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What is already known on this subject? 

• 

natural resources use, although at the cost of higher 

energy needs.

• 

PFALs.

What is the expected impact on horticulture?

• To provide valuable insights on PFAL sustainability 

and compare their applications against current 

Introduction
Main challenges of modern agriculture are associat-

ed with growing scarcity in natural resources availability. 

The growth of global population from 2.5 billion in 1950 to 

7.7 billion in 2019, and the estimation of 11.2 billion by the 

end of the century (Pison, 2019) is resulting in two connect-

ed phenomena. Firstly, as reported by Li et al. (2019), global 

urban area is estimated to increase roughly 40 to 70% until 

2050 (relative to the base year of 2013) to accommodate a 

growing urban population, leading to a decrease of agricul-

tural land availability (to date at 0.7 ha per capita) (Chen et 

al., 2018). Secondly, an increase of global food demand (es-

timated in +60% for cropland and +70% for dairy farming, 

to be met by 2050) (Alexandratos and Bruinsma, 2012) is 

expected. These trends will increase the pressure on global 

freshwater reservoirs, already affected by climate change and 

(Patle et al., 2019). Furthermore, excess mineral fertilization 

is raising concerns on the overall sustainability of current 

agricultural systems. Since the green revolution, the indis-

criminate use of nitrogen fertilizers has resulted in environ-

water, and emission of N2O into the atmosphere (Lal, 2018) 

increasing greenhouse gases emissions at an average rate of 

3.9% per year from 1961 to 2010 (IPCC, 2014). Phosphorus 

is a non-renewable resource extracted from phosphate rocks 

or eventually recycled from waste water, which is essential 

for plants growth. Not only the production of fertilizers from 

-

dioactive by-products and heavy metal pollutants, but also 

a number of studies reported global phosphate reserves will 

be depleted in 50–100 years (Cordell et al., 2009). Similar 

concerns on the reduced availability of other nutrients have 

also arisen, such as with regard to potassium (Sardans and 

Peñuelas, 2015).

In this complex context, innovative urban plant produc-

tion systems are gaining increasing popularity. In the last 

decade, the academic debate on vertical farms resulted in au-

thors insisting on the great potential of greened skyscrapers 

as the ultimate solution for vertical farming (Despommier, 

2009), versus the transformation of existing vacant and un-

productive spaces of the urban fabric into hydroponic farms, 

toward the so-called concept of Zero-Acreage Farming or 

Z-Farming (Thomaier et al., 2015). It is the case of vegeta-

bles produced by residents on the rooftop of a social housing 

building in the city of Bologna (Orsini et al., 2014), the in-

tegration of greenhouses on the rooftop of public or private 

buildings in Barcelona (Sanyè-Mengual et al., 2015) or The 

Hague (Stadler et al., 2015), or the growing phenomenon of 

-

ing (VFALs), are closed plant production systems where en-

vironmental factors (e.g., temperature, humidity, light, CO2) 

are controlled, minimizing the interactions with the exter-

nal climate. Existing examples may be found for instance 



298 E u r o p e a n  J o u r n a l  o f  H o r t i c u l t u r a l  S c i e n c e

in Japan (Spread Co., Ltd., http://www.spread.co.jp/en/, 

or Mirai Co., Ltd., http://miraigroup.jp/en/), United States 

(AeroFarms®, https://aerofarms.com/) or the Netherlands 

(GROWx, https://www.growx.co/). As reported by Kozai and 

Niu (2016), a PFAL is basically constituted by a well-insu-

control system, a CO2 supply unit, and a nutrient solution de-

livery unit. Several researches (Kozai and Niu, 2016; Kozai, 

2019; Pennisi et al., 2019a) have highlighted the advantages 

of PFAL systems principally related to (a) yearly stable pro-

duction achieved by controlling the environmental factors, 

environment (e.g., reduction on the use of pesticides), (c) re-

duced distance from consumption centers (e.g., fresher 

exploring the vertical dimension, yield per unit surface are 

increased, and thanks to hydroponics, water use is reduced). 

