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Abstract—Principal Component Analysis (PCA) is a well-
established approach commonly used for dimensionality reduc-
tion. However, its computational cost and memory requirements
hamper the adoption of PCA in heavily resource-constrained
embedded platforms. Streaming approaches have been proposed
that may enable embedded implementations of the PCA. Among
them, the History PCA (HPCA) algorithm stands out for its
robustness to the variability in parameters and accuracy. This
paper presents a parallel and memory-efficient implementation
of HPCA in a structural health monitoring (SHM) application
based on a heterogeneous network with sensor nodes measuring
three-axial accelerations and gateways collecting measurements
from several nodes and sending them to the cloud storage
and analytic facility. In the targeted application, standard PCA
reaches 15× compression factor with an average reconstruction
signal to noise ratio of 16 dB and a negligible impact on the
accuracy in the tracking of structural modal frequencies. By
embedding HPCA on our SHM network gateways, we achieve
the same compression factor as standard PCA, with more than
1000× reduction in data memory footprint for running the
algorithm. Furthermore, we parallelize HPCA on the gateway,
and we achieve a speedup of 7.1× (on 8 cores). Finally, we
explore a fixed-point HPCA implementation on sensors (network
end-nodes), that maximally distributes compression workload,
minimizes required communication bandwidth, and maintains
the same quality of reconstruction as HPCA in floating-point,
with a compression factor of 10×.

Index Terms—Embedded platforms, Streaming PCA, Struc-
tural Health Monitoring, Edge computing, IoT

I. INTRODUCTION

THE Internet of Things (IoT) envisions billions of devices
that can sense, compute, and potentially communicate

with users or among them [1]. Therefore, it poses new
challenges in finding innovative and scalable approaches for
collecting and processing the potentially massive amount of
data. Even though a cloud platform [2] often plays the role of
the central unit in the network that interconnects the different
devices, the distribution of the processing to the edge of the
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Fig. 1. Block scheme of IoT systems monitoring civil infrastructures and
buildings where links between sensor nodes and edge device could be both
wired o wireless.

cloud has demonstrated several advantages such as improved
security, reduced latency and lower costs [3].

Many attempts have been made to distribute workloads
among network nodes using solely software [4], [5] and
hardware-software codesign [6], or to address the trade-off
between decentralization and single central computing unit [7].
Other solutions focus on handling the data traffic generated
in these networks [8] to increase the number of connected
devices, by optimizing the available bandwidth [9], [10], by
increasing the performance of the network transfer infrastruc-
ture [9] or by compressing the data transmitted [11].

A leading IoT application is Structural Health Monitoring
(SHM) [12], [13] whose aim is to provide a continuous
flow of information about civil structure’s condition. Here,
continuous and long-term monitoring is gaining traction [14]
for damage detection, predictive maintenance or even road
traffic identification [15]. Figure 1 reports the conceptual block
diagram of a SHM application. Despite the availability of low-
cost sensor nodes (e.g. MEMS accelerometers), the sensor
networks installed to acquire the data needed for big structure
diagnosis are often forced to be sparse to limit data traffic [16].
However, spatially sparse monitoring has a limited precision
in complex structures such as masonry buildings [17], or
bridges [18], which demand extremely accurate damage de-
tection and localization.

Therefore, researchers turn to compression algorithms to
reduce the amount of data sent by the network nodes and to
allow the deployment of more dense networks, enabling the
fine-grain mapping of most critical structures. Compression



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X X 2

algorithms can be categorized as lossless or lossy. Lossless ap-
proaches, such as [19], ensure complete information recovery,
with a low compression rate. At the same time, lossy algo-
rithms allow much higher compression rates, but they imply
an application-dependent trade-off between compression and
quality of the signal recovery. In a SHM scenario, the adoption
of lossy compression algorithms is preferred, since the sensor
readings are often aggregated in high-level features [20] whose
accuracy can be even preserved in case of high compression
rate [21], [22]. Noteworthy, the choice of an appropriate com-
pression algorithm must also cope with possible limitations
imposed by the devices involved in data compression (e.g.
low onboard memory and compute capabilities).

The PCA-based compression algorithms are promising in
the SHM field since i) they are not computationally intensive
(the compression involves linear projections on a set of pre-
defined sequences), and ii) they reach high compression ratio
while preserving most important input signal features [22]. A
critical shortcoming of these solutions is represented by the
amount of data required to execute the PCA algorithm, which
could impair their embedding on end-devices such as smart
sensors and gateways. PCA streaming approaches [23] help to
reduce the required memory footprint, since they calculate the
principal components on smaller data chunks.

In this paper, we consider the History PCA (HPCA) al-
gorithm, a streaming PCA approach characterized by higher
robustness to variability in parameters compared to other
streaming methods [24], [25]. We try to solve the high load
network problem of SHM sensor-networks, combining this
compression method with an efficient real-time implementa-
tion (edge-node computing). The proposed approach allows
us to maintain a high-level accuracy in the SHM data-analysis
(refer to Sec. VI-A), while it minimizes the network traffic. In
addition, it could also be used as a standalone anomaly detec-
tion algorithm, as shown in [26], [27]. In particular, we used
HPCA for compression in an SHM system composed of many
sensors measuring three-axial acceleration and a few gateways
(one gateway usually manages 40 to 50 sensors) employed to
collect the sensor readings and send them to the cloud platform
used for storage and processing. We embedded the algorithm
on the gateway as well as on the sensors. The compression
reduces the bandwidth of the connection to the cloud and
the cloud storage space on gateways. The advantages are
even higher on the sensor-nodes, where the reduced network
traffic allows a higher node count per gateway. To profile our
solutions and compare the deployments of HPCA algorithms,
we use energy consumption and delay as figures of merit. We
select the best solutions based on the minimization of energy.
Indeed, minimizing the energy budget on a sensor network
or, in general, on an edge computing platform, entails several
advantages such as deploying a higher number of sensors on
the same power bus, without increasing the maximum output
current. On the other hand, the delay due to the processing is
only related to the near real-time constraint since we have to
process a batch of data before a new one is stored (see Sec.
VI-C). The main contributions of the work are as follows:
1) We present an embedded sensor network deployed for

SHM, based on HPCA data compression. To the best of

our knowledge, this is the first attempt to embed a PCA
based algorithm on a large-scale sensor network on low
cost embedded platforms.

2) We show an extensive comparison with state-of-the-art
compression methods, analyzing benefits and flaws of
streaming PCA approaches and, in detail, of HPCA.

3) We validate our approach by showing how we are capable,
on top of a tendon strand break, to detect a shift in
the bridge resonant frequency using HPCA compressed
signals, with a negligible accuracy loss compared to the
detection obtained from the analysis of non-compressed
data.

4) We explore the performance of HPCA both at gateway and
sensor node level, by using energy and execution time to
select the best implementations. At the gateway level, we
consider two different platforms: ARTIK 710 Module [28]
and Raspberry Pi 3 [29] and two different parallelization
schemes of HPCA. On the sensor node, we propose a fixed-
point solution that allows performing PCA directly on the
tightly memory-constrained MCU (microcontroller unit –
an STM32F405RG) as well as a floating-point single-core
implementation.

5) We further investigate how different configurations of the
HPCA algorithm could satisfy different memory constraints
and the trade-off in network load reduction of moving PCA
from gateways to sensors. We show that we can save up
to 1221× memory compared to the standard PCA on the
gateway, and 1551× on the sensor-nodes, reducing by 15×
and 10× the traffic on networks links, respectively.

