fish Group.

Group Animal

Weight

Initial (g) Pre-spawning (g) Daily increase (%) SGR (%)

FG

F1 1,165.3 2,120.6 0.84 0.61

F2 1,020.6 3,113.7 2.25 1.23

F3 1,212.8 3,950.9 2.69 1.41

F4 1,127.8 2,988.4 1.81 1.07

M1 762.1 2,948.3 3.15 1.38

M2 946.7 2,768.8 2.12 1.18

M3 1,010.6 3,054.7 2.22 1.32

M4 1,139.2 3,395.4 2.18 1.20

Mean FG 1,048.14 ± 146.26 3,042.60 ± 519.83b 2.16 ± 0.67b 1.18 ± 0.25b

CG

C1 1,123.2 4,520.7 3.09 1.42

C2 980.4 3,472.2 2.79 1.39

C3 1,080.7 3,863.5 3.07 1.52

C4 1,041.3 3,786.3 2.69 1.32

M5 885.6 3,675.1 3.46 1.45

M6 1,015.7 3,469.7 2.66 1.35

M7 915.3 3,696.3 3.34 1.66

M8 945.3 3,444.8 2.91 1.32

Mean CG 998.44 ± 82.17 3,741.08 ± 351.51a 3.0 ± 0.29a 1.43 ± 0.12a
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vs 20,729 ± 7104 and 99.2 ± 0.5 vs 94.5 ± 3.4, respectively) (Table 2). In addition, the egg cluster medium length 
differed significantly (p < 0.05) between the F (8.1 ± 2.2 cm) and C (7.0 ± 1.9 cm) groups (Table 2).

With regard to egg hatching, the hatching phase lasted 13–24 days for the F group (F1 and F2 females, respec-
tively), whereas this phase lasted 26–31 days in the C group (C2 and C1 females, respectively) (Fig. 3). For all 
females, an initial hatching peak was observed, with more than 50% of paralarvae hatched within a few days (in 
female C3, approximately 40% of the paralarvae were produced in a single day), and this rate declined over time, 
with the daily hatching rate declining to less than 1% in the last days (Fig. 3).

Discussion
The experimental RAS, characterized by an innovative hydrodynamic circuit (circular current in the incubation 
chamber and laminar current in the remaining sectors), was designed with the aim of favoring spontaneous 
spawning of the common octopus. In both experimental groups, the RAS tank fully satisfied all of the require-
ments: the separation grid, initially placed between the male and female, prevented the territorial aggression 
phenomenon; the presence of the transition chamber promoted the collection of food wastes outside the spawn-
ing chamber limiting the disturb of the broodstocks; and it facilitated the natural transfer of paralarvae from 
the reproduction chamber to the incubation chamber up to the total hatching clusters of eggs present inside the 
den and cared for by the females. Throughout the study, no technical anomalies were recorded in the designed 
recirculating system for octopus reproduction. The tangential water flow guaranteed the complete passage of 
paralarvae and residual food from the spawning chamber to the incubation and transition chambers, respectively. 
Indeed, once egg hatching was over, no paralarvae were found within the transition or spawning chambers. In 
addition, the RAS allowed the females of both groups to remain undisturbed. This technique differed from a 
previous study in which the females were subjected to transfer to another tank after egg deposition, and such 
manipulation could have affected performance27. In our current study, every type of manipulation of the females 
was avoided, allowing them to care for the eggs. After removal of the males and until the senescence phase, the 
reproduction chamber was never opened in order to avoid stressing the females.

In the incubation chambers, the high survival rates recorded at 3 dph showed that the circular movement 
of the water was suitable for maintaining common octopus paralarvae under minimal stress. The survival rate 
in our study was higher than that of a previous study using cylindrical tanks under starvation conditions, in 
which the survival rate of paralarvae ranged from 37 to 70%2. The high survival rates recorded in our study 
probably resulted from the fact that in our tanks, thanks to the circular movement of water, the paralarvae did 
not actively swim, thus maximizing energy reserves of the yolk sac and minimizing stress. The circular water 
current and water flow rate were suitable to maintain octopi which, for several weeks of life, exhibit a planktonic 
behaviour and can easily fall into the outlet mesh screens of closed recirculating systems, with the consequent 
risk of mechanical shock against the walls of the tank. A previous study ascertained that rearing paralarvae 
under optimal conditions is the best means of maximizing growth performance and survival rate28. The good 
environmental conditions were also linked to naturalization of the reproduction chamber, where no aggressive 
behavior or relevant stressors (negative patterns) were observed, and all the specimens achieved reproduction. 
In the current study, the system tested confirmed points highlighted by Iglesias et al.10 regarding female breeding 
animals, which, when kept in captivity under suitable conditions, are able to reach maturity and produce ovarian 
clusters. The grey-colored tank used in the present study was more-suitable compared to the blue tanks used in 
previous trails29, in which octopus adults, without dens, succumb to autophagy and death. The designed system 
appeared to meet all of the technical requirements for promoting spontaneous reproduction of Octopus vulgaris, 
thus eliminating issues related to broodstocks, eggs, and paralarvae handling.