On the other hand, challenges in PFALs include energy costs 

and initial setup costs (Song et al., 2019) which can be higher 

than in more conventional food production systems. More-

over, for what concerns the use of agricultural input, while 

the adoption of closed environments and hydroponics may 

in the soil or the functional biodiversity encountered in con-

ventional agriculture, the adoption of closed-loop systems 

and the insulation from external environments in PFALs 

were suggested to generally reduce the relative input use as-

sociated with crop production (Graamans et al., 2018; Kozai, 

2013).

played by PFAL technologies and management strategies 

on the overall food system sustainability, building on most 

recent research literature. Accordingly, the role on energy 

-

tems used and the technologies adopted for climate control 

-

grams of fresh weight per liter of water consumed, g FW 

L-1 H2 -

ly productivity per unit of land used, g m-2 d-1) and energy 

consumed, g kWh-1) – will be described. Finally, the review 

will bring together evidences on environmental assessment 

-

vironmental contamination.

PFAL systems are a world-changing innovation for mod-

light provision is the most important factor for sustaining 

plant growth and development. As reported by Kikuchi et 

al. (2018), vertical farming systems can be divided into two 

-

-

erating with sunlight (plant factories with sunlight, PFSLs) 

and the already mentioned PFALs. In PFALs, electric lighting 

is used for simulating solar radiation over a photoperiod of 

generally 16 h d-1 (Kozai et al., 2016). Furthermore, also in 

-

-

rect sunlight in the interior areas of the structure or in the 

case of areas shaded by nearby buildings (Kozai and Niu, 

light is raising concerns on the environmental and economic 

sustainability of the system (Kalantari et al., 2018) because 

electricity results in a major share of production costs (Yo-

koyama, 2019).

In the last decades, the technological advances on light 

emitting diodes (LEDs) resulted in highly versatile and en-

-

cultural sector has rapidly grown, especially for controlled 

environment production systems (Bantis et al., 2018), re-

in growth chambers and high pressure sodium – HPS – in 

greenhouses). A further lighting technology that in the com-

ing future may gain relevance is represented by plasma-light-

ing, whose applicability has been preliminarily suggested 

for supplementary lighting in greenhouses or sole radiation 

source in PFALs (Park et al., 2018).

It is a well-documented phenomenon that not all regions 

the photosynthetic process of plants (Folta and Maruhnich, 

2007). For instance, lettuce leaves were reported to absorb 

90% of light from red (600–700 nm) and blue (400–500 nm) 

regions of the photosynthetically active radiation (Terashima 

et al., 2009). In indoor conditions, where it is possible to give 

plants the best light recipe for growth and development, LEDs 

at any cultivation stage, thanks to their capability to emit 

light in narrow bandwidths (Xu, 2019). Furthermore, due 

to their easy adjustability, LEDs lighting systems enable to 

-

ted radiation, leading to an optimization of plants growth in 

-

eral researches on the application of LED technology for in-

door plant cultivation focused on the study of the effect of red 

(R) and blue (B) light on growth, morphology and physiolog-

optimal RB ratio within the spectrum (Naznin et al., 2016; 

Wang et al., 2016; Chen et al., 2019; Pennisi et al., 2019b; 

Azad et al., 2020). Furthermore, recently, also other spectral 

regions have gained increasing attention. Green light (500–

600 nm) has been reported to increase carbon assimilation 

and likely plant yield, thanks to the ability to penetrate in the 

lower part of the canopy and in the folded layers of leaves 

(Smith et al., 2017) and consistently increase their chloro-

phyll and ascorbic acid contents (Saengtharatip et al., 2020). 

In several researches (Park and Runkle, 2017; Kalaitzoglou 

et al., 2019), the additional far red light (>700 nm) was found 

to modify the structure and morphology of the plant, lead-

ing to an increase in the intercepted light and therefore in 

net photosynthesis. However, when far red light supply was 

prolonged, alterations in plant photo-morphogenesis could 

result in reducing tolerance to diseases, for instance against 

Botrytis cinerea, as observed in both Arabidopsis (Cerrudo 

et al., 2013) and tomato (Ji et al., 2019). Furthermore, the 

light supply within the ultraviolet (UV, < 400 nm) spectrum 

-

ty, e.g., in lettuce (Li and Kubota, 2009), tomato (Wang et al., 

2000) and pea (Liu and Yang, 2012).

