
21 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Enabling Smart Manufacturing by Empowering Data Integration with Industrial IoT Support / Bosi, Filippo;
Corradi, Antonio; Di Modica, Giuseppe; Foschini, Luca; Montanari, Rebecca; Patera, Lorenzo; Solimando,
Michele. - ELETTRONICO. - (2020), pp. 1-8. (Intervento presentato al convegno 2020 International
Conference on Technology and Entrepreneurship (ICTE) tenutosi a Bologna nel 21-23 Settembre 2020)
[10.1109/ICTE47868.2020.9215538].

Published Version:

Enabling Smart Manufacturing by Empowering Data Integration with Industrial IoT Support

This version is available at: https://hdl.handle.net/11585/774367 since: 2021-03-01

Published:
DOI: http://doi.org/10.1109/ICTE47868.2020.9215538

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/774367
http://doi.org/10.1109/ICTE47868.2020.9215538

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Bosi et al., "Enabling Smart Manufacturing by Empowering Data Integration with
Industrial IoT Support," 2020 International Conference on Technology and
Entrepreneurship (ICTE), Bologna, Italy, 2020, pp. 1-8

The final published version is available online at
https://dx.doi.org/10.1109/ICTE47868.2020.9215538

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICTE47868.2020.9215538

Enabling Smart Manufacturing by
Empowering Data Integration with Industrial

IoT Support
Filippo Bosi2, Antonio Corradi1, Giuseppe Di Modica1, Luca Foschini1,

Rebecca Montanari1, Lorenzo Patera1, Michele Solimando1

1Department of Computer Science and Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
{antonio.corradi, giuseppe.dimodica, luca.foschini, rebecca.montanari, lorenzo.patera, michele.solimando2}@unibo.it

2Imola Informatica SpA, Via Selice 66/A, 40026 Imola (BO), Italy
fbosi@imolainformatica.it

Abstract—Industry 4.0 (I4.0) denotes the start of a
new era where another industrial revolution is urged
to explode. Simply put, I4.0 aims at enhancing the
competitiveness in the manufacturing industry, while
at the same time improving the safety and security of
work centers. The achievement of that goal is bound to
the adoption of enabling information technologies (IoT,
Cloud, Big Data) to build a unified and integrated view
of the information generated at all stages of the indus-
trial processes, both operational and business oriented
ones. This paper focuses on the need for manufacturing
companies of tools that concretely implement this data
integration as a requirement to enforce the improvements
fostered and needed by the I4.0 revolution. This paper
follows a former work that proposed the design and im-
plementation of a platform realizing the integration of the
operational and the business views at the data level. We
enhanced the existing platform features by introducing
new component that implements the interface with IoT
devices via well-known communication protocols, namely
MQTT and AMQP. Experiments run to test the newly
introduced feature show the viability of the proposed
approach with respect to the time constraints that are
typical of a manufacturing production environment.

Index Terms—Industry 4.0; Smart Manufacturing;
RAMI 4.0; SCADA; OPC-UA; Cyber-Physical Systems;
Cloud-enabled Data Collection; MQTT; AMQP

I. INTRODUCTION

Industry 4.0 (I4.0) revolution is bound to yield a
remarkable change to the way industry approaches the
manufacturing area. Mature Information Technologies
(IT) such as IoT, Cloud Computing and Big Data
can sustain the concept of ”industry digitization”. This
pervasive transformation process will force companies
to develop a unified data infrastructure where infor-
mation generated at operation level (i.e., produced
by machines, production chains, etc.) integrate with
both end-user data and business data. This integration
will require to make the great amount of operation
level data available at the enterprise level. In the
light of that, companies will have better insights on

the live production performances and will be able
to undertake both short-term and long-term business
actions. Among the benefits of interoperation between
the operational technology (OT) layer and IT layer,
one can certainly list better machine utilization, better
performing production lines, enforcement of predictive
machine maintenance, improved security for people
working alongside the machines, opportunity to run
new business models, and many more.

As I4.0 aims to connect all parties involved in
manufacturing processes, a strong need for reaching a
broad consensus over the semantics of the prospected
context has arisen. Many standardizing initiatives have
been promoted in several countries that all share the
common goal of laying down reference models and
technical specifications to drive the aforementioned
revolution [1]–[6]. Among those initiatives, we fo-
cus on putting great emphasis on the OT/IT conver-
gence. Along that direction, the Reference Architecture
Model for Industrie 4.0 (RAMI 4.0) [1] is a European
initiative that defines a service-oriented architecture,
leveraging different technological solutions to address
I4.0 issues. As for low-level data acquisition and com-
munication RAMI 4.0 embraces, among others, the
well known Supervisory Control and Data Acquisition
(SCADA) [3], a communication protocols family for
legacy devices, and the Open Platform Communica-
tions - Unified Architecture (OPC-UA) [7], and in-
dustrial M2M communication protocol designed with
interoperability in mind.

