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Abstract

Objective: The Computed Tomography perfusion (CTp) is a promising
tool in oncology to characterize tissue hemodynamics, but the difficulty to
achieve reproducible perfusion parameters in several organs, with different
methods, contributes to hamper the clinical translation of CTp. The goal
of this study is to setup a new approach aiming at achieving multicentre
reproducibility of blood flow (BF) values in liver.

Methods: 75 patients from two Centres (A and B) underwent an axial
liver CTp, including arterial and portal phases. A dedicated workflow ad-
dressing modelling and computational aspects was implemented, including a
novel two-stage strategy to separate the dual-input contributions of hepatic
signals, thus allowing to compute independently both Maximum Slope (MS)
and Deconvolution (DV) on the same contributing signals.

Results: 95% of patients in A and B showed an excellent voxel-based
Pearson correlation (ρ ≥ 0.96) between MS and DV BF values, with very
low coefficients of variation (CV = 0.11 in the worst case). The good concor-
dance is confirmed for the whole cohorts, in single Centres and both, where
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R2=0.97, ρ ≥ 0.97, ρs ≥ 0.96, ICC ≥ 0.78 and CV=0.25 are the worst
values. Compared with eighteen recent articles, these represent by far the
best outcomes.

Conclusion: The excellent patient- and cohort-based reproducibility of
BF values achieved independently by MS and BV confirms the effectiveness
of the approach presented.

Significance: Our approach can be used to improve the reproducibility in
other CTp multicentre studies, in liver as well as in other organs, with even
different clinical questions, and represents a marked step forward towards
CTp standardization, favouring the investigation of imaging biomarkers.
Key Words: Signal processing, deconvolution, computed tomography, on-
cology, reproducibility.

1. Introduction

In the last years, tumour treatments have been greatly improved by ex-
ploiting target therapies, which allow attacking cancer cells by preserving
healthy ones, as in case of the antiangiogenic drugs. The formation of new
blood vessels from existing ones (i.e. neoangiogenesis) is a key process of the
rising cancers that, as their volume raises 3mm3, over-express pro-angiogenic
factors to favour their growth, by increasing the amount of pathways avail-
able for the transport of nutrients and oxygen [1]. Dependently on tumour
aggressiveness, the new vessels grow chaotically, in a disorganized structures
hindering the efficacy of classical cytotoxic therapies. To this purpose, the
antiangiogenic drugs are employed to reshape the abnormal structures of
tumour vasculature, try restoring the normal blood flow and oxygenation
status, thus possibly enhancing the activity of citotoxins, usually thwarted
by disorganization of tumour vessels [2].

