
12 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Casadei R., Viroli M., Ricci A. (2020). Collective Adaptive Systems as Coordination Media: The Case of
Tuples in Space-Time. Los Alamitos : IEEE [10.1109/ACSOS-C51401.2020.00045].

Published Version:

Collective Adaptive Systems as Coordination Media: The Case of Tuples in Space-Time

Published:
DOI: http://doi.org/10.1109/ACSOS-C51401.2020.00045

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/776697 since: 2020-10-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ACSOS-C51401.2020.00045
https://hdl.handle.net/11585/776697

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

R. Casadei, M. Viroli and A. Ricci, "Collective Adaptive Systems as Coordination

Media: The Case of Tuples in Space-Time," 2020 IEEE International Conference on

Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C),

Washington, DC, USA, 2020, pp. 139-144

The final published version is available online at

https://dx.doi.org/10.1109/ACSOS-C51401.2020.00045

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ACSOS-C51401.2020.00045

Collective Adaptive Systems as Coordination

Media: The Case of Tuples in Space-Time

Roberto Casadei, Mirko Viroli, Alessandro Ricci

ALMA MATER STUDIORUM—Università di Bologna, Cesena, Italy

Email: {roby.casadei, mirko.viroli, a.ricci}@unibo.it

Abstract—Coordination is a fundamental problem in the
engineering of collective adaptive systems (CAS). Prominent
approaches in this context promote adaptivity and collective
behaviour by founding coordination on local, decentralised in-
teraction. This is usually enabled through abstractions such as
collective interfaces, neighbour-based interaction, and attribute-
based communication. Application designers, then, use such
coordination mechanisms to enact collective adaptive behaviour
in order to solve specific problems or provide specific services
while coping with dynamic environments. In this paper, we
consider the other way round: we argue that a CAS model can
be used to provide support for high-level coordination models,
simplifying their implementation and transferring to them the
self-* properties it emergently fosters. As a motivating example,
we consider the idea of supporting tuple-based coordination by
Linda primitives such that tuples and operations have a position
and extension in space and time. Then, we adopt an aggregate
perspective, by which space-time is logically represented by a
mobile ad-hoc network of devices, and show that coordination
primitives can be implemented as true collective adaptive pro-
cesses. We describe this model and a prototype implementation
in the ScaFi aggregate programming framework, which is rooted
in the so-called computational field paradigm.

Index Terms—collective adaptive systems, self-* coordination,
spatial tuples, aggregate processes, space-time programming

I. INTRODUCTION

Interaction is a fundamental aspect in software systems

in general and in Collective Adaptive Systems (CAS) in

particular. Indeed, by interacting, the entities of a collective

can coordinate their activity to promote emergence of robust,

global-level behaviour. Therefore, when it comes to engineer-

ing CAS, coordination (i.e., the ruling of interaction) [1] is a

prominent problem to be tackled. Interaction in CASs, as ob-

served in several natural systems (such as ant colonies [2]), is

typically local, decentralised, and repeated in time in order to

provide reactivity to environmental change (cf. self-adaptation

and self-organisation). Inspired by these features, engineering

approaches propose coordination mechanisms that leverage

abstractions such as collective interfaces [3], neighbour-based

interaction [4], and attribute-based communication [5]. To-

gether with these mechanisms, other operators are generally

given to application designers to develop collective adaptive

behaviour in order to solve specific problems (e.g., edge

resource management [6]–[8]) or provide specific services

(e.g., smart mobility [4], [9]).

In this position paper, we argue and show that a CAS model,

by fostering emergence of self-* properties, can be used

to provide support for high-level coordination models, e.g.,

simplifying their implementation, transferring self-* properties

and/or relaxing model assumptions. In other words, the idea is

to shift from the view of “coordination for CAS” to the view

of “CAS for coordination”. In particular, we draw inspiration

from three related works:

• the Spatial Tuples model, where agents interact by emit-

ting and retrieving tuples situated in space (hence extend-

ing over plain tuple-based coordination);

• self-organising coordination [10], whereby coordination

media are spread over the network to locally regulate

interaction and foster emergence of global properties;

• aggregate computing approaches [4], [11], and especially

the notion of aggregate processes [12], which model

concurrent collective adaptive processes in a functional

framework of computational fields.