Though many industrial reference models are cov-
ered by the big umbrella of RAMI, full data integration
and OT/IT interoperability is barely addressed. Guided
by the need to fill this gap, in a former paper we
proposed the definition of a cloud-enabled architecture.
Our architecture supports data management between
the OT and IT levels in an interoperable manner and
to monitor legacy production machines during their

operations inside customers plants. This paper en-
hances that paper’s achievements. First, it provides the
platform architecture with a novel component that im-
plements the support for IoT communication protocols
MQTT and AMQP; second, it implements a software
prototype by leveraging well known open source tools;
third, it provides the needed support to meet mission
critical requirements typical of cyber-physical working
environments; fourth, it presents experimental results
that confirm the viability of the proposed solution.

The rest of the paper is structured as follows. Sec-
tion II glances on the I4.0 standardization initiatives
that inspired this work. In Section III the platform’s
design and implementation principles are recalled,
while in Section IV the result of the tests are presented
and commented along. Related work is discussed in
Section V. Finally, Section VI concludes the work.

II. BACKGROUND

In the last few years I4.0 has attracted many private
and public funds. The manufacturing sector is strategic
for new generation industries in which customers can
buy customized products, while optimized data and
control flows permit to efficiently drive the plant. Ad-
vanced control flows are fed by multiple IoT sensors
that collect information from the plant and forward
them to entities that analyze and recommend the nec-
essary control actions. The amount of data that in an
industry is daily gathered and analyzed is huge. Every
sensor can sample and transmit data at a very strict
time interval and with different granularity. Usually,
data communication is not one-to-one, since multiple
actors can be interested in the same data flow. More-
over, protocols used by Industrial IoT (IIoT) sensors
are diverse and very heterogeneous, thus normalization
actions over data flows are often necessary.

In this section, we provide a view of the main exis-
tent platforms and standards concerning I4.0. Without
any pretense of being exhaustive, the goal of the
section is to facilitate the identification of the critical
aspects and stress the differences with respect to the
proposed solution (see Section III). We present three
emerging standards. The first one is the Reference
Architectural Model Industrie 4.0 (RAMI 4.0) [1],
a three-dimensional spaced model defining how to
approach I4.0 issues in a structured manner. Thus,
we explore Supervisory Control and Data Acquisition
(SCADA) [3], a technology widely is being used
in industrial and in manufacturing plants from over
30 years. Finally, we investigate the Open Platform
Communications (OPC) protocols [8], which focuses
on secure and real-time machine-to-machine (M2M)
interoperable communications.

A. Reference Architecture Model Industrie 4.0
In Figure 1, RAMI 4.0 is depicted. The model

ensures that all the entities involved in the platforms

Fig. 1. Reference Architectural Model Industrie 4.0

can communicate in a uniform and standardized within
a service-oriented architecture. It makes wide use of
the divide and conquer principle, splitting the com-
plexity in several packages, including data privacy and
IT security. The model develops in three distinct yet
complimentary dimensions:

• Hierarchy Levels (IEC62264/IEC61512). This
axis models the environment surrounding the in-
dustry. It spans from the product to the perspec-
tive of a connected world, opening the system
to other external enterprises, devices and smart
things in general. It is compliant with the 62264
and 61512 IEC standards. The former is an en-
terprise standard for system integration having
its roots in the ANSI/ISA-95 [9] international
standard: it helps to define boundaries between
the enterprise systems and the control systems.
The latter defines reference models for the batch
control (as it is used in the process industries)
and the terminology explaining the relationships
between these models and the terms.

• Life Cycle & Value Stream (IEC62890). This
axis identifies two main phases. The first one
(Type) defines the entry of design, development
and test orders, carried out up to the first sample
and the production of the following prototypes. At
this stage, therefore, the type of product, machine,
etc. is represented. Only at the end of all tests and
the corresponding validations, the type is certified
and released for series production. The second
phase (Instance) identifies the products manu-
factured according to the general type described
in the previous phase. Each product represents
an instance of a specific type and has a unique
serial number. Then the requests are transferred
and delivered to customers. On the customer side,
the products are initially just types. They become
instances when they are installed in a specific
aggregate system.