Concerning growth, the best performance was exhibited by the octopi fed the crustacean diet (C group). This 
type of feed seems to better represent the diet in the wild, in which crustaceans represent 62–80% of the diet, 
compared to 12–30% fish30,31. Other studies have reported diets composed completely of crustaceans or mixed 

Table 2.   Reproductive performances in terms of clusters, eggs and paralarvae of O. vulgaris females fed with 
fish (FG, Fish group) and crustacean (CG, Crustacean group). Different letters (a,b) on the same column show 
significant differences (P < 0.05) between Crustacean and Fish Group.

Group Female

Clusters Eggs Paralarvae

Number Length Number Number Hatching Survival

Total Kg B.W. Medium (cm) Total (cm) Total 1 cm Kg B.W. Total Kg B.W. % 3 DPH

FG

F1 24 11.3 8.26 ± 2.41 198 21,811 ± 25 110.2 ± 2.9 10,285 21,616 ± 105 10,193 99.1 98.2 ± 0.1

F2 125 40.1 8.05 ± 2.11 1,006 84,123 ± 36 83.6 ± 2.4 27,017 80,124 ± 1,058 25,733 95.2 98.3 ± 0.3

F3 142 36.0 8.11 ± 2.23 1,152 100,793 ± 48 87.5 ± 3.1 25,511 92,258 ± 1,237 23,351 91.6 98 ± 0.3

F4 110 36.8 8.06 ± 2.17 887 76,574 ± 53 86.3 ± 1.8 25,624 70,642 ± 1,028 23,639 92.2 98.1 ± 0.2

Mean 100.3 ± 52.5b 31.1 ± 13.3b 8.1 ± 2.2a 810.8 ± 422.6b 70,825 ± 41b 92.0 ± 2.6b 22,109 ± 7912b 66,160 ± 857b 20,729 ± 7104b 94.5 ± 3.4b 98.2 ± 0.2

CG

C1 381 84.3 7.32 ± 1.97 2,789 604,376 ± 65 216.7 ± 5.3 133,691 601,584 ± 1524 133,073 99.5 98.4 ± 0.3

C2 241 69.4 6.64 ± 1.91 1,600 377,027 ± 32 235.6 ± 4.3 108,584 373,610 ± 987 107,600 99.1 98.5 ± 0.4

C3 315 81.6 6.74 ± 1.87 2,123 409,236 ± 47 192.8 ± 3.2 105,924 407,113 ± 876 105,374 99.5 98.2 ± 0.3

C4 291 76.9 7.34 ± 1.85 2,136 437,369 ± 39 204.8 ± 3.7 115,514 430,748 ± 1,147 113,765 98.5 98.3 ± 0.2

Mean 307 ± 58.2a 78.1 ± 6.5a 7.0 ± 1.9b 2,162 ± 486.9a 457,002 ± 46a 212.5 ± 4.1a 115,928 ± 12,513a 453,263 ± 1134a 114,953 ± 12,591a 99.2 ± 0.5a 98.4 ± 0.3
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diets composed predominantly of crustaceans15,16,32,33. No inert diet able to completely replace fresh or frozen 
food and in which nutritional characteristics fluctuate in relation to the season and place of capture has yet to 
be developed for O. vulgaris34–38. In Octopus sp., the type of diet (fresh or formulated) consumed during female 
maturation affects various biochemical and morphologic characteristics of both embryos and hatchlings2,23,39,40. 
The results of the current study indicate that the diet composition of the broodstocks plays an essential role in 
determining the success of reproduction in the common octopus. As shown in Fig. 2, starting from sub-adults 
the feeding period (lasted 72–83 days) has been suitable to affect the spawning of the broodstocks. The present 
study focalizes on the relationship between diet and number of eggs and paralarvae produced and suggests that 
the broodstock diet strongly affects reproductive performance in terms of clusters, eggs, and paralarvae. The 
higher productivity of females in the C group was evidenced not only by the greater production of clusters but 
also by the greater density of eggs in each cluster (Fig. 4). Feeding the broodstocks a diet based on crustaceans 
guaranteed the highest growth and greatly improved offspring production. Conversely, the diet based on fish 
appeared unfavorable probably due to the unbalanced lipid content as confirmed by feces produced as filamen-
tous, floating and fatty feces, as reported by Petza et al.41, not observed in the octopus group fed crustaceans.