The functional changes induced by these drugs occur much earlier than
morphological ones, this making classical morphological imaging techniques
unfit for assessing their efficacy. To this purpose, functional imaging, such
as dynamic contrast-enhanced Magnetic Resonance (DCE-MRI) and Com-
puted Tomography (DCE-CT, also referred to as CT perfusion, CTp) [3], can
provide a functional assessment of tumour vasculature coupled with morpho-
logical depiction [2]. A series of scans performed before, during, and after
the intravenous injection of a Contrast Agent (CA) allows imaging its flow
through the tumour Region of Interest (ROI) and measuring tissue perfusion
after recovering the Time-Concentration Curves (TCCs) of the CA [4].
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Perfusion parameters are widely used to derive image-based biomarkers
to assess anti-angiogenic drug response and the Blood Flow (BF) is among
the most common perfusion parameters considered to early detect tumour
changes in diverse anatomic districts [5]. While DCE-MRI offers a higher spa-
tial resolution than CTp, the latter has an excellent temporal resolution that
makes it preferable for quantitative dynamic analysis. However, at present
CTp is not standardized in the clinical routine for most of anatomic districts
(e.g., lung, liver, kidney) due to several types of artefacts jeopardizing the
reliability of perfusion values and preventing their reproducibility. Neverthe-
less, CTp is still drawing interest, with more than 120 scientific works in the
last years (according to PubMed database) addressing CTp applications in
liver [6], head and neck [7], lungs [8], abdomen [9], and kidneys [10]. Three
wide European multicentre liver CTp studies exist (SARAH [11], PiXEL [12],
and PROSPeCT [13]), enrolling more than 300 patients each, to evaluate
promising image-based biomarkers in predicting tumour development and
patient prognosis. Moreover, in recent omics imaging applications that inte-
grate information derived from clinics and structural and functional imaging,
CTp can play a key role to enrich processes of tumour diagnosis, manage-
ment, and clinical decision making [14]. However, although some work has
been done to measure [15] and enhance parameters reliability through the
improvement of TCC signals [16], the analysis of artefacts from motion [17],
acquisition and beam hardening [18], some difficulties still remain to have
different methods and software used in CTp yielding comparable results [19].
Many studies report variations of up to 30% between perfusion values, de-
pending on the computing methods chosen [20]. On the other hand, very few
methodological studies deal with how to improve CTp reproducibility and
even less [21] focus on the modelling aspects rather than on the computational
ones. In this regard, Deconvolution (DV) and Maximum Slope (MS) are well-
established and widely used perfusion methods, independent from each other.
In particular, DV relies on the whole TCC signal, acquired throughout the
CA kinetics phase being studied, and exploits the input-output relationship
of the model, describing its dynamics, which reflects upon the generated per-
fusion parameters. Instead, MS exploits one TCC sample only, in its ascent
phase (in one or two distinct time instants, based on the number of inputs),
thus permitting perfusion analyses referred to the CA first-pass, hence requir-
ing the shortest acquisition times as possible. Therefore, attaining a common
agreement between MS- and DV-based CTp parameter values is necessary
to achieve the reproducibility of results [22], to improve the effectiveness of
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multicentre trials and favouring the CTp standardization. A first worthy
attempt has been accomplished in [23], where a match between perfusion
maps computed with MS and DV was achieved, on a reduced number of pa-
tients, just for visual purposes, with perfusion values min-max normalized,
separately for MS and DV.

The goal of this work is to develop a new approach aiming at achieving
a numerical reproducibility of blood flow (BF) values in liver, tested in a
multicentre study. In particular, we face the CTp reproducibility issue by
addressing the choice of the model, the kinetics phase of CA, the method
used to compute the voxel-based perfusion parameters. To this purpose, we
considered the two most populous Centres of PIXEL and dealt with the sim-
plest operating conditions for all these three aspects, by (a) choosing a one-
compartmental model (Sect. 2.2), (b) analysing the first passage (Sect. 2.4),
and (c) adopting MS and DV as the computational methods whose perfu-
sion results have to be compared, being the former the simplest to compute
and the latter the most precise one [24]. After describing in Sect. 2.5 how
input and output signals were modelled, we provided details on MS and DV
computation in Sect. 2.6 and proposed, in Sect. 2.7, a novel two-stage algo-
rithm to separate the dual-input contributions on hepatic CTp signals, to
be used by both MS and DV for the independent computation of perfusion
parameters. The methodology for the assessment of MS and DV numerical
reproducibility is presented in Sect. 2.8. In Sect. 3, this study analyses for
the first time the correlations achieved separately on the single patients, fol-
lowed by a discussion on results achieved on the whole cohorts, which are
compared with the state of the art. Concluding remarks are given in Sect. 4.

2. Materials and methods

2.1. Patients and CTp protocol

This multicentre study involves 75 patients with colorectal cancer and
normal liver, belonging to the two centres of PIXEL (15 French Centres,
315 enrolled patients) [12], aiming at evaluating the predictive role of the
perfusion parameters in the onset of liver metastases within three years from
cancer diagnosis. In particular, Centre A (54) and Centre B (21) were chosen
because they are the most populous ones. All patients underwent an axial
CTp liver examination, including the portal vein trunk and the right hepatic
parenchyma, during which they were asked to breathe slowly. Acquisitions
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started contemporaneously with a bolus-injection of 40 ml of iodinated in-
travascular CA, at a speed of 5 ml/s, with a concentration of 350 mgI/ml,
followed by 20 ml of physiological solution. CT tube current and voltage were
kept at 100 mA and 80 kV, respectively, with 1 s rotation time (100 mAs ex-
posure). The CTp protocol lasts for 2 min, yielding 60 scans (every 1 s for
the first 30 s, and 3 s after), each consisting of 8 sections of 5-mm thickness.
The patients included (75) were those patients for which the portal vein were
visible in the whole sequence.