The rest of the article is organized as follows: Sec. II intro-
duces the related works on compression algorithms. Sec. III
presents the QR-decomposition (kernel of the HPCA algo-
rithm), the PCA, and the History PCA algorithms, while
Sec. IV introduces our Structural Health Monitoring testbed,
namely a fully operational large-scale installation (90 sensors
and two gateways) on a real highway viaduct. Sec. IV-B
describes the different hardware architectures employed and
Sec. V details the implementation of the algorithm on different
platforms. Sec. VI presents the hardware results and the SHM
analysis performance after data compression, by including
both an operational benchmark (a peak detection algorithm on
real-world viaduct vibration data) and an extensive discussion
about timing/energy trade-off. Sec. VI-C completes the com-
parison with a load-reduction trade-off. Sec. VII concludes the
paper with final considerations and remarks.

II. RELATED WORKS

Large IoT sensor networks that manage significant data
flows are getting widespread, leading to high demand for
methods and architectures able to continuously gather and
process large streams of data. When these streams are collected
at a central unit to be stored or processed, the communication
or the cost for storage space often represents the system bot-
tleneck [36]. This bottleneck can be solved by data reduction
proposed in several real-time systems, by either compressing
it or distributing part of the processing throughout the network
[37], [38]. Many techniques are also proposed to optimize the
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TABLE I
COMPARISON OF DIFFERENT CODING SCHEMES FOR DATA COMPRESSION. ABBREVIATIONS: d, SIGNAL DIMENSION, CR, COMPRESSION RATIO (HIGH:

10− 50, MEDIUM: 5− 10, LOW: 1− 5), EMBED.: LEVEL OF EMBEDDING (GOOD – END-NODE, MEDIUM – GATEWAY, BAD – CLOUD)

Works Compression technique Principal domain CR Computational cost Embed. Dataset
Lossless compression

Grossberg et al. [30] LZMA IoT General Purpose low low good real
Blalock et al. [31] LZ4 IoT General Purpose low low good real
Blalock et al. [31] Deflate IoT General Purpose low low good real

Lossy compression
Jayawardhana et al. [32] Compressed sensing IoT General Purpose low O(d2/CR) good synthetic

Liu et al. [33] Wavelet-based Infrastructure monitoring high O(d) medium synthetic
Alsheikh et al. [34] Autoencoders (AE) Temperature and Humidity WSNs medium O(d2/CR) bad real

Wu et al. [35] PCA-based General purpose high O(d2/CR) good real
This work PCA-based General purpose high O(d2/CR) good real

Fig. 2. Comparison of lossy and lossless methods on our SHM vibration dataset. Abbreviations: PCA: Principal Component Analysis, DCT: Discrete Cosine
Transform, CS: Compressed Sensing, CSr: rakeness-based.

workload of the network’s node, especially in the deep learning
field for the production of smart data [39], [40].

This trend has percolated to the SHM field. In [6], a system-
level co-design between sensors installation and algorithm
resolution has been introduced, which allows a reduction of
the data gathered, streamed, and stored if a lower resolution
is demanded. Further, moving the processing to the edge,
[4] proposes a distributed execution for the eigensystem re-
alization algorithm (ERA), a classical SHM algorithm. The
implementation proposed relieves the central unit from the
computation and allows to stream only ”smart” data, which
already contains the diagnosis information. As a drawback,
this class of algorithms prevents the system to store the raw
recorded data or at least their approximation, which can be
useful for additional analysis.

Data compression represents an alternative solution to limit
communication bandwidth. Table I summarizes the salient
features of a wide range of compression algorithms, divided
into two main categories: lossless and lossy.

Lossless methods ensure no loss of information at the cost of
a low compression ratio [41], [42]. For instance, LZMA [30],
LZ4, and Deflate [31], widely accepted lossless methods used
in file compression algorithms, reach average compression
ratios lower than 3×. On the other hand, lossy methods, which
achieve a higher compression ratio [43], leverage the fact that
not all the signal information is useful for the analysis.

A well-known lossy method is Compressed Sensing (CS),
which allows the implementation of energy-efficient encoders

[44], [45]. The upside is that with few linear projections and
low computational cost, CS captures the primary information
contained in the signal, thus being very suitable for SHM
applications [32]. The downside is that the energy efficiency
comes at the cost of a lower compression ratio (CR) compared
to other methods such as wavelet-based, as shown in [46],
[47]. These methods are more power-hungry but still suited
for embedded devices.

For instance, [33] combines wavelet transformation with
distributed source coding to increase the compression perfor-
mance further, reaching a compression factor of 50 with syn-
thetic vibration data. However, this high compression factor is
mainly due to the very high correlation between the generated
synthetic data, which are not representative of other different
monitoring scenarios. In fact, in [33], the data are collected
from a five-layer civil infrastructure laboratory model, with a
distance as small as 15 cm between each layer and a vibration
exciter attached to the first one.

A new promising alternative comes from the machine learn-
ing world. In [48], it is shown that an autoencoder (AE) can
outperform other classical methods such as the ones based
on PCA, wavelets, and Discrete Cosine Transform (DCT)
with a comparable or lower computational cost. Note that in
SHM, auto-encoders have already been successfully employed
for temperature and humidity data [34] or embedded in a
more complex damage identification system [49]. The main
drawback of the usage of autoencoders embedded on edge
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devices is the need for large training datasets. Moreover,
structures often change over time (e.g. due to aging), and are
thus non-stationary, forcing the compression algorithms to be
re-trained over time. This requires the transmission of a large
amount of data for re-training autoencoders in the cloud.

We focus on PCA-based compression [50], which exploits
the correlation between signal components to extract the
primary information. The compression ratio is similar to the
wavelet-based method, as shown in [34], [48], but, similarly
to CS, PCA-based encoders require few linear projections to
compress the raw signal. As a counterpart, the PCA (similarly
to autoencoders) requires to store a considerable amount of
data to estimate the principal components needed for the
compression accurately. Hence, either the memory footprint
or the CPU-time needed for the analysis is often prohibitive
for a typical edge or gateway device.

Well known streaming approaches [23], [24], [51]–[57]
address this issue. These methods update the estimation of
the principal components by considering sequential chunks of
data, and thus performing the analysis while the data stream
is flowing, without the need of storing it.

This is a field that has gained particular importance in the
last few years: however, important contributions date back to
1968 and 1982 when Krasulina’s and Oja’s methods were
presented [51], [52]. They are Stochastic Gradient Descent
(SGD) methods applied to minimize two different objective
functions whose optimum point is the principal component.
Following their intuition, extended versions have been pre-
sented in literature to allow the processing of blocks of data
as well as the estimation of a subspace with rank higher than
one [53], [58].

The aforementioned methods perform a step along the
gradient and then orthogonalize the current solution to get a
base for the principal subspace. As an alternative, authors in
[56] showed that it is possible to follow the gradient along
the geodesic in the manifold of orthogonal subspaces, i.e., the
Grassmannian manifold. All these SGD-based methods require
a fine tuning of the learning rate since low rates slow down
the convergence while high rates could cause divergence.

A different approach is the Incremental Singular Value
Decomposition (ISVD), presented in [59], which is an exact
method to compute the full SVD of a data matrix whose
vectors arrive sequentially. However, this method is computa-
tionally expensive. To overcome this issue, the authors in [57]
propose a modified version that computes the thin SVD whose
complexity is of the same order as the SGD-based methods.
Moreover, together with a base for the principal subspace,
ISVD provides an estimation of the singular values.