In the group fed crustaceans, the octopus females exhibited the best reproduction performance, confirming 
the results of a previous study indicating that cephalopods can accumulate energy reserves in the digestive gland 

Figure 3.   Paralarvae amount in O. vulgaris females fed fish (F) and crustacean (C). Squares represent 
percentage daily hatching (%). Circles represent cumulative number of paralarvae (n.).
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to be used during fasting42, whereas in our study no relationship was shown between fat content and egg produc-
tion. According to O’Dor et al.43 and Lee44, the digestibility of lipids is low, whereas other authors reported that 
the capacity of octopi to metabolize lipids is very limited45, and their use depends on the quantity and quality 
of the dietary lipids46–48.

Concerning the octopus growth rate in relation to sex, independent from diet, our results were similar for 
both sexes. This result was better than those of previous studies4,49,50 reporting that males achieve a body weight 
higher than females because females direct more energy toward gonad maturation in comparison to somatic 
growth3,51. In contrast to Estefanel et al.52, in our study, the complete isolation of the couple and the daily pres-
ence of readily available food led the female to feed adequately up to the clogging phase, whereas we observed 
that males in the "frenzy of reproduction" occasionally refused food.

With regard to fertility in both relative and absolute terms, our results obtained with females fed crustaceans 
are in agreement with those for octopi in the wild reported by Mangold53, who recorded depositions of over 
500,000 eggs/female. Our results were also in agreement with those reported by Iglesias et al.14 for captive octo-
pus, which produced an estimated 100,000 eggs/kg BW.

As concerns denning/spawning phase, F1 and F3 females showed that a longer phase of eggs spawning is 
not in relationship with a number of eggs spawned. Evidently, once entered the den, the start of spawning and 
number of clusters daily produced varies from female to female.

The hatching rate was very high in both groups in the present study, exceeding 90%, and the rates were in line 
with those reported by Iglesias and Fuentes26, who reported values above 80% in captive octopi. In this regard, it 
is important to emphasize how the newly designed RAS enabled the collection and separation of paralarvae of 
the same age, a fundamentally important capability that emerged from a study of proper management techniques 
in a larval feeding program54. In general, the different types of diet adopted did not affect the behavioral and 
reproductive timing of the couples tested. The longer duration of the hatching phase in the C females was due 
to the greater egg production, which necessitated a longer period for laying and hatching. Knowledge of aspects 
such as the timing of mating and laying eggs is certainly useful for optimizing reproduction in a controlled 
environment and with respect to closing the production cycle.

Identifying technical and hydrodynamic solutions for rearing these cephalopods in captivity is very important, 
not only to ensure animal welfare but also for reproductive purposes. The reproduction system tested in this 
study exhibited all the necessary requirements to induce mating and allow spontaneous captive reproduction 
of O. vulgaris. The new RAS consisting of a reproduction tank with space for each single couple enabled deter-
mination of the daily hatching rate of paralarvae as well as observation of the female behaviour in the denning 
phase. The size of the transition chamber was suitable to remove uneaten feed. However, it would be plausible 
to increase its size so as to use it as feeding chamber also, further reducing the disturbing action. The current 
study demonstrated that this system enables separation of the daily hatchlings, with the consequent advantage 
of easy planning of paralarvae weaning because of the possibility of starting from more homogenous paralarvae 
lots. Furthermore, the hydrodynamic conditions of the plant did not hinder the reproductive activities of the 
specimens and favored the spontaneous transfer of paralarvae to the incubation chambers immediately after 

Figure 4.   Pre/post hatching clusters of O. vulgaris females fed crustacean (CG, on the left of the picture) 
and fish (FG, on the right of the picture). (C1), (F1) show a detail of pre-spawning clusters of the groups with 
different density of laid eggs. (C2), (F2) show the length of the post-spawning clusters of the different groups. 
(C3), (F3) show sections of clusters with total (C3) and partial hatched eggs (F3).
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hatching, thus avoiding the need for any type of manipulation and preventing mechanical stress phenomena. In 
addition, the circular water flow of the system facilitated maintaining the paralarval forms in suspension. With 
respect to the diet adopted for broodstocks of the common octopus, a diet based on crustaceans not only favored 
better growth rates but above all enhanced reproductive performance in terms of the quantity of eggs produced 
and consequently of paralarvae obtained.
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