• Layers. This axis models the classical partition
of the Cyber-Physical Systems (CPS). At the
bottom the physical things in the real world are

represented (sensors, actuators, etc.). The physical
object interfaces directly with its digital repre-
sentation (Integration layer). The digital repre-
sentation is then shared with the surrounding
entities through the Communication layer. From
the data it is now important to extract information,
dependently to the nature of the asset. Then the
systems can be integrated in a unique Functional
layer, providing input for the top Business layer
which enables the development of new business
processes and better organization of the plants.

B. Supervisory Control and Data Acquisition
SCADA [3] systems are centralized entities devoted

to control sensors, actuators and assets, and to trigger
corrective actions over them. SCADA systems are
often equipped with advanced Graphical User Interface
(GUI) that helps operators monitor the plant. The
control actions over the plant can either be done by
the system or manually driven by an operator. In
SCADA systems the controlled plant can be highly
sparse in space and the assets need to guarantee a
connection with the SCADA servers in order to be
monitored and controlled. The assets are often called
field devices, since they act directly on the plant
with operations such opening and closing valves and
breakers. The manners in which SCADA application
interact and control the assets are several. Usually,
every SCADA-compliant component has to expose an
accessible protocol, such as MODBUS [10] or a carrier
such as the MQTT [11] or the AMQP [12] protocols,
through which the asset state can be monitored. More-
over, SCADA usually hides the underlying protocols
complexity, giving the illusion a unique interface of
interactions.

C. Open Platform Communications
OPC operates in the context of devices inter-

communication in a client-server manner. Its main
purpose is a unique and standardized way to easily and
securely exchange data between different industrial
platforms from multiple vendors. The OPC products
are more than 35.000 and the specifications help to
overcome interoperability issues and to eliminate the
need of post-production standardization efforts [13].
Also, there are several OPC specifications. The Classic
one [8] derives from the Microsoft Distributed Compo-
nent Object Model (COM/DCOM) [14]. The whole set
of protocols is broken down into three main categories,
according to the type of data that can be accessed: Data
Access (DA), Alarms and Events (AE) and Historical
Data Access (HDA).

With the advent of the Service Oriented Applica-
tions (SOA) approach [15], in 2008 OPC specifica-
tions too evolve into a more complex and power-
ful architecture: the OPC Unified Architecture (OPC-
UA) [7]. Similarly to RAMI 4.0, OPC-UA adopts a

multi-layered approach that targets the I4.0 emerging
problems. The architecture is functionally equivalent
to the Classic OPC specification and is also platform
independent, secure and extensible.

III. PLATFORM DESIGN AND IMPLEMENTATION
INSIGHTS

In this section we illustrate the design and the imple-
mentation details of the proposed layered platform. We
designed the platform architecture to overcome some
industrial integration issues, but also to be scalable
and to correctly address the different stakeholders’
necessities. Basically, the architecture’s purpose is to
serve the need of extracting real-time data from hetero-
geneous industrial machines and to present stakehold-
ers (plant operators, IT expert, machine vendors) with
personalized subsets and aggregated information views
from the plant. The platform stems from tight collab-
orations with important manufacturing industries that
contributed to identify the company’s operational re-
quirements, safety and security issues. Figure 2 shows
an overview of the entire architecture. The architec-
ture components are deployed in different locations.
Each component has its own constraints in terms of
communication delay, data granularity and security. As
mentioned before, the architecture follows the RAMI
4.0 layers specification. Further, it takes into consider-
ation the OPC-UA specifications in that it copes with
legacy or new protocols at the OT layer. With regards
to the data extraction and transformation approach, the
reader will find some similarities between our proposal
and the one discussed in [16]. Starting bottom up, the
architecture consists of 5 layers: Machine Layer, OT,
Mirroring Layer, IT and Cloud. In the following, we
glance on each component details and on the open
source tools that were used at implementation time. In
the following figures, each tool’s color matches that of
the architecture’s component it implements (see Figure
2).