Specifically, we adopt an aggregate perspective to self-

organising coordination, by which space-time is logically rep-

resented by a mobile ad-hoc network of devices, and show how

Spatial Tuples coordination primitives can be implemented

as aggregate processes (i.e., concurrent field computations).

As a result, we provide a collective adaptive support to the

ability of injecting tuples in a space-time region covered by

mobile devices, and retrieve them by pattern matching through

intersection with the space-time of search.

The paper is organised as follows. Section II provides

background and discusses related work in the area of tuple-

based and space-based coordination. Section III describes a

model for tuple-based coordination in space-time. Section IV

drafts an implementation of the model in terms of aggregate

processes. Section V provides some discussion. Finally, Sec-

tion VI provides conclusion and future work.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce tuple-based coordination

and survey variants and extensions of the basic model provid-

ing dedicated support for systems situated in space-time.

A. Tuple-based coordination

In tuple-based coordination, a set of processes coordinate

indirectly by writing and reading tuples on a shared tuple

space [1]. A tuple is an ordered collection of (possibly het-

erogeneous) values. Tuples are contained within a tuple space,

and are accessed associatively, i.e., by matching on their

content or structure. This coordination approach leverages

so-called generative communication, whereby the “life” of

generated data is independent of the “life” of the generator,

and, crucially, enables space decoupling (two processes do not

need to be spatially co-located to interact), time decoupling

(two processes do not need to be temporally co-located to

interact), and name decoupling (two processes do not need to

know each other to interact). Linda is the progenitor tuple-

based coordination language, and is often extended to provide

specific features. When centralised tuple space approaches fall

short, especially in distributed settings, an idea is to break the

global tuple space into multiple local tuple spaces [13].

B. Tuples in pervasive networks and space(-time)

Tuple-based coordination approaches have been also used

in the context of peer-to-peer (P2P) and mobile ad-hoc net-

works (MANETs), where there is no pre-existing infrastructure

and devices interact opportunistically via short-range wireless

technology. These scenarios share various characteristics –

mobility, dynamicity, locality, openness – that challenge (the

implementations of) the basic Linda model. Systems for tuple-

based coordination in these contexts usually come with a

middleware, dealing with certain issues related to distribution

and mobility, and extensions to the basic tuple-space model

and Linda language to support specific aspects, e.g., related

to location management. Moreover, since networks of devices

can be physically situated (cf., MANETs), it comes natural to

extend models with first-class space and time abstractions.

In στ -Linda [14] agents interact by injecting processes

where Linda operations can be combined with network con-

structs like next (to delay an operation to the next computation

round in a device) neigh (to propagate an operation to all the

neighbour agents), and finally (to execute an operation once

other operations have completed). Then, the authors show an

extension to standard Linda operations where these are spatio-

temporally situated: each operation yields a waveform-like

activity with a limited spatiotemporal extension. LIME [15]

deals with both physical mobility of hosts (changing the actual

network topology) and logical mobility of agents across hosts.

Each agent holds a local tuple space and can see the tuples of

agents connected to it. In TOTA [16], tuples are associated

with propagation rules that describe how tuples should be

propagated (hop-by-hop) in a network and how the content

of tuples should change during propagation. GeoLinda [17]

provides geometry-aware distributed tuple spaces where both

tuples and reading operations have a spatial extension, or

volume, called tuple shape or addressing shape, respectively.

C. Spatial Tuples

The Spatial Tuples coordination model [18] provides a

synthesis of tuple-based and space-based coordination. In

this approach, a tuple is decorated with spatial information,

effectively situating the tuple to some point-wise location or

spatial region—in the latter case also intending that the tuple

has a spatial extension. The Spatial Tuples language provides

linguistic constructs to work with spatial tuples: it consists

of a communication language for expressing tuples and tuple

templates (for matching), a space description language for

expressing spatial information, and a coordination language

for expressing interaction. Some of the key spatial primitives

defined in [18] are the following ones:

• out(t @ r) — emits a spatial tuple t to a region or

location r.