History PCA is a novel method presented in [24] whose
core resembles SGD-based methods but, similarly to ISVD,
it provides an estimation of the eigenvalues and it does not
require the tuning of a learning rate. These characteristics
make HPCA a suitable method for real world applications.
Indeed, the History PCA has been tested on four different
large-scale datasets (NIPS and NYTimes from UCI data, and
RCV1, KDDB from LIBSVM [24]) achieving lower approx-
imation error in the estimation of the principal components
compared to State-of-the-Art methods.

In this paper, we propose to reduce the traffic load in a sen-
sor network for SHM by embedding the HPCA algorithm on
either gateways or sensor nodes, maximizing the compression-
ratio under the memory constraints characterizing the IoT de-
vices. Our approach leverages the time correlation of the single
sensor time series, allowing to treat each sensor node as a
unique entity, i.e. a single PCA instance can run independently
on each sensor. Moreover, the adoption of a streaming PCA
algorithm allows embedding the compression stage directly
on the sensor node, reducing the traffic between gateways
and cloud as well as between sensors and gateways. To the
best of our knowledge, this is the first work that analyzes the
embedding of a PCA based compression algorithm at different
levels of an SHM net by exploiting the autocorrelation of the
signal.

A. Compression algorithm evaluation

To validate the effectiveness of the PCA-based compression
method in a SHM application based on vibration sensing,
we compared its performance with some of the algorithms
previously presented. In this manuscript, we consider the
PCA as a pure enabler of SHM damage detection algorithms
with reduced network traffic (we show an example in Sec-
tion VI-A). Hence, the assessment is based on our use case
dataset and Fig. 2 shows a figure of merits regarding the
quality of reconstruction of the signal (in terms of RSNR
defined in Section III-D) depending on the compression ratio
(CR).

Particularly, we compared PCA with both the lossless and
lossy methods. We selected LZ4 [30], LZMA and Deflate
methods [31] as lossless methods, while for lossy approaches
we considered compression based on Discrete Wavelet Trans-
form (DWT), Discrete Cosine Transform (DCT) [60], Com-
pressed Sensing (CS) [61] and autoencoder [34]. For the
DWT implementation, we consider symlet, coiflet, daubechies,
and haar families, but in Fig. 2, we only show symlet 10
and coiflet 5 that outperform the others. For the Compressed
Sensing approach, along with the standard method [61], we
also consider the rakeness method that adapts the encoder
stage to the class of signals [62].

We show that the average RSNR obtained with the PCA-
based method is comparable with the performance of the
autoencoder while outperforming all the other methods for
CR > 4. On the other hand, the PCA has a twofold advantage
compared to the autoencoder: it requires less data for the
training, and the streaming approaches allow to avoid storage
of the complete training dataset, which would be prohibitive on
an end-node device. It is also noticeable that while considering
Table VI the DWT approaches seem to outperform all other
methods in [33], they perform poorly when applied to the
sensor data considered in this paper.

III. BACKGROUND & METHODS

In this section, we provide a short introduction to the QR-
decomposition used in the HPCA algorithm and to the PCA.
After, we describe the keys advantages of the HPCA com-
pared to classical PCA and other streaming PCA algorithms,
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providing an example of the execution of the HPCA on our
SHM data.

A. QR-decomposition

Let A be a real matrix d×k with d > k and rank(A) = k,
we call QR-decomposition the product

A = QR (1)

with Q orthonormal matrix (Q>Q = Ik), R upper triangular
matrix and where Ik denotes the identity matrix of dimension
k. Several methods have been proposed in the literature to
compute the QR decomposition, such as Cholesky decompo-
sition, Gram Schmidt, or Householder reduction (HH) [63].
We based our algorithm on HH [64], because, in comparison
to the other methods, HH benefits from better numerical
stability, and it is suitable for fixed-point quantization [63].
In particular, we are interested only in the computation of the
Q matrix, whereas we discard the R matrix. Indeed, in HPCA,
QR decomposition is only used to ensure the orthonormality
among columns and R is never used (Alg. 1), allowing to save
both memory and operations.

Let us consider the QR factorization as the composition
of two different phases, QR1 and QR2. The former takes as
input the matrix A and computes a set of vectors wi, with
i = 1, . . . , k and with ‖wi‖2 =

√
2, where ‖·‖p stands for lp-

norm. Note that given the iterative process of the Householder
reflections on sub-matrixes of input matrix A, the wi have
progressively lower dimensions, from d to d − k. These are
the base elements for the Householder matrices Pi [64]. These
vectors are directly stored in the lower triangular part of the
input A, and their computation requires both high accuracy
and high dynamic range.

Subsequently, QR2 expands the wi with an initial series of
0 to match the dimension d for each vector. The wi are used
to compute

Pi = Id −wiw
>
i with Q =

k∏
i=1

Pi (2)

requiring only successive matrix multiplications between or-
thornormal matrices. The range of values for this part of
the algorithm can be easily computed: the biggest range is
represented by wiw

>
i , which produces values in the range

[−2, 2]. Conversely, since the Pi are orthornormal

P2
i = (Id −wiw

>
i )(Id −wiw

>
i )
>

= Id − 2wiw
>
i + wi w>i wi︸ ︷︷ ︸

‖wi‖22=2

w>i = Id

and a product of orthornomal matrices is again an orthonormal
matrix, all the successive values are bound in the range [−1, 1].

B. Principal Component Analysis

Principal Component Analysis (PCA) aims at reducing the
dimensionality of multivariate data while preserving as much
of the relevant information as possible. More specifically, PCA
refers to the problem of finding the k-dimensional subspace

that best approximates in l2 terms a given dataset, i.e., a
collection of signal instances.

Let us define as X ∈ Rd×N a dataset composed by
successive input signals x1, x2, . . . , xN ∈ Rd, and denotes
the matrix V ∈ Rd×k whose columns form a basis for the
subspace that best approximates the dataset. Dimensional-
ity reduction is achieved by projecting X on the subspace
V>X = Y ∈ Rk×N , thus obtaining a compression ratio
CR = d/k assosiated to the set of reconstructed signals
X̃ = VY = VV>X.

PCA identifies V as a solution of a minimization problem
in which the objective function is the reconstruction error:

V = argmin
V∈Rd×k,V>V=Ik

N∑
j=1

∥∥xj −VV>xj
∥∥2
2

(3)

To adopt this scheme as a real-time compression algorithm,
i.e., V is used to compress incoming signal instances, data
vectors xi must be approximate realizations of a stationary
stochastic process whose statistic estimation requires a high
N value.

The matrix V can be obtained by means of either the
eigenvalues decomposition (EVD) of the sample covariance
matrix ΣN = XX>/N or the singular value decomposition
(SVD) of the dataset matrix X, and taking the d-dimensional
vectors associated with the k greatest eigen or singular values.
Nevertheless, both EVD and SVD require the storage of
the entire dataset matrix to perform PCA, making them not
suitable for many real cases due to the dimension of X
compared to the resources available on the executing device.
For instance, this prevents the embedding of this algorithm
on edge computing platforms, which are subject to tight
constraints on memory space. This bottleneck can be solved
by streaming PCA approaches.

C. History PCA

As a common rule in streaming PCA algorithms, the princi-
pal subspace estimation is updated with data samples arriving
sequentially without accessing historical data and without the
storage of the entire dataset.