As a general rule, plant responses to changes in light-re-

lated parameters are species and/or cultivar dependent and 

(e.g., air temperature and heat sum, humidity, CO2 concen-

tration) (Ouzounis et al., 2015). Beside the advantages as-

sociated with the possibilities for manipulating the spectral 
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composition, the small size, physical robustness, and scarce 

radiant heat emission have also been reported as advantages 

of LED technology as compared to more conventional light-

ing systems (Janssen et al., 2019), enabling their installation 

even very close to the plants in a multi-layer farming system 

(Stutte, 2015).

On the other hand, the most claimed weakness of LED 

lighting technology is the initial cost (Wu et al., 2019), which 

resulted 5 to 10 times higher than HPS lamps (Nelson and 

Bugbee, 2014). Accordingly, among the strategies for reduc-

ing installation costs associated with lamp purchase, the 

adoption of movable lighting systems (Li et al., 2014) al-

lowed to integrate 24 hours shifts in the usage of the lamps 

(Table 1). Furthermore, as compared to more traditional 

lighting systems, the capital investments may be counterbal-

-

fers depending on the lighting source (Richter et al., 2019). 

For conventional lighting systems, the average rated life is 

group of lamps has failed. The average rated life is approxi-

HPS (Wu et al., 2019). The lifespan of LED lamps is instead 

and the moment when only 50% of the total number of lamps 

survive or when the average lumen maintenance of the batch 

2013). LED-chip industries estimate that the L70 of a LED 

operating temperature of the diodes (Cree, 2017; Philips Lu-

mileds Lighting, 2017). The issue however is that a LED lamp 

is a set of subcomponents of different materials, which make 

the determination of the lamps lifespan trickier as compared 

to traditional lighting systems (Wu et al., 2019). With regard 

-

cy (expressed in µmol J-1) is acknowledged as the best unit 

measure to compare different lighting systems with mea-

sured values of about 0.9 µmol J-1

between 0.9 and 1.7 µmol J-1 for HPS lamps (Bugbee, 2017). 

4.6–5.1 µmol J-1 (Wu et al., 2019), even if the highest reported 
-1 (Bugbee, 

2017), resulting in a 47% of electricity saving if compared 

-

ly, it was estimated that (depending on the differences ob-

RB LED lamps would be of around 4.1 µmol J-1, these values 

being reduced by about 10% when optical protection from 

water and high humidity is integrated (Kusuma et al., 2020).

Hydroponics and aquaponics

The commonly adopted cultivation method in PFALs is 

growing plants in absence of soil, in which plant nutrients are 

dissolved in and supplied with irrigation water and the resul-

tant solution is referred to as “nutrient solution” (Savvas et 

al., 2013). Soilless culture is usually used in PFALs since it 

enables the grower to automate and optimize irrigation and 

fertilization management, to save labor, to improve product 

mineral or organic or a mix of these) and crops without sub-

strate or hydroponics, in which the root system is either im-

continuously or intermittently (aeroponic systems). Soil-

 1.  Examples of possible strategies for improving sustainability of PFALs.
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less systems are also divided according to the management 

of the drained nutrient solution into open- and closed-loop 

systems. In open-loop systems the drained nutrient solution 

is thrown out of the system while in closed-loop systems it 

is recovered, replenished and recycled (Savvas et al., 2013). 

and aeroponics are the most widespread systems adopted in 

PFALs (Son et al., 2020). Furthermore, aeroponics is claimed 

to be the best option in terms of water saving (Lakhiar et al., 

2018) (Table 1).

-

cy of the system and eliminate waste, closed-loop systems 

are commonly adopted in PFALs (Son et al., 2020). Before be-

ing recirculated to the plants, in order to avoid nutrients im-

balance, the drained solution passes through a control loop 

to be analyzed and adjusted based on online measurements 

of pH and electrical conductivity (EC), which provides infor-

mation on the total concentration of the nutrient solution but 

not on the concentrations of individual ions, thus not allow-

ing individual real-time correction of each nutrient (Jung et 

al., 2019). This limitation may be overcome by using ion sen-

-

fect transistor ISFET-type chemical sensors), which howev-

er may suffer from high maintenance costs as well as lower 

durability and stability as compared with EC-based control 

methods (Rius-Ruiz et al., 2014). Among available sensors, 

3, K and Ca ion 

components) are the ion-selective electrodes (ISE), charac-

terized by simple methodology, rapid response, direct mea-

surement of the analyte and low cost (Cho et al., 2017). The 

real-time monitoring of nutrients concentration, water level, 

bundled using the Internet of Things (IoT), which allows for 

intelligently controlling the hydroponic system, employing 

deep neural networks and enabling automation (Maldonado 

et al., 2019).