• rd(tt @ rt) — reads, non-deterministically and in a

blocking fashion, a spatial tuple t matching template tt

in any location r matching region template rt.

• in(tt @ rt) — fetches, non-deterministically and in a

blocking fashion, a spatial tuple t matching template tt

in any location r matching region template rt.

The space description language is an orthogonal aspect that

depends on the application. However, the location of a tuple

can also be specified indirectly by referring to the location of

a situated component identified by id: t @ id. This creates

a binding between the locations that is particularly useful for

mobility. Implicit forms also exist: t @ here takes the current

location of the executing component; and t @ me binds the

location of t to the location of the executing component.

Using this approach, space-oriented coordination can be

implemented, e.g., in terms of situated communication, where

communicating parties leave and perceive messages at spe-

cific locations, and spatial synchronisation, where actions of

multiple agents are ordered based on their spatial situation.

III. A MODEL FOR SPATIOTEMPORAL TUPLE-BASED

COORDINATION

The Spatial Tuples model bridges the digital and physical

worlds by situating data and supporting space-oriented coordi-

nation. However, there are three open issues. First, the model

abstracts from the actual notion of space, which is typically

assumed to be global and serves only as a labelling/matching

mechanism. Second, it neglects time and dynamic aspects

such as evolving tuples à la TOTA [16]. Third, it is not

straightforward to come up with a fully distributed (scalable

and resilient) implementation suitable for infrastructures that

include an important peer-to-peer component (MANETs, edge

computing, wireless sensor networks, etc.). So, in the follow-

ing, we propose a variant coordination model, which we call

the Spatiotemporal Tuples model, that is based on a notion of

“computational space-time” whose evolution and coordination

primitives are enacted by a collective adaptive system.

A. Design Concerns

The Spatiotemporal Tuples model is designed to address the

following issues:

• Space — The model should capture spatial situation,

while providing a suitable abstraction over the notion of

space, to possibly capture diverse situations. Most specif-

ically, we mean to provide a computational notion of

space, where space locations are associated with (logical

or physical) computational devices, and proximity of lo-

cations matches the ability of a device to directly perceive

its context, there including reception of messages.

• Time — The model should dually capture temporal

situation, while abstracting over the notion of time and

hence of system evolution. Also, as we specifically target

fully distributed systems, in which there is generally no

notion of global time [19], [20], the model should provide

the expressiveness to specify what and how notions of

local time can be used and can be propagated.

• Safety and CAP — The model should adhere to the

general Linda semantics [21], though extension with

space-time can provide additional features. Moreover,

when implementing the model in a distributed system,

the CAP theorem [22] enters the picture, asserting that

you may pick only two among the three properties:

consistency, availability, and partition tolerance.

• Heterogeneous deployments — The model should fos-

ter implementation for different kinds of infrastructures,

such as MANETs, P2P networks, edge and cloud-based

architectures. That is, it should be sufficiently general to

capture diverse settings, considering the specific relation-

ships and constraints of modern distributed systems.

B. Computational space-time model

To define a model for Linda primitives in a spatiotemporal

context, namely, where there is need of tracking propagation

of information in space and time, we need to adopt a suitable

underlying notion of computability. Accordingly, we based our

model on the notion of space-time computability by Audrito

et al. as of [23], which itself is based on the event structure

framework. We here recall, and then extend this framework.

Definition 1 (Event Structure (taken from [23]). An event

structure E = 〈E, , <〉 is a countable set of events E

together with a neighbouring relation ⊆ E × E and a

causality relation <⊆ E ×E, such that the transitive closure

of forms the irreflexive partial order < and the “causal

past” set {ǫ′ ∈ E | ǫ′ < ǫ} is finite for each ǫ (i.e., < is

locally finite). We call ES the set of all such event structures.