Among them, History PCA (HPCA) [65] has recently
emerged. Based on the block-stochastic power method [53],
HPCA aims at improving its training accuracy by estimat-
ing not only a base for the principal subspace but also its
corresponding set of eigenvalues. These quantities allow for
a better representation of the historical data. The HPCA
training procedure is provided in Alg. 1, and it is extensively
explained in [24]. The algorithm runs a new step every time
a block Xτ ∈ Rd×B is gathered, consequently updating the
compression matrix Qτ . After n = N/B steps the method
returns the final estimate Qn.

The core of the algorithm is contained in line 13, where
the estimated principal subspace is updated with the incoming
block of data Xτ . Besides, the QR decomposition in line 14 is
necessary to ensure the orthonormality among the columns of
Q. This task is computed m times, which is proved to increase
the accuracy in the principal subspace estimation [24].
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Algorithm 1 HPCA
1: Input: X1, . . . ,Xn, block-size: B.
2: S

(i)
0 ∼ N(0, Id), 1 ≤ i ≤ k

3: Q1 ← decompositionQR(S0)
4: for i← 1, . . . ,m do
5: S1 ← Q1 +

1
BX1X

ᵀ
1Q1

6: Q1, · ← decompositionQR(S1)
7: end for
8: λj ← ‖S1[:, j]‖2 for j = 1, . . . , k
9: Λ1 ← diag(λ1, . . . , λk)

10: for τ ← 2, . . . , n do
11: Qτ ← Qτ−1
12: for i← 1, . . . ,m do
13: Sτ ← τ−1

τ Qτ−1Λτ−1Q
ᵀ
τ−1Qτ +

1
τ

1
BXτX

ᵀ
τQτ

14: Qτ , · ← decompositionQR(Sτ )
15: end for
16: λj ← ‖Sτ [:, j]‖2 for j = 1, . . . , k
17: Λτ ← diag(λ1, . . . , λk)
18: end for
19: Output: Qn

HPCA algorithm starts from an initial matrix Q1 that comes
from a random initialization [24] (see lines 2–3). Nevertheless,
warm start procedures can be adopted to reduce the time of
convergence, e.g., warm starts procedures used in [55], [58]
for other streaming PCA methods. A possible warm start, also
working for HPCA, consists of a matrix Q1 obtained as the
left-singular vector from the rank-k thin SVD computed on
an initial data block. Preliminary results show a negligible
difference in terms of the time of HPCA convergence such that
we maintain a random initialization. We will further explore
this aspect during our future work.

The computational cost of the HPCA is dominated by the
matrix multiplications O(dk(k + B)) and by the QR decom-
position O(dk2). The memory occupancy is ∼ O(d(k +B)),
implying a gain of N/(B+k) compared to the classical PCA.
With B = 1, the algorithm reaches its lowest memory
footprint.

These values are consistent with other streaming PCA
algorithm known in literature [52], [53], [55], which present
complexity O(dk2) and O(dk) memory. The advantages of
HPCA reside in the robustness of the parameter tuning,
as shown in the next paragraph and the improved rate of
convergence granted by the iteration of the internal loop, as
demonstrated in [65].

Note that the training dataset in our use case is derived
from a single 1-D acceleration time series, by separating the
recorded signal in d-dimension time-windows. This segmenta-
tion procedure allows us to consider each window as an input
sample for the algorithm.

D. Parameter Tuning

For the parameter tuning, we use a dataset comprising a
single-axis time series gathered by one sensor node of the
installation. We consider two traces, each one 1 week long.
Since the signal is affected by temperature and traffic intensity,

Fig. 3. HPCA performance in terms of RSNR depending on the number
of internal loops m for different block-size b and number of principal
components k.

the 1-week period takes into account the daily periodicity and
the different traffic conditions of the weekdays. The former
trace is used to estimate the compression matrix Q while
the latter is needed to assess the quality of service (QoS),
measured as the reconstruction signal to noise ratio RSNR :

RSNR = 20 log10

(
‖x‖2
‖x− x̂‖2

)
where x represents a generic signal instance and x̂ is the
correspondent reconstruction after PCA-based compression.

The parameters that are intrinsic in PCA-based compression
are d, (i.e. the signal dimension) and k (i.e. the dimension of
the compressed signal). Although in static data compression,
d is a given parameter, temporal data allows for sweeping the
values of d. It is noteworthy that keeping constant the Quality
of Service (QoS) results in a compression factor monotonically
increasing with d. Hence, for the testbed presented in Section
IV-A, as a trade-off between the compression factor and real-
time processing, we upper-bound the parameter d to obtain
a maximum delay of tw = 5s (compliant with the other near
real-time algorithms running in the testbed), that results in a
maximum d ≤ 500 (since the dataset is sampled at 100 Hz).
Therefore we obtain N ∼ 120000 signal instances for the
training and validation 1-week sets.

The parameter k is determined by finding the minimum
number of principal components that, when used to compress
a validation set, satisfies the required quality of service (QoS).
To minimize error rate in peak detection algorithm presented in
section VI-A, we consider RSNR = 16dB. On the validation
set, classical PCA analysis reaches average RSNR = 16.13 dB
with k = 32 components, i.e., obtaining a CR = 15.6.
A minimum RSNR of 16 dB is used throughout the rest
of the paper as a minimum constraint for the quality of
reconstruction. We do not consider it as an objective, but as a
constraint to be compliant with. In other words, we search for
a set of solutions that respect this constraint while presenting
possible trade-offs in terms of energy, delay, and compression
ratio.

The HPCA algorithm relies on two further parameters, B,
the input block-size, and m, the number of iteration for the
internal loop. Hence, B mostly affects the memory footprint
that each step of the algorithm requires, while m influences the
computational cost. Fig. 3 shows the average RSNR depending
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Fig. 4. Monitoring system installation: (a) Plan view of the monitored
highway viaduct. (b) Overview of the monitored highway bridge. (c) Sensor
installed on the external steel tendons. The sensor is based on the STMi-
croelectronics STM32F405RG and features an LIS344ALH as an analog
accelerometer.

TABLE II
STRUCTURAL HEALTH MONITORING SYSTEM OF THE DESCRIBED BRIDGE.

THE NODES COMPRISING THE TWO SENSORS (SEC. IV-B2) ARE
DISTRIBUTED OVER THE 10 SECTIONS IN GROUPS OF 9± 3.

# Link Memory Computation

Nodes 90 CAN bus 192 kB 1-core, 168 MHz
Gateways 2 CAN bus/4G 1 GB 4-cores, 1.2 GHz
Cloud n.a. 4G ∞ ∞

on m, for different values of B and number of projections k.
In all cases, performance saturates with m = 3 independently
on the adopted block size B. As expected, the higher k, the
higher the average RSNR , demonstrating that HPCA exhibits
good robustness to changes in parameters.

With k = 32 (same of the PCA), m = 3 and B = 1 the
average RSNR measured on the validation set is 16.11 dB, just
0.02 dB below the value reached with traditional PCA and still
above the value of QoS required, i.e. RSNR = 16dB.

Note that the parameters m and B are strictly related.
Performing iterations of the update step has a similar effect to
a single update with a larger step size, i.e., both approaches
refine the gradient direction of the current step. This behavior
is confirmed in Fig.3, where for low values of m, larger block
sizes B provide a significant increase in RSNR.

IV. STRUCTURAL HEALTH MONITORING INSTALLATION

Our real-life SHM testbed is a highway bridge located in
Italy on which many maintenance interventions have already
been undertaken from its opening (opened to traffic in 2006).
The monitored structure is presented in Fig. 4: Fig. 4a intro-
duces a planar model of the viaduct, with the sections of the
monitored tendons highlighted, Fig. 4b shows an aerial image
of the bridge, and Fig. 4c portraits the MEMS installed on
tendons, which sense the bridge vibration.