To further close the nutrient cycles in PFALs, it has been 

-

-

velopment in the hydroponic unit thanks to the action of nitri-

fying bacteria that transform the ammonia produced by the 

-

culture system can furnish the majority of nutrients (> 50%) 

for plants growth if coupled with a hydroponic unit, result-

ing in great economic and environmental savings in terms 

of chemical nutrients. On the other hand, however, the water 

ammonium, potassium, iron, manganese and zinc to reach an 

optimal composition for plants growth (Calone et al., 2019; 

is principally affected by water-related parameters (e.g., tem-

perature, pH, and dissolved oxygen – DO), therein when cou-

found between ideal parameters ranges (Goddek et al., 2015; 

-

-

tem (Goddek et al., 2015). Rakocy et al. (2012) developed an 

index called Feeding Rate Ratio (FRR) which is the amount 

-

feed input. As a rule of thumb, a value between 60 and 100 g 

day-1 m-2 has been recommended for leafy-greens growing 

on raft hydroponic systems, but FRR also depends on the to-

tal water volume, water exchange rate, nutrient levels in the 

water source, speed of solids removal, plant typology, plant 

culture method (e.g., batch culture or staggered production 

rearing, stock splitting or multiple rearing units). Indeed, 

-

ponics in a PFAL enables a more stable production planning 

environment stabilized (Endo, 2019).

Environmental and climatic control systems

In PFALs, microclimate management is fundamental to 

guarantee a proper plant development. Due to the airtight 

conditions of the growing environment, continuous dehu-

-

creases for evapotranspiration from plant canopy (Rabbi et 

al., 2019), which can also result in higher severity of physi-

ological disorders (e.g., tipburn) (Kuronuma et al., 2018). At 

the same time, air humidity generated by plant transpiration 

should be saved and reintroduced into the system in order to 

increase WUE (Kozai, 2019) (Table 1). Commonly adopted 

-

erating in thermodynamic closed cycle with a refrigerant at 

temperatures below the dew point of the air) or adsorption 

methods (using a desiccant material which needs to be re-

generated using thermal energy) (Rabbi et al., 2019). Gener-

ally, outdoor ventilation is not encouraged due to the reduc-

tion of CO2

pests and pathogens from outside (Kozai, 2013). Indeed, in 

an airtight environment with high planting density, CO2 con-

centration can drop below outdoor values, limiting photo-

synthesis and plant growth (Gómez et al., 2019). Therefore, 

CO2 enrichment systems are commonly used to increase CO2 

concentration in both greenhouses and PFALs, usually up to 

800 mol mol-1, a cost-effective threshold enabling to pro-

mote both photosynthesis and plant growth (Gómez et al., 

2019).

therefore a uniform spatial air temperature distribution in 

the PFAL cultivation room is needed to obtain homogenous 

may produce heat which should be removed by the growing 

environment through the use of heat pumps to maintain an 

optimal air temperature (Wang et al., 2016). Furthermore, 

spatial uniformity of air temperature can be obtained thanks 

to homogenous air recirculation inside the PFAL through the 

use of air fans (Kozai et al., 2016). Both heat pumps and air 

fans need electricity-energy, whose costs, summed with those 

account for around the 30% of the total operation costs of a 

PFAL (Wang et al., 2016). Indeed, thanks to technological ad-

vances, the electricity costs contribution were more recently 

estimated to be around 21% of the total running costs (Kozai 

et al., 2019). Consistently, in a pilot experimental PFAL pro-

ducing 5,000 head of lettuce per year, the amount of energy 

used for air conditioning system accounted for 30% of the 
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In this context, the reduction of energy used for environ-

mental conditions management can be helpful to reduce the 

operational costs (Wang et al., 2016). In PFALs, motor-driven 

heat pumps are commonly used, which use electricity-ener-

gy to convert heat with low temperature in heat with high 

temperature for warming-up the environment (or vice versa, 

whenever cooling is needed) (Yokoyama, 2019). Common 

-

ment (where also electricity is produced by utilizing the 

difference between heats with high and low temperature) 

also CO2 included in the exhaust gas generated from the heat 

engine can be utilized to promote plant growth). Yokoyama 

(2019) reported that by substituting the heat pump with a 

consumption can be achieved (Table 1).