Consider the following example of event structure.

past future

The red node is a reference event ǫ. The green nodes are the

events ǫ′ belonging to the causal past of ǫ (i.e., ǫ′ < ǫ); the

gray nodes are the events belonging to the present of ǫ (i.e.,

ǫ′ and ǫ are unordered, or concurrent); the blue nodes are the

events belonging to the causal future of ǫ (i.e., ǫ < ǫ′).

To specialise this model towards computational systems, we

introduce a concept of identity across events and annotations

to quantify local space and local time.

Definition 2 (Event Structure with Identities). Let E be an

event structure, L be a set of labels (identifiers), I : E → L
be a function from events to labels, and Ei = {ǫ | I(ǫ) = i}
denote the subsets of events ǫ[i] with identity i. An Event

Structure with Identities is a triple EI = 〈E,L, I〉 such

that, for any identity i, the event structure restricted to Ei

consists of a single chain, i.e., a path ǫ1
∗

i ǫn. As a

consequence, the set E of events is split by labels ℓ into

contiguous partitions Eℓ, induced by I, denoting processes.

The neighbouring relation ⊆ E × E is also partitioned

into i: Ei → Ei, ∀i ∈ ℑ(I) (in the image of I) and

 ij : Ei → Ej , ∀i, j ∈ ℑ(I), i 6= j.

The intuition of this definition is that identities represent

devices, a neighbouring relation between events with same

identity represents one-step passage of time, while one be-

tween events with different identity represents proximity in

space (and ability to directly interact).

Consider the following example of event structure with

identities L = {1, 2, 3}, where different colours are used to

better visualise different processes.

1

1

2

2

2

3
3

1

3

1

2

3

3

2

1

Definition 3 (Computational Space-Time Structure). Let MT

be a (partially defined) time metric with default ⊥t and MS

be a (partially defined) spatial metric with default ⊥s. A

Computational Space-Time Structure ST is an event structure

with identities EI, where edges (ǫ, ǫ′) are annotated with

a tuple 〈MT (ǫ, ǫ
′),MS(ǫ, ǫ

′)〉, further restricted so that:

• edges i (ǫ, ǫ
′) are annotated with a temporal distance

MT (ǫ, ǫ
′) and ⊥s;

• edges ij (ǫ, ǫ′) are annotated with a spatial distance

MS(ǫ, ǫ
′) and ⊥t.

Therefore, in this structure, a label ℓ ∈ L denotes both a

different spatial locality and a different process; an event ǫ

represents both a particular (space-time) locality and a com-

putational step; a chain of localities ǫ1 . . . ǫn with the

same label ℓ (explicitly written ǫ
[ℓ]
1 . . . ǫ

[ℓ]
n) represents

both a (space-time) evolution and a process execution.

In this model, tuples are spatiotemporally situated in some

spatiotemporal region.

Definition 4 (Computational Spatiotemporal Region). Let ST

be a computational space-time structure. We define a Compu-

tational Spatiotemporal Region in ST as a subset R ⊆ E of

the space-time localities.

Definition 5 (Spatiotemporal Causality Structure). A Spa-

tiotemporal Causality Structure is a computational spatiotem-

poral structure ST with a distinguished unique element ǫ⊥
which is the <-minimum in E, i.e., such that ∀ǫ ∈ E, ǫ⊥ ≤ ǫ.

Definition 6 (Spatiotemporal Tuple Region). A Spatiotemporal

Tuple Region is a computational spatiotemporal region of a

spatiotemporal causality structure where ǫ⊤ is the locality in

which the tuple is issued.

A spatiotemporal tuple region describes the maximum re-

gion in which a tuple may exist (since removal operations

may reduce its lifetime). As we will see in Section IV, a

spatiotemporal region can also be represented as a Boolean

space-time value computed by a space-time function [23].