2.2. Physiological and kinetic models

CA kinetics in CTp studies reflects the dynamics of vascular microcircula-
tion, and the analysis of TCCs has been proved to provide useful information
on tissues’ angiogenesis degree. During the ascending phase of the TCCs,
the CA is washed into the vascular compartment, then it reaches its maxi-
mum concentration in correspondence of the peak of the TCCs, before being
washed out during the descending phase. However, during the dominant
descending phase of the TCCs, lower concentrations of CA are still washed
into the compartment due to the blood plasma recirculation [25]. Indeed, the
way CAs propagate throughout the biological pathways also depends on the
chemical and physical properties of the CA themselves, chosen on the basis
of the hemodynamic properties under investigation, and can be described
by several models. Based on whether CA remains within the intravascular
space or moves towards the extravascular and extracellular lumen, different
mono- or multi-compartmental models of increasing complexity exist for rep-
resenting the tissue exchange sites [26]. These compartmental models split
up the exchange site in interacting multiple chambers, each of them obeying
the mass conservation law expressed by a differential equation. In addition,
the liver is a dual-input organ and as such it was considered in this work, in a
single-compartmental model without any reference to the extravascular and
extracellular spaces. In practice (Fig. 1), the input of the system is the lin-

Figure 1: Hepatic dual-input one compartmental model

ear combination of the arterial (CA(t)) and the portal (CP (t)) blood plasma
concentrations, while the output is the venous concentration (Cout(t)). CA(t)
and CP (t) are weighted in input by the Hepatic Perfusion Index (HPI), so
that the total input blood plasma concentration Cin(t) is expressed by Eq. 1:

Cin(t) = HPI · CA(t) + (1− HPI) · CP (t) (1)
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Hence, while Cout(t) is exiting the compartment, the concentration of CA
still inside the compartment is represented by CT (t). In addition, due to the
dual-input supply, the concentration CT (t) is the sum of two contributions
CTA

(t) and CTP
(t) (Eq. 2), due to CA(t) and CP (t), respectively:

CT (t) = CTA
(t) + CTP

(t) (2)

Finally, hemodynamic analyses can be further classified depending on whether
the first-passage kinetics only is considered or recirculation is also included.
While the latter case allows more perfusion parameters to be computed, at
the expense of a longer CTp protocol, the former one owns a lower complex-
ity, resulting very attractive in CTp studies, and this is the choice adopted
in this work. In fact, first-pass analysis can be carried out on shorter exam-
inations, which entail a lower dose to patients, besides being compliant with
breath-hold and reducing artefact from motion [27], accordingly.

2.3. Data preparation

In each CTp examination, a central representative slice is selected and
two regions of interest (ROIs) are first drawn, on the aorta and the liver,
respectively. The ROI placement procedure on liver is carried out with a great
care, excluding large vessels, such as portal vein or hepatic artery. Then, a
ROI outlines the portal vein and it is aligned over time, on each sampling
instant, to compensate for motion in the subsequent CTp scans [17]. For
both vessels, one mean TCC (CA(t) and CP (t), respectively) is achieved from
the whole ROIs while, from the tissue, single voxel-based TCCs (CT (t)) are
extracted and kept, after excluding voxels undergoing dynamic artefacts [18]
and performing a 3D edge preserving filtering. Finally, after an accurate
baseline removal [28], a preliminary non-parametric fitting of the real TCCs is
performed to up-sample the signal from 30 s on, to the end of the acquisition,
so to have a uniform sampling frequency of 1 Hz.