Today, the agricultural sector utilizes almost 70% of 

world fresh water (Pastor et al., 2019). Accordingly, there is 

friendly solutions to maintain food production with minimal 

usage of water. From this perspective, PFALs possess a huge 

potential to enhance WUE of the food production systems 

(Graamans et al., 2018; Kozai and Niu, 2016), thanks to the 

use of soilless technologies and the improved photosyn-

-

ditions provided by the indoor environment. When mixed 

will result in further water saving, with a reduction in water 

-

2013).

Reported WUE values for lettuce reached 80 g FW L-1 H2O 

in plants grown in insulated growth chambers and supplied 

with a red and blue LED spectrum (Pennisi et al., 2019b), an 

impressive value when compared with existing literature on 

traditional greenhouses (5–60 g FW L-1 H2O) (Barbosa et al., 
-1 

H2O) (Maraseni et al., 2012; Barbosa et al., 2015) cultivation 

(Figure 1). Similarly, WUE of basil in insulated growth cham-

bers supplied with red and blue light were shown to reach up 

to about 44 g FW L-1 H2O (Pennisi et al., 2019a), as compared 

with lower values observed in greenhouse (20–22 g FW L-1 

H2
-1 

H2O) (Palada et al., 1995; Ekren et al., 2000; Kalamartzis, 

2020) (Figure 1). Cultivation in growth chamber with arti-

allowing both crops to reach values up to 26 g FW L-1 H2O 

(Pennisi et al., 2019c). In rocket, the value is impressive as 

compared to previously observed WUE for greenhouse and 
-1 

H2O (Schiattone et al., 2017) and 5 to 8 g FW L-1 H2O (Demirel 

et al., 2014) (Figure 1). On the other hand, in chicory the ben-

-

cordingly, existing literature reports values ranging between 

24 and 26 g FW L-1 H2O (Atzori et al., 2019) and between 2 

and 22 g FW L-1 H2O (Patel et al., 2000; Moosavi et al., 2012; 

Bortolini et al., 2016; Bortolini and Tolomio, 2019), for chic-

(Figure 1). Looking at the overall water footprint of food pro-

duction, these values turn out to be highly valuable, also con-

sidering that animal based products (e.g., milk, egg, chicken 

meat and beef) present WUE values that are generally as low 

as 0.04 to 1.6 g FW L-1 H2O (Nguyen et al., 2010; Mekonnen et 

-1 H2O (Goddek et al., 2015), an impressive 

value as compared against other animal products (Figure 1).

Light spectral properties were also shown to alter plant 

and behavior in cucumber (Hogewoning et al., 2010), let-

tuce (Pennisi et al., 2019b) and basil (Pennisi et al., 2019a) 

(Table 1). Under predominant blue light in a red:blue ratio, 

for instance, stomatal conductance was increased, but over-

spectrum where red light was predominant (Pennisi et al., 

2019a). Accordingly, in lettuce, WUE was successfully in-

creased by 63% when modifying the relative spectral ratio of 

 1.

products in response to the cropping system. Values are 

based on literature on lettuce (Barbosa et al., 2015; Maraseni 

et al., 2012; Van Ginkel et al., 2017; Pennisi et al., 2019b, c), 

basil (Palada et al., 1995; Ekren et al., 2012; Montesano et al., 

2018; Pennisi et al., 2019a, c; Kalamartzis, 2020), rocket 

(Demirel et al., 2014; Schiattone et al., 2017; Pennisi et al., 

2019c) and chicory (Patel et al., 2000; Moosavi et al., 2012; 

Bortolini et al., 2016; Atzori, 2019; Bortolini and Tolomio, 

2019; Pennisi et al., 2019c). Values from PFAL do not consider 

recirculation. Values from comparison from animal based 

products are obtained from Mekonnen et al. (2012, 2019) 

and Nguyen et al. (2010).
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red and blue from RB = 0.5 to RB = 3, while it decreased again 

at RB = 4 (Pennisi et al., 2019c). Similarly, the most elevate 

RB = 0.5), chicory (+21% from RB = 0.5) and rocket (+26% 

from RB = 0.5) (Pennisi et al., 2019c).