C. Spatiotemporal tuple-based coordination

The primitives are similar to those in Spatial Tuples as

described in Section II-C. However, the space description

language becomes a space-time description language, and the

semantics is adjusted to operate on a computational space-time

structure. The semantics is informally described as follows,

and implemented as covered in Section IV.

a) Write: Operation out(t @ r) emits tuple t to spa-

tiotemporal tuple region r from a starting event ǫout⊥. Note

that this region may or may not be finite.

time

sp
ac

e

ǫout⊥

b) Read: Operation rd(tt @ rt) reads, non-

deterministically and in a blocking fashion, a tuple t,

situated in a spatiotemporal tuple region r, matching template

tt which is also situated in region rt. The operation is issued

by a process i (owner) at locality ǫ
[i]
⊥

. The process will be

able to read the tuple at some event ǫ
[i]
⊤

, following evolution

ǫ
[i]
⊥

∗ ǫ
[i]
⊤

, iff there is a path ǫ
[i]
⊥

∗ ǫM
∗ ǫ

[i]
⊤

where ǫM
is a “matching event” belonging to both regions r and rt.

time

sp
ac

e

ǫout⊥

ǫrd⊥ ǫrd⊤

ǫM

In the figure, the convention is to use “causal cone”-like shapes

to indicate the spatiotemporal scope of activities originating at

particular space-time locations (denoted by named black dots);

sharp cones denote tuple operation processes, whereas curly-

bordered ones denote truncated causal future cones originating

at some bottom event.

c) Removal: Operation in(tt @ rt) fetches, non-

deterministically and in a blocking fashion, a tuple t, situated

in a spatiotemporal tuple region r, matching template tt

which is also situated in region rt. Assuming the absence

of partitions, atomicity and consistency can be guaranteed

through a protocol involving a path ǫ⊥
∗ ǫM

∗ ǫC
∗

ǫR
∗ ǫA

∗ ǫ⊤ where ǫ⊥ is the initiator locality where the

in is emitted, ǫM is the locality where the tuple and tuple

template regions match, ǫC is the locality where consensus is

reached on the tuple to remove, ǫR is the locality where the

initiator receives the tuple, ǫA is the locality where the recep-

tion acknowledgment is received (defining a spatiotemporal

causality structure where the tuple is absent everywhere), and

ǫ⊤ is the locality where the initiator unblocks.

In case of multiple outs, event ǫR is responsible to initiate

a situated activity to choose and acknowledge only one of

them (i.e., leading to a single ǫA). The suggested semantics is

meant to ensure consistency; the problem with partitions and

liveness is discussed in Section V.

IV. SPATIOTEMPORAL TUPLES AS CAS PROCESSES

In this section, we propose a design and implementation

of Spatiotemporal Tuples that straightforwardly follows the

model provided in Section III. Specifically, we represent tuple

operations as live collective processes on a computational

space-time structure given by a (logical or physical) network

of devices. In particular, we leverage the recently proposed ag-

gregate process abstraction [12] to directly program dynamic

processes (emitting, reading, or removing tuples) concurrently

run by a networked set of devices in a scoped way through

dynamic ensembles. Therefore, in the following we first review

aggregate processes (Section IV-A) and then present an API in

the ScaFi aggregate programming framework (Section IV-C).

A. Aggregate processes

Basically, aggregate processes [12] are dynamic aggregate

computations. An aggregate computation [4] is a coordinated

set of computation and communication acts performed by

an aggregate, i.e., a collective of devices interacting on a

neighbourhood basis. Such a computation is expressed by

a global perspective, and takes the form of an aggregate

program that is continuously re-interpreted by every device

against its local context. The field calculus [24] is the core

language for expressing aggregate computations, for which

both local device and network operational models are defined.

Denotationally, aggregate computations are defined in terms

of whole manipulations of distributed data structures called

computational fields, i.e., maps from a domain of devices to

computational values. It is shown in [23] that space-time com-

putation universality is achieved by the field calculus through

only few mechanisms that provide: (i) stateful evolution of

fields, to model dynamics, (ii) branching of fields, to model

separation of domains for independent computations, and (iii)

neighbour-based observation of fields, modelling interaction

between nearby parts. For programs expressed in this fashion

to actually produce the intended global results, operationally

every device must adhere to a (program-independent) “be-

haviour protocol”; specifically, a device must “continuously”

perform computational rounds where it:

1) gathers the local context (sensor data and messages from

neighbours);

2) interprets the aggregate program against its local con-

text;

3) uses the output of the aggregate program evaluation to

act on its local context (through actuators) and inform

neighbours of local changes.