2.4. Extracting the first-pass signal

Focussing on first-pass kinetics, we needed to extract from the vascu-
lar and tissue TCCs the contribution due to the first passage only. Some
simulation studies show that the CA kinetics limited to the first passage is
represented by a TCC decaying to the baseline, after its peak [29]. Moreover,
it is known that when considering short CA bolus injections, the recircula-
tion contributes to TCCs mainly after its peak is reached, in the aorta as
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well as in the abdominal vessels supplying the liver [30]. As far as the hep-
atic single-compartment model is concerned, the CA vascular kinetics can
be reasonably applied on tissue hemodynamics, yet more in the absence of
altered vascular pathways (e.g., due to angiogenesis or diseases), yielding a
CA recirculation flooding the tissue after the maximum CA concentration is
reached. Therefore, the main problem is to find out enough TCC samples
expectedly belonging to the first-pass phase, that could be successively used
in a parametric fitting model to extract a complete first-pass signal from the
real tissue TCC. In practice, while the left bound of the interval is known
(i.e., the first acquired sample t0), what lacks is the last first-pass interval
sample. Based on all the considerations above, we found reasonable choosing
the time instant halfway between the peak time (tp) and the washout time
(tw), when the outflow is maximum. Hence, we first performed a signal de-
noising for each patient through a smoothing spline [31], computed over all
the acquired n samples, setting the smoothing parameter λ = 0.7 [32], also
on the basis of preliminary tests. Then we computed the derivative on these
smoothed signals, thus achieving tp (when it has 0-value) and tw (when it
has its minimum). It is worth noting that if different values of λ can affect
the goodness of fit, the effects on tp and tw are almost negligible. Finally,
for each TCC [t0, (tp + tw)/2] represents the time interval whose samples are
considered as belonging to the first-pass phase.

2.5. Models of vascular and tissue signals

The fitting procedure of both vascular and tissue signals was carried
out by adopting two widely used parametric models, the Lagged Normal
(LN) [33] and the Gamma Variate (GV) [34] functions, respectively, simi-
larly to what done in [23]. The fitting procedure was performed using the
Interior Point [35], a constrained nonlinear optimization algorithm imple-
mented in the fmincon function of Matlab© (MathWorks Inc, Natick, MA,
USA).

2.5.1. The Lagged Normal function

The LN model has been parametrized with the specific aim of describing
the dispersion of an indicator in arterial or, in general, large vessels [36].
According to the differential Eq. 3:

f(t) =
1

σ
√
2π

e−
1
2
( t−tc

σ
)2 − τ

df(t)

dt
(3)

7



the model combines two contributes. The first term refers to a Gaussian
function of unit area, representing a random distribution of transit times
around the central time, tc, with σ as standard deviation. The second term
is a first-order exponential process included in order to consider the evidence
of skewness in experimental dye-indicator curves attained in mixing cham-
bers. Then, τ is the time constant of the first-order decay. Eq. 3 can also
be represented by means of three more practical parameters enabling data-
driven criteria of selection, the Relative Dispersion (RD), the skewness (s),
and the mean time (tm), which allow expressing the three LN parameters, as
reported in Eqs. 4, 5, and 6:

τ = RD · tm·
(s
2

) 1
3

(4)

σ =
√

(RD · tm)2 − τ 2 (5)

tc = tm − τ (6)

For normalization purposes, Eq. 3 is finally scaled by the global factor AUC
(area under the observed curve). Hereafter, we will refer to the vascular
TCCs, CA(t) and CP (t), as their LN-fitted version (Fig. 2 (a)).

2.5.2. The Gamma Variate function

The GV model [37] exploited for tissue TCCs fitting, is described by
Eq. 7:

f(t) = K(t− t0)
α · e−

(t−t0)
β (7)

where K is a global scale factor, expressed by Eq. 8

K = f(tmax) · t−α
max · eα (8)

and, moreover, α and β are shape and scale factors, respectively, depending
on tmax, the time when the GV peak value occurs (Eq. 9)

tmax = α · β (9)

In its turn, Eq. 9 is achieved by setting the first derivative of Eq. 7 to zero.
The cost function minimizes the squared Euclidean norm of residuals com-
puted between the early non-parametric and the GV fittings, within the
first-pass phase [38]. Hereafter, we will refer to tissue TCCs, CT (t), as their
GV-fitted representation (Fig. 2 (b)).
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Figure 2: Parametric fitting models for patient ID1 of Centre A of CA(t) and CP (t) (a)
and CT (t) (b), herein illustrated between the time interval t ∈ [0÷ 119] s.