-

to increase due to the recovery and re-circulation of trans-

a PFAL where constant air temperature (30°C) and relative 

humidity (80%) were maintained and water use was mon-

itored for 14 days (Ohyama et al., 2000). It appeared that 

while 17% of water would be used by plants, only 7% was 

lost through ventilation and up to 76% could be recovered 

its reuse for plant irrigation (Kozai and Niu, 2016). Accord-

kg of fresh lettuce produced were advanced for plant cultiva-

tion in PFALs (Benis and Ferrao, 2018; Kikuchi et al., 2018; 

Graamans et al., 2018; Avgoustaki and Xydis, 2020).

In the foreseen scenario of growing population and ur-

urban farming systems is needed (Lambin and Meyfroidt, 

2011). The adoption of soilless systems was shown to in-

crease productivity of cultivated land as compared with tra-

ditional on-soil cultivation. Accordingly, Barbosa et al. (2015) 

reported for hydroponically grown lettuce, a SUE increase by 

10–12 folds as compared with conventional production sys-

tem in Arizona. Besides, PFALs possess the potential to pro-

vide further increases in productivity per unit area by adopt-

ing multiple plant cultivation tiers (Al-Kodmany, 2018). With 

reference to the growing solutions adopted, vertical growing 

towers were suggested as a strategy to increase crop yield 

per grown surface (Liu et al., 2004). However, these growing 

systems were also lately associated with smaller plant size 

as compared with horizontal hydroponics (Touliatos et al., 

2016), therein suggesting that cultivation in PFALs should be 

conducted through vertically stacked horizontal trays. When 

considering a PFAL environment with 10 stacked cultivation 

layers, estimations of SUE were also provided (Kozai, 2019; 

Kozai et al., 2019; Pennisi et al., 2019a, b), suggesting that 

the enhanced yield and number of plants per unit surface in 

PFALs would result in SUE up to 3,300 and 1,500 g m-2 d-1 in 

lettuce and basil, respectively (Figure 2). Similarly, it was also 

estimated that rocket and chicory could yield up to 1,500 and 

1,100 g m-2 d-1 when grown in a 10-layer PFAL (Pennisi et al., 

2019c) (Figure 2). Such values are in the range of 10- and 

up to 200- folds higher as compared respectively to the es-

for the same crops (Figure 2). Interestingly, when comparing 

land use in PFALs against traditional animal production sys-

tems, the SUE values were in the range of 1,000- to 55,000- 

elevate potentialities for PFAL adoption in locations with lim-

ited land access and relevant food needs (e.g., highly dense 

cities) (Kozai, 2013). Besides, a further element for consid-

eration when targeting SUE in PFALs is also associated with 

the overall strategies for cultivation management (including, 

e.g., spacing, transplant strategies, cultivation protocols and 

level of automation) (Kozai, 2019). Furthermore, it should be 

noted that potential yield and SUE value in PFAL is today only 

available for small-sized crops (e.g., leafy vegetables), where-

vertical architecture (e.g., fruit vegetables such as tomato). 

Although preliminary indications are available for instance 

on dwarf-tomato (micro-tom) adaptability to PFAL environ-

ments (Kato et al., 2010; Kozai, 2019), further research is 

needed to clarify the potential productivity of such crop in a 

commercial scale.