A. Monitoring System

The installed infrastructure on the bridge is a vibration-
based SHM system, which exploits the vibration of the bridge

Fig. 5. Monitoring system installation description with the two possible PCA
reductions location.

under traffic condition to detect possible degradation or dam-
age of the monitored structure. The installation, depicted in
Fig. 5, is divided into two main blocks: the in-situ node
with the gateways supervised network, and the cloud part. A
summary of the system elements is reported in Table II.

The in-situ section is the most critical part since several
problems arise from the interconnection of the different el-
ements. In the current setting, the sensor nodes are 90, and
they are placed on the pre-stressed tendons, at most two
sensors per tendon. Each node, presented in [66], is equipped
with a micro-controller and a MEMS triaxial accelerometer,
which measures the acceleration in three orthogonal directions
(x, y, z), with an angle between each two of those directions
of 90◦±2%. With the goal of high acceleration resolution and
prevention of aliasing, the acceleration is sampled at 25.6 kHz
by the internal ADC and then filtered and decimated with a
6-state FIR filter which reduces 256 samples to a single value,
thus implying a 100 Hz final sample frequency.

The quality of the produced acceleration data has been
assessed through an extended preliminary experimental
phase [67], [68] that has verified that this sensing system
allows for accurate estimation of the natural frequencies, often
taken in literature as an index of the integrity of the monitored
object [20].

Once the data is filtered, the sensor node transmits it to a
local gateway through CAN-bus. The system comprises two
gateways, each one connected to 45 sensors. The bit rate Rb
on this connection is

Rb = NS ×Nax × fs × Ls
where NS is the number of sensors, Nax = 3 is the number
of axes of each accelerometer, fs = 100Hz the sampling
frequency and Ls = 16 is the bitwidth of each sample in
bit. Since in the considered installation the CAN-bus requires
Rb ≤ 250 kbps, each gateway can manage maximum ∼ 50
sensors. As expected, the link data rate is the limiting factor
for the size of sensor clusters managed by a gateway.

The data collected by the gateways are sent via Ethernet to
the ”Ubiquity Nano M5” station located halfway between the
viaduct ends. M5 station is also connected via 5 GHz point-
to-point Wi-Fi to the access point, which transfers the whole
data to the cloud.
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The cloud system is composed of a storage platform and
a computing machine allocated on the IBM cloud service:
we use the IBM Cloud Object Storage for saving data as
parquet files and we allocate a machine with 2 nodes, 4 cores,
and 16 GB RAM per node. The acceleration, along with the
temperature and humidity data, is stored in a cloud monitoring
infrastructure, which allows real-time access and analysis. The
data is processed to detect unusual patterns that do not fit the
normal behavior of the structure, such as abrupt damages or
progressive degradation.

B. Hardware platforms
1) Gateway: In the current installation the IoT-gateways

are composed by Raspberry Pi 3 module B [29] (RPi3),
but in this paper we also consider the Samsung ARTIK 710
Module [28] as an alternative.

The RPi3 is a single-board computer initially developed for
teaching applications. Now, it is actively used in many fields,
such as robotics, smart sensor control, and structural health
monitoring. The board comprises the Broadcom BCM2837
SoC, equipped with a 1.2 GHz 64-bit 4-core Cortex-A53, and
1 GB low power DDR2 clocked at 900 MHz.

The ARTIK 710 Module is an embedded computing
System-in-Module by Samsung targeted for high-end gateways
with local processing and analytics. It consists of an 8-core 64-
bit ARM Cortex-A53 running at 1.4 GHz with 256 kB shared
L2-Cache, and two 512 MB DDR3 16-bit memory chips with
32-bit memory interface, which provides a throughput of
6.4 GB/s.

2) Sensor-Node: The sensor-node is based on the STmicro-
electronics STM32F405RG and features the LIS344ALH [69]
as analog accelerometer, along with the humidity and tempera-
ture sensor HTS221 [70]. The STM32F405xx family of MCU
is prevalent for embedded computing, due to the relatively
high operating frequency and the floating point (FPU) unit
with a full set of DSP instruction. Our STM32F405RG unit
contains an ARM 32-bit Cortex-M4 CPU with FPU running at
168 MHz, 192 kB of SRAM, and 1 MB of Flash memory. The
board also includes the CAN bus communication to manage
the nodes-gateway communication.

V. HPCA IMPLEMENTATION

Here, we provide an overview of the implementation and
optimization of the HPCA on the presented hardware archi-
tectures. In particular, we focus on the two key constraints of
these platforms, namely the CPU-time tCPU and the memory
M needed to execute the HPCA algorithm for a single time
series. To ensure real-time operation tCPU < tw = d/fs = 5 s.
Gateway platforms must run the algorithm for NS = 45 3-
axial sensors. The main challenge is represented by the time
constraint as the algorithm must run for every axis of every
sensor, tCPU ∗NS ∗Nax < tw. In contrast, when considering
the option to run HPCA on sensors, it needs only 3 iterations
(one for each acceleration axis, tCPU ∗Nax < tw), but it has
to deal with a strict memory constraint, i.e., M < 192 kB.

To handle these challenges, we compare four different im-
plementations, two running on gateway (GT) and two running
on sensors (SNS):

GT1 is a 4/8-core version: a single iteration of the HPCA
is parallelized on each core available;

GT2 is a 4/8-core sensor-level parallelized version: for
each free core, one iteration of the HPCA runs on
it, separately;

SNS1 is a 1-core floating point version;
SNS2 is a 1-core fixed point (16 bit) version.

A. Gateway implementations

The two versions of the History PCA proposed for the
gateways are implemented using optimized Numpy Python 3.5
library [71], relying on highly optimized BLAS and LAPACK
libraries for linear algebra computation. The focus of the two
implementations is the reduction of the execution time of the
HPCA.

GT1 is characterized by the internal parallelization of the
HPCA algorithm, such that all the available cores are used
to execute a single step of the HPCA algorithm and for a
single trace. As a result, GT1 has a minimal memory footprint
(gateway process data from only one sensor at a time).
However, computational time does not scale with the number
of core nC since many operations (e.g. QR decomposition)
can not be fully parallelized.

To cope with this limit, we introduce GT2, which processes
data from multiple sensors in the same time slot. GT2 is
based on a single-core version of the HPCA iteration, which is
executed nC times in parallel on nC different input time series
coming from nC different sensors. Therefore, GT2 achieves a
near-ideal speed-up, which is only limited by the simultaneous
accesses to the memory. As a counterpart, since nC instances
of the HPCA are parallelly run, GT2 requires nC× higher
memory footprint.

B. Sensor-node implementations

Both proposed HPCA implementation running on sensor
nodes exploits optimized C code, with CMSIS matrix opera-
tions to minimize the execution time.

SNS1 implement the HPCA algorithm in floating-point
precision without any parallelized task. The great disadvantage
of SNS1 is related to memory occupation. A straightforward
deployment of the proposed method could not match the actual
memory constraint of the sensor-nodes, and it could limit the
maximum instance length d.

SNS2 aims at solving the memory issue by means of a
16-bit fixed-point implementation. With this setting and by
exploiting the CMSIS highly optimized matrix operations,
SNS2 reduces both the time and the footprint by a factor of
two, storing 16 b instead of 32 b for each element, and using
the SIMD MACs for matrix multiplications. These advantages
come at the cost of a decrease in reconstruction accuracy. To
cope with it, careful tuning of the data quantization has been
investigated. We address the two critical parts of the Algorithm
1 with two different operating ranges: computation in line 13
represents the former (mainly matrix multiplications) while the
QR decomposition in line 14 is the latter. For the first task,
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we use a high number of integer bits q1 = 5b to capture the
high dynamic range of the input signal1.