2.6. Perfusion computation methods

Compartmental analysis for first-pass studies is generally carried out
either exploiting the Fick’s principle applied to a single-compartment or
through the study of the impulse response function of the compartment itself,
without any assumption regarding the underlying biological tissue structure
and diffusion processes. We exploit these two approaches to compute CTp
parameters by implementing MS and DV, respectively. In particular, MS
assumes the conservation of mass under the assumption of no venous outflow
(needed to fulfil the one-compartment hypothesis) [39], DV is grounded on
the Indicator Dilution Theory (IDT), under the assumption of system lin-
earity and time-invariance [40]. In case of dual-input organs, some perfusion
parameters, BF included, arise from the partial contributions provided by
each input. For instance with liver, the total BF is expressed as the sum of
arterial (aBF) and portal (pBF) contributions [41], according to Eq. 10:

BF = aBF + pBF (10)

2.6.1. Maximum Slope (MS)

In the standard single-input model, the equation is (Eq. 11):

dCT (t)

dt
=

BF

VT

[Cin(t)− Cout(t)] (11)

where Cin is usually the arterial blood plasma CA and VT is the tissue volume.
A minimum transit time exists before the injected CA reaches the venous
circulation, when it is assumed to be still inside tissue. Therefore, under
the assumption of no venous outflow, Cout ≈ 0, Eq. 11 can be simplified as
follows (Eq. 12):

dCT (t)

dt
≈ BF

VT

Cin(t) (12)

This also implies that CT (t) reaches its maximum slope in the correspondence
of the maximum value of Cin(t). Assuming VT as a normalization factor
represented by a constant volume unit, BF can be expressed in ml/min/100 g
and given by Eq. 13 [4]:

BF ≈
dCT (t)

dt
|max

Cin(t)|max

(13)
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In the hepatic dual-input model, MS formulation has to be extended to in-
clude aortic and portal contributions, according to Eq. 14:

BF ≈
dCTA

(t)

dt
|max

CA(t)|max

+

dCTP
(t)

dt
|max

CP (t)|max

(14)

However, under the MS approach CTA
(t) and CTP

(t) cannot be analyti-
cally separated. Commonly (as in [23]), they are approximated according
to Eqs. 15 and 16 [42]:

CTA
(t) ≈ CT (t)|t∈[0,CS(tmax)) (15)

CTP
(t) ≈ CT (t)|t≥CS(tmax) (16)

where CS(t) is the mean TCC extracted from the spleen and tmax is the time
instant when its peak occurs.

2.6.2. Deconvolution (DV)

When exploiting the DV method, the output function Cout(t) is conceived
as the convolution of the input function Cin(t) with the impulse response
function of the system, h(t). Instead, when referring to CT (t), it can be most
usefully described by the impulse residue function R(t), representing the CA
remaining into the tissue (Eq. 17) [43]:

CT (t) = Cin(t)⊗R(t) (17)

According to what described in [44], BF can be estimated as the initial (or
maximum) value of R(t) (Eq. 18):

BF = R(t)|max (18)

To compute perfusion parameters, R(t) can be recovered through deconvo-
lution starting from CT (t) and Cin(t).

Eq. 17 can be represented in its matrix form, according to Eq. 19:

Ax = b (19)

where A ∈ Rn×n and b ∈ Rn represent Cin(t) and CT (t), respectively, with
n the number of the TCC samples. Performing deconvolution means solving
an inverse problem, whose best solution is given by Eq. 20:

min
x

∥Ax− b∥2 (20)
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However, A is known to be ill-conditioned and to regularize it we chose the
circular truncated singular value decomposition (cTSVD) [45], since circu-
lar regularization is a well-established technique for CTp, allowing for time
delays between the vascular input and the tissue curves [46]. In order to
prevent aliasing in circular deconvolution, Cin(t) and CT (t) are first zero-
padded for L = 2n samples. Then, the circular square matrix Ac ∈ RL×L is
implemented according to Eq. 21 [47]:

Ac
i,j =

{
Cin(ti−j+1), for j ≤ i

Cin(tL+i−j+1), for j ¿ i
(21)

The cTSVD solution is achieved by SVD decomposition of Ac, so that its
inverse matrixAc−1 = VΣUT, whereΣ is the diagonal matrix of the singular
values sorted in descending order, and V and U contain the left- and the
right-singular vectors, respectively. In order to reduce the oscillation of the
solution, the less representative singular values in Σ must be removed and we
chose the last 5%-threshold, a value commonly used in several studies [48].