-

supply. Moreover, energy consumption is not only limited to 

lighting (50–55%), but also associated with climate control 

(30–35%, being lower when heat dissipation from the lamps 

is reduced) and production facilities (10–15%) (Yokoyama, 

2019). Thus, electrical energy-use costs of PFAL can be rel-

atively higher as compared with conventional agriculture 

 2.

products in response to the cropping system. Values are 

based on literature on lettuce (Barbosa et al., 2015; Kozai, 

2019; Kozai et al., 2019; Miceli et al., 2019; Pennisi et al., 

2019b, c), basil (Palada et al., 1995; Ekren et al., 2012; Saha 

et al., 2016; Montesano et al., 2018; Pennisi et al., 2019a, c; 

Kalamartzis et al., 2020), rocket (Nicola et al., 2003, 2005; 

Fontana and Nicola, 2009; Cantore et al., 2012; Demirel et al., 

2014; Schiattone et al., 2017, 2018; Mahmoud and Taha, 

2018; Miceli et al., 2019; Pennisi et al., 2019c) and chicory 

1989; Bortolini et al., 2016; D’Imperio et al., 2018; Bortolini 

and Tolomio, 2019; Pennisi et al., 2019c). Values from 

comparison from animal based products are obtained from 

Mekonnen et al. (2012, 2019) and Nguyen et al. (2010).
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(Barbosa et al., 2015; Shimizu et al., 2011) (Figure 3). With 

reference to lighting, EUE was shown to be dependent on 

lamp features, varying among commercial solutions (Zhang 

et al., 2018; Kong et al., 2019; Hernandez et al., 2020), and 

in response to the integration of zoom lens (Li et al., 2016) 

For instance, it was reported that red diodes produce more 

photons as compared to the blue ones (Blanken et al., 2013; 

Park and Runkle, 2018). However, with increasing junction 

-

pared to red diodes (Wang and Liang, 2007; Pennisi et al., 

2019a). It emerges that not only the color properties of the 

diode should be considered, but also the working tempera-

Moreover, also the spectral composition was shown to alter 

plant growth and therefore EUE. Accordingly, when RB spec-

trum was supplied, it was also reported that RB ranging 2 to 

4 would allow for optimized EUE in several crops (Kong et 

al., 2019; Pennisi et al., 2019a, b, c; Yan et al., 2019) (Table 1). 

Besides, since the electricity consumption is linked to the 

evidenced (Yan et al., 2019). Among other possible strategies 

to reduce electricity needs in PFALs, the integration of pho-

tovoltaic (PV) panels on the outer surface of the building has 

been suggested (Uraisami, 2018), thanks to the recent reduc-

tion in costs associated with both PV technology and lithium 

panel (Dupraz et al., 2011), combined with energy losses 

when electricity is transformed back into light (Kusuma et 

al., 2020) and the elevated light needs associated with mul-

PFAL energy needs. Accordingly, when estimations on the PV 

2018), it was calculated that the PV surface should be 30 to 

45 times higher than the actual land covered by a PFAL.

Literature on the potential EUE values in PFALs is to 

date mostly limited to lettuce crop, and often lacks conver-

sion units to standardize values (e.g., between fresh and dry 

biomass, or between head and unit plant weight). Indeed, 

a rough estimation was hereby compiled (Figure 3), in order 

to stress the differences in EUE among production systems. 

Accordingly, EUE values were about 20-times lower in a PFAL 

-

ally lower also with respect to animal production systems, 

with the exception of beef production which featured similar 

values (Figure 3).

Environmental assessment

Despite the fact that PFALs are claimed to be resourc-

es-saving growing systems, in recent times only few studies 

have been published addressing their global environmental 

impact by applying the life cycle assessment (LCA) method-

ology. Romeo et al. (2018) evaluated and compared the envi-

ronmental impact of the production of one kg of leafy greens 

in a PFAL (located in Lyon, France) against the production in a 

a cradle-to-gate analysis (from the cultivation phase to the 

 3.

products in response to the cropping system. Values are 

et al., 2015; Martinez-Mate et al., 2018), greenhouse (Van 

Ginkel et al., 2017; Barbosa et al., 2015) and PFAL (Graamans 

et al., 2018; Kikuchi et al., 2018; Zhang et al., 2018; Kozai, 

2019; Yokoyama, 2019). Values from comparison from 

animal-based products are obtained from De Vries and De 

Boer (2019).

 4.  Carbon Environmental impact assessment of 

selected food products in response to the cropping system. 