In the QR decomposition, as anticipated in Section III-A, we
split this task in two stages where the number of integer bits
is q2 = 4b for QR1 (computation of the vectors wi) and it is
q3 = 2b in the QR2 stage (multiplication of the matrices Pi).
All reported number of integer bits are the result of a trade-
off between dynamic range and precision assessed. Indeed, q3
has been analytically derived, while q2, as well as q1 in the
first step, has been computed through a grid search experiment
on a cross-validation set composed by 4 hours of recording.
We keep floating-point representation for the normalization
of the wi vectors (‖wi‖2 =

√
2, see Section III-A), since

the memory occupancy is not significant while more accurate
values strongly impacts the performance.

As a result, the average reconstruction quality for SNS2
is only slightly lower compared to the one observed with
SNS1. To compensate for this residual performance loss, we
lower the CR with an increase of the parameter k (from 32
to 50) such that the target quality of service is maintained
(average RSNR = 16.02 dB). Note that we do not account
for a 8 b fixed-point implementation because, in that case, the
approximation error with any combination of the parameters k,
m, B is such that the algorithm fails in reaching the minimum
acceptable RSNR .

VI. EXPERIMENTAL RESULTS

We define forced vibration as the vibration that results from
the application of an external time-dependent disturbance.
Note that under a forced vibration, a structure tends to vibrate
at its natural frequencies. Even a subtle variation can be a
symptom of structural damage or deterioration [72], and it is
paramount to observe how the structure oscillates.

In the next paragraphs, we first show how a peak-tracking
algorithm maintains its accuracy by working on the recon-
structed signal instead of the original one. We use this al-
gorithm to demonstrate the suitability of a PCA-based ap-
proach to reduce the traffic on a SHM sensor-network while
maintaining the accuracy of the analysis performed on the
data. Noteworthy, the embedding of a PCA solution on the
very edge of the network can further enhance a SHM system,
for example, with an additional standalone anomaly detection
solution, as demonstrated in [27].

We tested the HPCA compression in both its floating-point
(GT1, GT2, SNS1) and fixed-point (SNS2) implementation in
the viaduct health monitoring scenario. We provide a detailed
analysis of the energy and delay of the HPCA implementation
on both the levels of our SHM network, namely the gateway
and the sensor-node, discussing the optimal implementation
and the optimal hardware for the application.

Finally, we discuss the trade-off in load reduction at differ-
ent levels of the networks by analyzing the difference between
sensor and gateway deployment. If not differently specified,
all the implementations achieve a level of reconstruction
RSNR > 16 dB.

1input instances were normalized by adopting an average and a standard
deviation previously estimated on a training set.

A. Peak Detection

We first introduce an approach for peak detection, used
in our SHM system to track the natural frequencies of the
structure and, eventually, damages in the tendons of the
viaduct. Note that this technique is applied to each sensor
data stream separately, thus resulting in parallel tracking of
multiple structural elements. Moreover, since the tendons are
redundant, a damage on a tendon is not catastrophic for the
entire viaduct. Hence, an anomaly detection of a tendon, even
if late, serves as a precursor of a more extensive problem on
the whole viaduct, and it is used to trigger the maintenance
intervention. In Sec. VI-A1 we show an example of a tendon
breakage happened on the structure. The natural oscillating
frequencies can be extracted from the sensor data by detecting
the peaks in the signal spectrum. Although the number of
peaks and their position depends on the length and on the
strain at which the tendons are pre-stressed, the example in
Fig. 6 well represents a general case. In fact, most of the
signals manifest pairs of peaks nearly evenly distributed in
the frequency domain.

The Power Spectral Density (PSD) is estimated by av-
eraging the periodograms over 18 non-overlapping Hanning
windows of 200 s each. Hence, every hour, an estimate is
produced with a frequency resolution of 5 mHz, which is
needed to detect small relative variations of peak frequencies.
The resulting profiles are smoothed by a Savitzky-Golay filter
(length 11, degree 3) and processed by a peak-picking method.
The peak-picking method extracts the highest 15 local maxima
that have prominence2 lower than half of their height. Finally,
peaks with a maximum distance of 0.2 Hz and belonging to
successive time frame are grouped.

Fig. 6 shows an example of spectrum estimation from
original and reconstructed signals of the x-axis vibration
signal from one of the viaduct tendons. We consider both
the floating-point and 16 bit fixed-point implementation of
HPCA compared to the classical PCA method with the set of
parameters that guarantees the target RSNR . All four spectra
share the same profile in the region near the peaks, but they
significantly differ in the other bands. Both PCA and floating-
point HPCA show a filtering effect, while the profile of fixed
point HPCA remains at the same level as the original one but
with a more noisy trend.

The performance of the peak-tracking algorithm is tested on
an additional 1-week test set following the two 1-week periods
used as training and validation sets. The figure of merit used
to validate the approach is the error in the peaks detection
made on reconstructed signals compared to the case where the
original signal is considered. The error regards both frequency
(errf ) and amplitude (errA) of the peaks and it is computed
in terms of difference between the uncompressed and recon-
structed cases: errf =

∣∣f ref − f ∣∣, errA =
∣∣Aref

dB −AdB
∣∣,

where the pair (f ref , Aref
dB) represents frequency and amplitude

in the uncompressed case, and (f,AdB) the peak characteristic
in the case of interest.

2In topography, prominence is a measure of the independence of a peak
and is computed as the height of a peak relative to the lowest contour line
encircling it but containing no higher peaks.
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Fig. 6. PSD of the x-axis acceleration signal of one of the sensors in the
viaduct monitoring system. First ten peaks are used to monitor the health
condition of the viaduct.

Fig. 7. Peak tracking of the ∼ 39.9Hz peak over a period of 1 week, using
original signal and reconstructed signal from PCA, floating point HPCA and
fixed point HPCA. Panel a shows the frequency tracking, while panel b the
amplitude one.

Tab. III summarizes the results in terms of mean, standard
deviation (std), and max value observed over the ten peaks and
the whole test set. Both in frequency and amplitude, all the
investigated approaches obtain a low mean error. It is worth
noting that the max errf recorded in the test set is just 4-5
times the PSD frequency resolution which is lower than the
resolution needed to detect physically meaningful frequency
shifts.

To better appreciate performance, Fig. 7 depicts the fre-
quency and amplitude profile of the ∼ 39.9Hz peak over the
1-week test set period for the different approaches along with

TABLE III
PEAK DETECTION PERFORMANCE OVER 1 WEEK. MEAN = ERROR MEAN,
STD = STANDARD DEVIATION OF THE ERROR, MAX = MAXIMUM ERROR.

frequency [mHZ] amplitude [dB]
mean std max mean std max

PCA 0.21 1.17 20 0.03 0.07 0.71
floating-point HPCA 0.21 1.18 20 0.03 0.06 0.80
fixed-point HPCA 0.41 1.78 25 0.52 0.50 2.27

Fig. 8. Shift in the natural frequencies of the viaduct after a tendon strand
break. In the upper part, the shift observed using the original signal, in the
lower part the one reconstructed using HPCA.

the no compression case. Although it is the peak with the
highest errf and errA, the difference between the curves is
negligible.