Now, aggregate processes extend the field calculus with a

construct, spawn, providing a way of expressing a dynamic

number of concurrent aggregate computations with a dynamic

scope [12]. To follow this section, it is sufficient for the reader

to understand the general principles of aggregate computing

and its execution model; full details are in [12], [24].

In order to program with aggregate processes, you generally

follow the following steps.

// 1. Define the logic of a process in the aggregate approach

def process[K,A,R](key: K)(argument: A): (R,Boolean) = ???

// 2. Define a field of keysets for generating process instances

val keys: Set[K] = ???

// 3. Define a dynamic field of parameters

val args: A = ???

// 3. Call the spawn

val map: Map[K,R] = spawn[K,A,R](process _, keys, args)

Locally at each device, for each key k:K, an instance of

process is generated. For each active process, its function

is executed, returning a pair of type (R,Boolean) containing

the process output and a status flag indicating whether the

device participates in the process or not. All the participating

devices propagate the process to their neighbours. In general,

for a spatially limited process, a border of devices “external”

to the process will form (process boundary); these devices

will continuously re-evaluate the process to deal with its

potential expansion. Conversely, the participating devices can

call themselves out to deal with process shrinking through

retraction of the border.

B. Spatiotemporal Tuples as Aggregate Processes

The idea behind an aggregate implementation of the Spa-

tiotemporal Tuple model is to consider every Linda operation

as an aggregate process, i.e., as a computation collectively

executed by a dynamic set of situated devices. So:

• the problem of controlling the spatiotemporal region of

a tuple becomes the problem of controlling the boundary

of the corresponding process (which means defining a

Boolean field for an evolving domain of devices);

• the problem of operation unblocking becomes the prob-

lem of controlling the lifecycle of executing and contin-

uation processes;

• the problem of consistency becomes the problem of man-

aging state and interaction between reading and writing

aggregate processes.

The implementation straightforwardly reflects the abstract se-

mantics described in Section III-C, where the corresponding

events can be denoted by specific points of Boolean fields.

C. ScaFi Spatiotemporal Tuples API

ScaFi is an aggregate programming toolkit [25] for Scala, a

strongly-typed multi-paradigm language running on the JVM.

In ScaFi, the field calculus and the libraries on top are provided

through embedding into Scala, i.e., as an internal domain-

specific language (DSL) [26]. The ScaFi Spatiotemporal Tu-

ples API is a library layer that exposes the usual Linda-like

coordination primitives, extended to deal with situation of

tuples, while hiding the management of aggregate processes

through spawn. The code shown in this section is valid

ScaFi/Scala code. A brief video of the tool is available online1.
1) Communication language: Tuples and templates can be

defined from strings.

val tuple: Tuple = "task(description)"

val tupleTemplate: TupleTemplate = "task(X)"

2) Spatiotemporal description language: Tuples and tem-

plates are, by default, situated at the executing device (Me).

However, a situation can be explicitly indicated as follows,

tuple @@ spacetimeRegion1

tupleTemplate @@@ spacetimeRegion2

where, for instance:

val spacetimeRegion1 = Everywhere / Forever

val spacetimeRegion2 = AroundMe(ext = 30) // implicitly forever

These have straightforward mappings to field computations,

leveraging gradients [27] to compute distances relatively to

source localities. More complex (causally admissible) spa-

tiotemporal regions can also be programmed.
3) Coordination and process description language: The

coordination language consists of Linda primitives: out(t),

in(tt), rd(tt)—shown in red. It is used together with a

process description language (violet symbols) that helps to

structure individual processes over an aggregate of devices.

process(taskGenerator){

when(taskProposal){

t => out(s"task($t)")

}.andNext((tuple: Tuple) => { /* ... */ })