(Davis et al., 2011; Romero-Gamez et al., 2014; Bartzas et al., 

2015; Foteinis and Chatzisymeon, 2016; Clune et al., 2017; 

Kikuchi et al., 2018; Martinez-Mate et al., 2018), greenhouse 

(Romero-Gamez et al., 2014; Bartzas et al., 2015; Clune et al., 

2017) and PFAL (Kikuchi et al., 2018). Values from 

comparison from animal based products are obtained from 

De Vries and De Boer (2019) and Clune et al. (2017).
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transport to the retailers). The PFAL presented the best per-

formance in the impact categories of marine eutrophication 

cultivation, respectively) and agricultural land occupation 

cultivation, respectively). Furthermore, performances of the 

PFAL in all impact categories (with the exception of water de-

pletion) resulted higher as compared to the production in the 

greenhouse. The contribution of the different processes to 

the impact categories resulted different. Within the climate 

change impact category, electricity consumption contributed 

-

tion the production and use of fertilizers were the most im-

pacting processes. The PFAL enabled a water consumption 

7-times lower than greenhouse production, and 4-times low-

-

ed to the overall water balance). However, in the PFAL, the 

by a greater use of electricity, whose impact resulted strictly 

correlated with the electricity source. Source such as nuclear 

-

ter, which explains why the vertical hydroponic farm had a 

worse impact on water depletion, even if it had a smaller 

direct water consumption. Kikuchi et al. (2018) compared 

the environmental impact for the production of lettuce in a 

PFAL (located in Kashiwa, Japan) with conventional Japanese 

the use of phosphorus and water, respectively, as compared 

cost of additional energy consumption, which was the largest 

contributor to GHG emissions. Compared with the results for 

the PFAL, conventional horticulture systems presented low-

er GHG emissions per unit mass of product (approximately 

0.2 vs. 25 kg CO2
-1 lettuce, respectively for convention-

al farming and PFAL), even though such difference was not 

anymore evident when data were normalized for unit land 

surface used (much lower in the PFAL) and the seasonal and 

farm variability in conventional farming systems across Ja-

pan was taken into account (Figure 4) (Kikuchi et al., 2018). 

The study also highlighted that GHG emissions of PFAL can 

be reduced (up to 60%) by the adoption of innovative and re-

newable energy technologies (e.g., the utilization of unused 

heat, a solid-oxide fuel cell, PV power, optimized electric 

devices such as heat pumps and lighting). Martin and Molin 

(2019) analyzed the environmental impacts of the annual 

production of plants in a vertical hydroponic farm (located 

in Stockholm, Sweden and producing potted basil plants), 

by performing a cradle-to-gate analysis and by comparing 

different technical solutions (e.g., plastic pots vs. paper pots, 

gardening soil vs. coir, or using different electricity supply 

combinations). The results highlighted that GHG emissions 

can be halved by substituting gardening soil to coir as grow-

ing media, while a reduction of 66% in the impact category 

with paper pots (Martin and Molin, 2019). In all scenarios, 

the impact of electricity, primarily associated with the light-

ing system, contributed from 20% to over 50% to the GHG 

emissions impact category, in line with previously published 

evidences (Romeo et al., 2018; Gomez and Izzo, 2018).

seems to be the most impacting factor in PFALs, therefore 

-

overall modifying their environmental performances. The 

environmental impact, the economic cost and the resulting 

grown under different lighting solutions (e.g., different red 

and blue ratio within the light spectrum) were recently as-

sessed (Pennisi et al., 2019c). It emerged that the improved 

basil, and RB=4 for rocket and chicory cultivation. The same 

contributor among all the impact categories assessed.

Conclusion
Production of fresh produce in PFALs may improve food 

system resilience to climate change and sustainable use of 

resources. However, for PFAL to actually be viable, a compre-

hensive vision that integrates most recent advances in light-

-

proved in PFALs compared to conventional agriculture, en-

economic costs and environmental impacts. Despite advanc-

es that were made possible by LED technology, there is a great 

strategies in a wider range of crops beyond leafy greens. It is 

also crucial that integration of hydroponics and climate con-

trol units takes place, both building on the state-of-the-art of 

adapted to multitier cultivation in a PFAL. Finally, future re-

search should also further focus on existing PFALs in order to 

on a commercial scale.

The research leading to this publication has received 

funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No. 

-

search Executive Agency (REA) is not liable for any use that 

may be made of the information contained therein.
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