1) Damage Identification: We tested this algorithm to
benchmark its capability of identifying damages in the viaduct
structure. In particular, during the monitoring period, the
viaduct experimented a tendon strand breakage, triggering a
maintenance intervention to check the conditions of the whole
structure. We tracked the natural frequencies before and after
this event: Fig. 8 shows the change from the initial natural
frequencies; part A depicts the variation computed with the
usage of the original signal, part B of the reconstructed one.
The natural frequencies are computed using the x-axis and the
tracking algorithm presented in the previous section. We used
the floating-point HPCA with k = 32 to compress the signal
in part B. After the break, we observed a 2.0% lowering in
the natural frequencies. Noteworthy, using both the original
and the compressed signal, this shift can be observed with
the same accuracy, with a negligible loss on the average shift
accuracy (less than 0.1%).

B. Platforms and implementations: Energy & time trade-off

We use the energy consumption and the execution time to
highlight the difference among implementations and hardware
platforms, identifying optimal choices for our SHM sensor-
network. At the same level of the network (i.e. gateway and
sensors), we selected the best performing solution in terms
of energy, that respects the near real-time constraint imposed
by the gathering of the sensor data (fs = 100Hz). Note that
minimizing the energy entails several advantages on edge
devices, such as i) an higher number of sensors supplied
by the same power bus, ii) increasing the number of tasks
executed by a single node with the same energy budget, and
iii) allowing for an higher battery life of a possible future
battery powered sensor network. First, we compare the two
gateway algorithms and the two gateway platforms, and then
we show the differences between the two sensor-node versions.
To measure execution time, speed-up due to parallelization,

and energy consumption of the HPCA iteration (the τ -loop
in Alg. 1), we consider a full pass through the whole training
set. We use the default power mode for all our experiments on
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TABLE IV
PERFORMANCE OF GT1 VS. GT2 ALGORITHMS ON RASPBERRY PI 3.
RESULTS REFER TO THE EXECUTION WITH d = 500, B = 1, k = 32,

m = 3. IN BRACKETS THERE ARE SPEED-UP AND ENERGY SAVING WITH
RESPECT TO THE 1-CORE EXECUTION.

CORES [#] 1 2 4

GT1 time [ms] 44.6 (1×) 38.4 (1.2×) 35.3 (1.3×)
energy [mJ] 18.8 (1×) 26.9 (0.7×) 44.0 (0.4×)

GT2 time [ms] 44.6 (1×) 24.1 (1.9×) 13.3 (3.4×)
energy [mJ] 18.8 (1×) 16.8 (1.11×) 16.5 (1.13×)

TABLE V
PERFORMANCE OF GT2 ON ARTIK 710 VERSUS RASPBERRY PI 3.

RESULTS REFER TO THE EXECUTION WITH d = 500, B = 1, k = 32,
m = 3. MM AND QR STAND FOR MATRIX MULTIPLICATION AND QR

DECOMPOSITION. IN BRACKETS THERE IS SPEED-UP COMPARED TO THE
1-CORE EXECUTION.

nC 1 2 4 8

Samsung ARTIK 710
time [ms] 34.7 (1×) 17.7 (2.0×) 9.0 (3.9×) 4.9 (7.1×)
MM [ms] 11.1 (1×) 5.7 (1.9×) 3.0 (3.7×) 1.6 (6.9×)
QR [ms] 22.6 (1×) 11.5 (2.0×) 5.9 (3.9×) 3.1 (7.2×)

Rasberry Pi 3 Model B
time [ms] 44.6 (1×) 24.1 (1.9×) 13.3 (3.4×) n.a.
MM [ms] 16.2 (1×) 9.3 (1.8×) 5.1 (3.2×) n.a.
QR [ms] 27.0 (1×) 14.1 (1.9×) 7.8 (3.5×) n.a.

the Rpi 3 and the Artik 710 Module, and an external Keithley
2400 SourceMeter SMU for power measurements.

Nevertheless, minimizing the energy budget on a Wireless
Sensor Network or, in general, on an edge computing platform,
entails several advantages. For instance, it is possible to deploy
a higher number of sensors on the same power bus, without
increasing the maximum output current. Furthermore, a lower
energy budged allows to increase the number of tasks that are
executable on the edge node, simplifying also the deployment
of a future battery powered version of the network.

1) GT1 vs. GT2 on Rpi3: Here, we analyze the execution
time and the energy required by the RPi3 gateway to run GT1
and GT2 implementations with an increasing number of cores.
Since we want to evaluate the effects of parallelization, the
execution time tex refers to the inverse of the throughput,
the number of results produced per unit of time. For GT1,
since the parallelization is internal, tex is equivalent to the
latency of a single HPCA instance. Differently, in GT2, tex is
obtained by running a HPCA instance for each one of the nC
considered cores and dividing the total time by nC . The results
are reported in Table IV. All the experiments are conducted
considering the set of parameters obtained as result of the
tuning procedure (Sec. III-D), i.e., d = 500, k = 32, B = 1,
m = 3.

With this setting, a HPCA iteration requires 44.6 ms to run
on a single-core. The parallelization on 4 cores results in a
1.3× and 3.4× speed-up for GT1 and GT2, respectively. The
low speed-up of GT1 is due to the small dimension of the input
data that leads to very high overhead. Instead, the not ideal

speed-up of GT2 (3.4 < nC = 4) is probably caused by the
high number of simultaneous accesses to the DDR2 memory.
That is shown in the lower part of Table V that analyzes
the speed-up of GT2 on RPi3. Note that with the single-core
configuration the time to process the 3-axial signals from all 45
sensors managed by a gateway (tCPU = NSNaxtex = 6.02 s)
does not satisfy the constraint of tCPU < tw = 5 s. Paralleliza-
tion is, therefore, essential on RPi3 to guarantee the feasibility.

Not only GT2 is faster than GT1 but is also more energy-
efficient, showing a 1.13× energy saving of the multi-core
execution compared to the single-core and a 2.7× saving
compared to its GT1 counterpart.

In the rest of the section, we will benchmark the results
using GT2 as best performing implementation in terms of
execution time and energy saving on the gateway.

2) ARTIK710 vs Rpi3: We here assess the ARTIK710 as
an alternative gateway to the Rpi3 to improve the performance
of the current installation. To evaluate the differences, we
benchmark the two platforms using single-core and maximum
core executions. Table V portraits a detailed comparison of the
HPCA execution on the two platforms. Using a single-core
configuration, the ARTIK710 and the RPi3 have a compa-
rable execution time (34.7 ms vs. 44.6 ms). Nevertheless, by
considering the best performance configuration that exploits
all available cores, the ARTIK710 is 2.7× faster. The higher
speed-up of this platform is mainly due to the higher number of
cores but also given by the faster DDR3. Indeed, with the same
number of cores, Artik710 achieves higher speed-up (3.9× vs.
3.4×).

Note that, considering their most performing HPCA imple-
mentation, both Artik710 and RPi3 platforms allows a single
gateway to process all the 90 sensors of the considered instal-
lation. The system bottleneck, therefore, remains the sensors-
gateway communication that limits to ∼ 50 the number of
sensors per gateway.

We also evaluate the relation between energy and the
size of the input block B of the HPCA iteration. Fig. 9
shows the trade-off between memory occupancy and energy
consumption. Note that, the memory occupancy of the HPCA
algorithm is represented by

M = (3dk + dB + k2)ds

where dB accounts for the input Xτ , 3dk and k2 for the
intermediate data to compute the Qτ matrix, and ds is the
size of the data (e.g. 4 B for a float). For high values of B
(i.e., B � k), the memory occupancy is dominated by Xτ ,
while for B � k, it is determined by the matrices S and Qτ .