}

process(taskStealer){

when(doReadTask) {

in("task(X)" @@@ AroundMe(50))

}.evolve((tuple: Tuple) => {

out(s"currentTask(${tuple})" @@ Me)

}).evolve((tuple: Tuple) => {

out(s"done(device(${mid}),${tuple})" @@ AroundMe(30))

})

}

This snippet expresses a system specification from a global

viewpoint, which is directly executable in a distributed fashion

through the aggregate semantics. In process(p), p is a

Boolean field indicating the role(s) of each device, whereas

construct when leverages Optional or Boolean fields for the

activation of new operations (aggregate process instances).

1https://vimeo.com/394411022

https://vimeo.com/394411022

V. DISCUSSION

The proposed model of self-organising coordination rein-

terprets the Spatial Tuples model, where spatial information

is just an attribute of tuples and an element for operations to

match tuples on spatial basis, to actually consider tuples and

tuple operations as spatially situated processes running on a

collective adaptive system.

A first element of design concerns what properties and

guarantees are to be provided by the model and whether (and

to what extent) these have to or can be relaxed depending on

the application scenario at hand. The basic requirements of the

Linda model (i.e., atomicity of retrieval) have to be guaranteed.

However, a distributed implementation might decide how to

deal with the CAP theorem [22], i.e., what kind of consistency

and availability guarantees to provide when facing failure and

network partitions. In particular, relaxing consistency in favor

of availability can support better scalability [28].

Another interesting aspect concerns the generality of the

model w.r.t. deployments. The provided characterisation of

a computational space-time structure captures both MANETs

and cloud-based systems. In MANETs, each situated device

has its own identity, mapping to a physical position, and

each computation step of that device represents a space-time

locality; i.e., the device carries out a (space-time) evolution.

The model also straightforwardly maps to cloud-based deploy-

ments, whereby the cloud represents the only physical, non-

situated device, and the space-time structure is rather given by

a set of logical devices, e.g., assumed to be situated at some

physical space-time location. Then, a physically situated user

device can issue operations that will actually perform on the

logical space overlay, in an “augmented reality fashion”.

VI. CONCLUSION AND FUTURE WORK

In this paper, we advance the idea of exploiting CAS

approaches to support the implementation of advanced co-

ordination models. To exemplify the idea, we propose a

model for tuples in space-time whereby tuples and operations

become collective adaptive processes on situated networks

approximating a space-time structure. This enables straight-

forward implementation as concurrent aggregate processes and

consequential trasfer of adaptivity features.

As future work, we would like to formally develop the

model, proving the correctness of the mapping, as well as

evolving the prototype into a full-fledged, tested API.

REFERENCES

[1] D. Gelernter, “Generative communication in linda,” ACM Transactions

on Programming Languages and Systems (TOPLAS), vol. 7, no. 1, pp.
80–112, 1985.

[2] J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-
organizing exploratory pattern of the argentine ant,” Journal of insect

behavior, vol. 3, no. 2, pp. 159–168, 1990.

[3] F. Baude, D. Caromel, L. Henrio, and M. Morel, “Collective interfaces
for distributed components,” in 7h IEEE International Symposium on

Cluster Computing and the Grid (CCGrid). IEEE, 2007, pp. 599–610.

[4] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.

[5] Y. Abd Alrahman, R. De Nicola, and M. Loreti, “Programming in-
teractions in collective adaptive systems by relying on attribute-based
communication,” Science of Computer Programming, p. 102428, 2020.

[6] A. Paulos, S. Dasgupta, J. Beal, Y. Mo, K. Hoang et al., “A
framework for self-adaptive dispersal of computing services,” in
FAS*W@SASO/ICAC. IEEE, 2019, pp. 98–103.

[7] R. Casadei and M. Viroli, “Coordinating computation at the edge: a
decentralized, self-organizing, spatial approach,” in FMEC. IEEE, 2019,
pp. 60–67.