2.7. Computation of perfusion parameters

Both MS and DV requires CTA
(t) and CTP

(t) to compute perfusion pa-
rameters. In order to avoid approximating the two contributions according
to Eqs. 15 and 16, we decided to compute BFMS analytically, employing the
same signals as DV, this also expectedly improving reproducibility. The two
contributions CTA

(t) and CTP
(t) arise from Cin(t) of Eq. 1 that, substituted

into Eq. 17 leads to Eq. 22:

CT (t) = (HPI · CA(t) + (1− HPI) · CP (t))⊗R(t) (22)

and, if split into two addends, yields Eqs. 23 and 24:

CTA
= HPI · CA(t)⊗R(t) (23)

CTP
= (1− HPI) · CP (t)⊗R(t) (24)

As one can see, in order to compute CTA
(t) and CTP

(t), both HPI and R(t)
are needed. To this purpose, we implemented a two-stage procedure, made
of an initialization (Init) and a computation (Compute) block, outlined in
Fig. 3. The first, sequential, block aims at providing a very preliminary
estimate of HPI andR(t), used to initialize the second block, whose purpose is
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Figure 3: Two-stage procedure made of initialization (Init) and computation (Compute)

blocks. Initially, HPI[e] is estimated through convolution (⊗min), stemming from an ideal

model of R(t) (i.e. R(t)[i]), minimized against CT (t). Then, by exploiting HPI[e], R(t)[r] is
first achieved via deconvolution (⊗−1), then fed to the Compute block, where the estimates

of HPI[r] and R(t)[r] are iteratively refined until convergence (i.e., until the mean residuals
computed between two subsequent estimates of R(t)[r] reach a plateau).

iteratively refining HPI and R(t), until convergence is reached. In particular,
we started in the first block by estimating the voxel-based HPI values (HPI[e])
via convolution (⊗min), from Eq. 22, which is directly minimized against

CT (t) using an ideal model of R(t) (i.e., R(t)[i]). Then, HPI[e] is employed to
deconvolve Eq. 22, now achieving voxel-based estimations of R(t) on real data

(i.e., R(t)[r]), which is fed to the second stage to achieve an early estimate of

the real HPI (i.e., HPI[r]). The subsequent refinements of R(t)[r] and HPI[r]

are iteratively performed minimizing the mean residuals of R(t)[r] (µ[R(t)[r]])
computed between two subsequent estimates. The mean curve computed over
all 75 patients (Fig. 4(a)) shows a L-like curve shape, similar in each patient,

Figure 4: (a) The mean curve of µ[R(t)
[r]
] referring to whole patients, with the red point

highlighting the iteration (i = 4) at which a plateau starts; for a sample patient (ID37,

Centre A) (b) µ[HPI[r]], (c) ρs[HPI[r]] and (d) ICC[HPI[r]] are reported.

with a plateau for µ[R(t)[r]] starting at the red point, the fourth iteration
(that is, referring to differences between estimates at i=4 and i=3). As one
can infer by the very low standard deviations, this occurs for all patients
and because there are no real benefits to wait for convergence, we chose to
stop the process and taking R(t)[r] at i=3. This choice was also supported
by the concomitant best HPI[r], as one can see for a representative sample
patient (ID37, Centre A) in Fig. 4(b), reporting the evolution of the mean
residuals, and by the Spearman coefficient (ρs) and the Intraclass Correlation
Coefficient (ICC) in Fig. 4(c) and (d), respectively.

Finally, by deconvolving CTA
(t) and CTP

(t) with the corresponding input
functions, CA(t) and CP (t) respectively, we can compute voxel-based aBFDV

and pBFDV values, subsequently summed up to yield the total BFDV value
(Eq. 10). Similarly, MS is independently applied to CTA

(t) and CTP
(t) to

compute aBFMS and pBFMS via central finite-differences, then summed up
to achieve BFMS.
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2.8. Assessment of results

Few works exist reporting BF values achieved with both MS and DV, and
these all refer to only aggregate data, related to the entire cohort. This is
the first work in the literature reporting a patient-wise comparison of voxel-
based BF values achieved with both MS and DV, besides a cohort analysis
to enable a comparison with the state of the art.