Increasing the value of B reduces the number of Xτ blocks
n = N/B that compose the training set, and consequently,
the number of iteration required by the HPCA to obtain
the result. For instance, by increasing B from 1 to 50, the
HPCA necessitates 1.5× memory (from 198 kB to 296 kB and
saves almost 50× energy consumption on both the platforms.
Overall, setting B = 1 (minimum memory footprint) allows a
1221× memory reduction compared to standard PCA, moving
from 242 MB to 198 kB which results in passing from 65.3 GB
to 53.5 MB if we consider the whole 90 sensors installation.
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Fig. 9. Trade-off between energy consumption and memory occupation after
a full pass over all the training data of the HPCA. Settings: d = 500, k = 32,
B ∈ [1, 512], m = 3. c = core.

Fig. 9 also depicts the different energy consumption be-
tween the two platforms. On a single-core, HPCA is computed
bound, and the Artik module shows higher energy consump-
tion due to the DDR3 RAM, which is more power-hungry than
the DDR2 mounted on RPi3. When we move to the multi-
core execution, the bottleneck becomes the memory access.
The DDR3 in the Artik module grants for quicker access to
the RAM that allows the eight cores to run more efficiently,
resulting in lower power consumption compared to the single-
core configuration. Conversely, the DDR2 mounted on RPi3
does not allow the four cores to exploit the maximum speed-
up since most of the time is spent in load-store operations,
and the speed-up is not able to compensate the higher power
consumption.

3) SNS1 vs. SNS2: In this paragraph, we move to the sensor
node to compare the SNS1 and SNS2 implementations. Since
the mounted uC is characterized by a strict memory constraint
(192 kB), we consider the lowest memory configuration, with
B = 1, k = 32, and m = 3. Even with this setting, SNS1 does
not fit the uC memory; to overcome this issue, we developed
the 16 b fixed-point implementation that ideally halves the
memory occupancy. In practice, the memory is reduced only
of 22% (from 200 kB to 156 kB) as the fixed point requires
an increase of the k (from 32 to 50) parameter to meet the
QoS required by the application. Indeed, this reduction is
sufficient to meet the memory constraints of a microcontroller,
and hence we consider this implementation in the gateway-
sensor comparison.

We test SNS1 and SNS2 with a common set up, i.e. by
decreasing both d and k to 100 and 7 (we kept constant
CR ∼ 15). Note that this comparison is only synthetic, since
using the small k = 7 with the reduced d = 100 does not allow
to maintain the minimum RSNR. Thus, it can not be con-
sidered as a possible solution for the sensor-deployment. We
use this experiment to provide a detailed comparison of SNS1
and SNS2, highlighting the energy benefit of using SNS2.

As expected, the SNS2 (fixed-point) shows a 2.2× faster
execution and consumes 2.2× lower energy when compared
to the SNS1 floating-point implementation (STM32F405RG
column of Table VI). The lower execution time is achieved
thanks to the DSP SIMD instructions.

Hence, the fixed-point implementation not only makes the
HPCA runnable on the uC but also outperforms SNS1 in terms
of execution time and energy consumption. As a counterpart,
the SNS2 reaches a lower compression factor, thus implying

that SNS1 could be a better choice for sensor-nodes with
higher on-board memory.

C. Gateway vs. Sensor Node: load reduction trade-off

We finally compare the two implementation paradigms,
namely the gateway implementation and the sensor-node one,
by giving a short explanation of the most crucial trade-off, i.e.
load reduction at different sensor-network levels. We analyze
the system while moving the workload to the edge, from GT2
running on RPi3 to SNS2 running on STM32F405RG with
d = 500, k = 32, 50, m = 3, and B = 1 as parameters.

First, moving the HPCA to the sensors allows managing big-
ger networks, increasing the scalability of the sensor-network
without having limits of processing time on the gateway.
Therefore, a new possible installation could be composed of
a much higher number of sensors with a single gateway that
manages the signal from all the nodes. It is noteworthy that it
is not necessary to minimize the delay at this level, but simply
to respect the real-time constraint imposed by the gathering of
the sensor data. For the fixed d = 500 and k = 50 (imposed
by the application to obtain RSNR > 16 dB), the time to store
a new batch of data is 5 seconds (sample frequency of 100Hz)
and the time of PCA processing on the STM32F4 is 569ms.
Consequently, the only limitation becomes the connection’
bandwidth between the sensor and the gateway, as explained in
Sec. IV-A. This limitation only depends on the communication
protocol of the network, such as wireless networks or CAN
connection (as in our case).

Nevertheless, the network traffic is the most impacted
metric. Deploying the HPCA on the sensor causes a reduced
compression of CR = 10 to maintain the same quality of
results. Therefore, we can observe that i) the traffic between
gateway and cluster is increased by 50% (CR from 15 to 10),
and ii) the one between sensor and gateway is compressed by
10×. Hence, depending on the available bandwidth of the two
links, different solutions can be optimal. In our case, deploying
the HPCA on the sensors allowed us to reduce the number of
gateways in the network from 2 to 1, since the same CAN bus
supports up to 500 sensor nodes instead of 50.

VII. CONCLUSION

This work presents the embedding and acceleration of the
History PCA algorithm at both gateway and sensor level for
data compression in a structural health monitoring system.
The implementations of HPCA on gateways obtain the same
performance as the standard PCA, i.e. CR = 15 with average
RSNR = 16dB and a mean error in spectrum peak tracking
lower than the frequency resolution 5 mHz, with 1221× lower
memory footprint. Further moving the HPCA to the sensor-
node, we achieved the same RSNR and functional performance
with a slightly lower compression factor CR = 10, which yet
allows reducing the traffic on the gateway-sensors links by an
order of magnitude.

We also compare different implementation on the two-levels
of the SHM network and different gateway platforms, demon-
strating that: i) the Artik 710 achieves 2.9× faster execution
and 1.4× energy reduction, with respect to Raspberry Pi
3. ii) A 16 b fixed-point implementation meets the memory



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X X 13

TABLE VI
PERFORMANCE OF ALL THE IMPLEMENTATION ON THE DIFFERENT PLATFORMS. SETTINGS: B = 1, m = 3.

Raspberry Pi 3 (d = 500) ARTIK 710 (d = 500) STM32F405RG (d = 100/500)

time [ms] energy [mJ] time [ms] energy [mJ] time [ms] energy [mJ]
CR scalability max(D) 1-c 4-c 1-c 4-c 1-c 8-c 1-c 8-c 1-c 1-c

GT1 15 38 (Rpi3) ∞ 44.6 35.3 18.8 44.0 34.7 13.3 34.4 30.9 n.a. n.a.
GT2 15 100 (Rpi3) ∞ 44.6 13.3 18.8 16.6 34.7 4.9 34.4 11.3 n.a. n.a

SNS1 15 ∞ 450 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 40.4/n.a. 11.6/n.a.
SNS2 10 ∞ 500 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.0/569.0 5.2/163.0

constraint of the end-nodes at the cost of a reduction in the
CR. iii) embedding the HPCA on the sensor permits the full
scalability of the application and allows the gateway to manage
10× more sensors maintaining the same data-traffic of the
sensor-network without the compression applied. Moreover,
reducing the traffic allows to move from a wired sensor-
network to a wireless sensor network.

Our future work will focus on moving the computation of
the HPCA on a multi-core low power end-node to further
reduce the energy required to compress the signals. .
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