[8] R. Casadei, D. Pianini, M. Viroli, and A. Natali, “Self-organising coor-
dination regions: A pattern for edge computing,” in COORDINATION,
ser. LNCS, vol. 11533. Springer, 2019, pp. 182–199.

[9] A. Bucchiarone and M. Mongiello, “Ten years of self-adaptive systems:
From dynamic ensembles to collective adaptive systems,” in From Soft-

ware Engineering to Formal Methods and Tools, and Back. Springer,
2019, pp. 19–39.

[10] M. Viroli, M. Casadei, and A. Omicini, “A framework for modelling and
implementing self-organising coordination,” in Proceedings of the 2009

ACM Symposium on Applied Computing (SAC), 2009, pp. 1353–1360.
[Online]. Available: http://doi.acm.org/10.1145/1529282.1529585

[11] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[12] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “Ag-
gregate processes in field calculus,” in COORDINATION, ser. Lecture
Notes in Computer Science, vol. 11533. Springer, 2019, pp. 200–217.

[13] D. Gelernter, “Multiple tuple spaces in linda,” in International Confer-

ence on Parallel Architectures and Languages Europe. Springer, 1989,
pp. 20–27.

[14] M. Viroli, D. Pianini, and J. Beal, “Linda in space-time: An adaptive
coordination model for mobile ad-hoc environments,” in COORDINA-

TION, ser. LNCS, vol. 7274. Springer, 2012, pp. 212–229.
[15] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A coordination

model and middleware supporting mobility of hosts and agents,” ACM

Transactions on Software Engineering and Methodology, vol. 15, no. 3,
pp. 279–328, Jul. 2006.

[16] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The TOTA approach,” ACM Trans. Softw. Eng.

Methodol., vol. 18, no. 4, pp. 15:1–15:56, 2009.
[17] J. Pauty, P. Couderc, M. Banâtre, and Y. Berbers, “Geo-linda: a geometry

aware distributed tuple space,” in AINA. IEEE Computer Society, 2007,
pp. 370–377.

[18] A. Ricci, M. Viroli, A. Omicini, S. Mariani, A. Croatti, and D. Pianini,
“Spatial tuples: Augmenting reality with tuples,” Expert Systems, vol. 35,
no. 5, p. e12273, 2018.

[19] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems -

concepts and designs (3. ed.), ser. International computer science series.
Addison-Wesley-Longman, 2002.

[20] R. Menezes and A. Wood, “The fading concept in tuple-space systems,”
in Proceedings of the 2006 ACM symposium on Applied computing,
2006, pp. 440–444.

[21] N. Busi, R. Gorrieri, and G. Zavattaro, “On the expressiveness of linda
coordination primitives,” Inf. Comput., vol. 156, no. 1-2, pp. 90–121,
2000.

[22] E. Brewer, “CAP twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[23] G. Audrito, J. Beal, F. Damiani, and M. Viroli, “Space-time universality
of field calculus,” in COORDINATION, ser. Lecture Notes in Computer
Science, vol. 10852. Springer, 2018, pp. 1–20.

[24] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A
higher-order calculus of computational fields,” ACM Trans. Comput.

Logic, vol. 20, no. 1, pp. 5:1–5:55, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3285956

[25] M. Viroli, R. Casadei, and D. Pianini, “Simulating large-scale aggregate
mass with alchemist and scala,” in FedCSIS, ser. Annals of Computer
Science and Information Systems, vol. 8. IEEE, 2016, pp. 1495–1504.

[26] M. Voelter, DSL Engineering - Designing, Implementing and Using

Domain-Specific Languages, 2013.
[27] G. Audrito, R. Casadei, F. Damiani, and M. Viroli, “Compositional

blocks for optimal self-healing gradients,” in SASO. IEEE Computer
Society, 2017, pp. 91–100.

[28] E. G. Boix, C. Scholliers, W. De Meuter, and T. D’Hondt, “Programming
mobile context-aware applications with TOTAM,” Journal of Systems

and Software, vol. 92, pp. 3–19, 2014.

http://doi.acm.org/10.1145/1529282.1529585
http://doi.acm.org/10.1145/3285956