For each patient of Centres A and B, voxel-based BF values achieved via
DV and MS are compared through the Pearson correlation index (ρ), split
into five contiguous classes with increasing correlation, in order to permit a
more accurate comparison between Centres. In addition, for each patient,
median (M) and Median Absolute Deviation (MAD), mean (m), standard
deviation (σ), and coefficient of variation (CV) are also computed for DV
and MS separately. Moreover, the correlation of all mean BF (BFm) values
achieved via MS and DV is computed at group (G) level, where “group” is
meant as the set of patients of either Centres A or B or both (A&B) and
assessed through Spearman (ρs), Pearson (ρG), and Intraclass Correlation
(ICC) indexes. To this purpose, when addressing the comparison with the
literature, these correlations (c) between MS and DV were considered good
or very good if 0.80 ≤ c < 0.90 or c ≥ 0.90, respectively. On BFm and
BFM distributions, MG, MADG, mG, σG, and CVG = σG/mG were assessed.
Finally, a comparison between DV and MS is carried out considering the
absolute percentage differences of MG (∆M) and mG (∆m). Afterwards,
we compared our results with other studies’, considering all the published
works between 2013 and 2019, retrieved from PubMed database including
the keywords: “functional CT, perfusion CT, CT-perfusion, deconvolution,
maximum slope, CT-based, dynamic contrast-enhanced computed tomogra-
phy, dynamic contrast-enhanced CT” and excluding: “brain, cerebral, artery,
coronary, stroke, cardi, dynamic contrast-enhanced MRI, dynamic contrast
enhanced MRI”. Finally, 18 works are considered, dealing with different or-
gans and glands, including liver (8), kidney (3), pancreas (3), lung (2), oe-
sophagus (1), lymph nodes (1).

3. Experimental Results

We start presenting the patient-wise MS and DV voxel-based correlations,
followed by a comparison of the aggregate results with other studies.

Table 1 resumes the Pearson correlations between BF values computed at
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Table 1: Correlation (ρ) of BF between MS and DV in Centres A and B

Centre
Patients

CVMS CVDVTotal ρ=0.99 ρ=0.98 ρ=0.97 ρ=0.96 0.90≤ρ≤0.95
A 54 37 5 6 3 3 11.6% 10.7%
B 21 15 4 - 1 1 11.3% 11.0%

voxel-level with MS and DV for each patient of Centres A and B, where ρ val-
ues are partitioned into 5 contiguous classes. Correlations are excellent, with
95% of patients with ρ≥0.96 in Centre A as well as in Centre B. These values
are yet more significant in the light of the very low mean CVs of all patients
for MS (CVMS) and DV (CVDV), suggestive of BF distributions with narrow
ranges, with maximum CVMS=11.6% and minimum CVDV=10.7% values in
Centre A, for MS and DV, respectively. It is also worth noting that CVDV

values are also lower than CVMS ones, this confirming the better precision
of DV. Table 2 reports the outcomes of our study (Centres A, B, A&B) and
of the most recent literature addressing healthy tissue (H), primary cancer
(C), or metastases (m) in different organs and glands. These studies were all
single Centres, except for [49], and perfusion parameters were always com-
puted with vendor’s Software. The results reported perfusion parameters,
correlations, and absolute percentage differences of median and mean BF
values achieved with MS and DV, referred to the whole cohorts. As one
can see, most of parameters are not computed (‘-’ points out not available
values) and this regards not only voxel-based, but group-wise analyses as
well, where the only parameters reported are those deriving from mean (µG,
σG, CVG), while median-derived parameters are almost never computed. As
a matter of fact, this element itself hints at a lack of accurate comparative
studies, making our work the most analytical one. Six works reported at
least MG or mG values for both MS and DV. Apart from the older work
in [49], reporting correlation values lower than 0.60, almost all the other cor-
relation indexes are good (¿0.80) or very good (¿0.90), but they are never
coupled with low differences between MS and DV BF values, this suggest-
ing at least relevant systematic errors between MS and DV computations.
This happens in [59] (ρs=0.81, ∆m=54.6%), [51] (ρs=0.86, ∆m=44.7%), [52]
(ρs=0.89, ∆m=44.7%), and even in [50], where ρG=0.91, the highest ρG value
of all the comparing studies considered, derives from ∆m=51.1%, probably
due to a linear correlation having a slope much higher than 1. Also the work
in [19] shows very good correlations (ρs = 0.85, ICC = 0.83) but, besides
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reporting by far the highest σG in MS computations, not any (absolute per-
centage) difference is given, nor ρG, this probably suggesting that neither
voxel-based nor global BF values were comparable with DV ones.

As regards our results, Figs. 5(a) and 5(b) highlight the correlation of

(a) (b) (c)

Figure 5: Scatter plots of median BF values computed with MS (x−axis) and DV (y−axis)
in Centre A (a), B (b), and A&B (c), respectively.

BF values computed with MS and DV on the patients of Centres A (54)
and Centre B (21). ρG, ρs, and ICC coefficients are very high for Centre A
(0.97, 0.96, 0.78) and excellent for Centre B (0.99, 0.98, 0.84), and such an
agreement is confirmed (even slightly improved for ICC) by the multicentre
analysis of A&B (Fig. 5(c), with 0.97, 0.96, 0.79, respectively). Analogously,
as regards m and q values, we can see that increasing the number of patients
by adding to Centre A those of Centre B does not improve the slope, but it
improves the bias, from q=12.24 to q=10.48. Actually, ICC coefficients for
Centres A and A&B are lightly lower than those reported in [19], but it is
worth noting that our BF values are associated to the highest precision, as
confirmed by the lowest CVGs, when referring to either MS (CVG=0.25 and
CVG=0.24, for Centres A and A&B, respectively) and DV (CVG=0.23 for
Centre A and CVG=0.22 for A&B). The high precision is confirmed also in
Centre B, which yields the best CVG values, for DV (0.20) and MS (0.22),
and the lowest ∆M=11.2% and ∆m=11.9%. In addition, also for Centres A
and A&B the percentage median and mean differences between MS- and DV-
based BF values are incomparably lower than those reported in the studies
considered in Table 2, with the “worst” ∆M=13.5% and ∆m=15.3% occurring
for Centre A&B and A, respectively. These low differences between MS- and
DV-based BF values are possible thanks to the almost unitary slope and the
quite low bias, as confirmed by the intercept (q) values shown in Fig. 5.

The last remarks arise from a comprehensive view of Table 2. It is clear
that are very few studies directly addressing the problem of reproducibility of
BF values, whether these are computed with either MS or DV, and when the
percentage differences were reported, these were around 50% or even more.
This is independent on the organ and its healthy status - 13 works deal with
primary cancer, two with metastasis and three works only address healthy
tissue. All CVG referring to MS and DV computation are much higher than
ours and it worth noting that the second best CVG=0.33 [54] and the worst
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CVG=0.79 [60] refer to liver cancer and healthy tissue, respectively. This
suggests that the lowest CVG values of our results do not depend on the
healthy status of liver and, more in general, on the organ, but it can be as-
cribed to the precision and the accuracy of our CTp parameters computation
methods, whose results are emphasized by Table 1.

4. Conclusion

The CTp technique is widely employed in oncology in several hospitals, to
assess the effects of anti-angiogenic therapies and, more generally, for hemo-
dynamic studies. Nevertheless, the lack of reproducibility of CTp parameter
values is among the main reason thwarting CTp diffusion and standardiza-
tion. So far, it has been given for granted that different software yields
different perfusion results, and the literature we reported shows that this is
well-founded. In this work we present the approach we developed to compute
CTp parameters of liver in a multicentre liver study, according two of the
most spread methods, MS and DV. Differently from the other works, instead
of using approximations to compute the MS contributions from dual inputs,
we devise a two-stage approach that permitted to compute them analytically,
using the same signals employed by DV. This yielded a great improvement
of MS precision, which allowed achieving excellent voxel-based correlations
between perfusion values computed with the two methods, and presenting
for the first time these results for single patients. Moreover, also considering
the outcomes pertaining to whole cohorts, allowing a comparison with the
most recent literature, our results overcome those of all these studies, for
all the statistical indexes considered. Furthermore such comparison suggests
that our results could be quite independent from tissue type or health status.
This work is now being extended to other Centres with representative num-
bers of patients and to other organs that, being mostly single input, require a
simplified computation model and, expectedly, could yield even more precise
results.

In conclusion, our findings pave the way to the full CTp reproducibility,
in liver and other organs, showing that it is possible, and make the approach
proposed a promising strategy to purse CTp standardization.
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