A. Machine Layer

The machine layer is characterized by cyber-
physical systems (CPS) that command machine actu-
ators and control the correct behavior of the systems.
Those components can be very complex and must
meet safety and security regulations, as they can injure
workers if compromised. Furthermore, the CPS act in
real time on actuators, striving to meet the maximum
request-response delay constraints which are in lower
order of magnitude than to those of the IT systems.
In order to interact with the CPS, many machines
expose interfaces such as MODBUS and PROFIBUS
[17] from the SCADA family, OPC-compliant devices,
MQTT or AMQP IIoT middleware platforms. Being
compatibility with legacy systems one of the I4.0
priorities (not all companies can sustain the IT turn

Fig. 2. Overall architecture schema

over by periodically getting rid of legacy machines),
integration platforms must deal with existent machin-
ery and be prepared to integrate future protocols.
Finally, machine communication protocols are very
low-level, thus the system will deal with the conversion
from the binary raw data produced by machines to a
high-level usable representation.

B. Operational Technology Layer

This layer represents the first and unique data en-
try point of in our architecture. It lays on top of
the Machine Layer and interfaces directly with it. It
includes several components, and is entrusted with
the extraction and normalization of data as well as
with their middle-term storage. Moreover, since it has
direct access to the machine controllers, and many
CPS protocols do not have advanced access control
policies, it must be placed in a network domain having
the same high security level as the machines. Figure 3

Fig. 3. Operational Technology Layer schema

shows a more detailed schematic of this layer. In the
following subsections, we deeply explore main OT-
layer components and their main roles.

1) Hmi-forwarders: Human Machine Interfaces
(Hmi) forwarders are committed to extract data from

the SCADA-powered machinery, and to normalize and
forward them to the Kafka Broker. We split the compo-
nent’s responsibilities into three main roles: extracting
data , casting the type to the corresponding applica-
tion value (int, float, etc.), converting, serializing and
sending to the broker. The first part is strictly SCADA-
protocol dependent and can be performed in push
mode in advanced systems or via polling in legacy
machines. Often, data taken from the machine regis-
ters are expressed in non-standard units (e.g. square
instead of meters) and must be converted in order to
be uniformly interpreted by other system parts. The
serialization is crucial when dealing with structured
data, as it permits to compress the messages and to
give them a fixed structure. In our system this is
achieved with a schema-based approach. The Hmi-
forwarder takes care of storing a schema of the data
in the Schema-Registry [18] component. The Schema
Registry is a server component developed by Confluent
Inc. that provides RESTful interfaces for storing and
accessing AVRO [19] schemas in a reliable manner.
The Hmi-forwarder then serializes the data according
to the stored schema and sends a message to the broker
containing both the data and the id of their schema,
which is required for deserialization purpose. Each
Hmi-forwarder publishes messages in just one topic
of the message broker. We stress that Hmi-forwarders
can be even more than one per machine, depending on
the machine’s registers composition and on the logical
splitting of the data adopted by the message broker.

2) Kafka: Core component of the layer is the
Message Oriented Middleware, which is implemented
via the Apache Kafka tool [20]. It allows to decouple
message senders (producers) from messages receivers
(subscribers). Main abstraction of Kafka is the topic
concept. A topic is a feed name to which messages
are stored and published. It is composed of several
partitions that are immutable and ordered set of mes-
sages. Each partition can be replicated in several Kafka

Broker instances in cluster mode, so that an occasional
broker failure can easily be recovered without message
loss. An instance of Zookeeper [21], a hierarchical
key-value storage platform, serves the Kafka need to
store in a reliable manner reading indices and topic
names.

3) Kafka Connect and connectors: Kafka messages
can be either consumed or produced directly via the
Kafka Connect [22] tool. The latter abstracts even
more from the basic pub/sub mechanism, by offering
the concept of messages stream and an extensible plu-
gin system for interconnecting the broker with external
data sources. Plugins can either be Source (input)
connector type or Sink (output) connector type. Each
connector instance is composed of a set of tasks that
actually copy the information between the platforms.
In order to reach the desired level of parallelism,
there can be multiple tasks per each connector. In our
architecture, we have used Source plugins to interface
with AMQP and MQTT, and Sink plugin to export data
to the Elasticsearch database. The former allowed us to
import data directly from machines powered with the
two message brokers without further customization.
Connectors can be also configured to operate simple
conversions when they transfer data, in order to grant
the same capabilities of the custom Hmi-forwarders.

4) Elasticsearch and Kibana: The Elasticsearch
and Kibana tools are part of Elasticsearch, Logstash,
and Kibana (ELK) stack, which also includes a log
management tool. Elasticsearch [23] is a distributed
database optimized for real-time queries. It is based
on Apache Lucene and can store a wide variety of
data, from geospatial information to plain application’s
structured or unstructured values. Kibana [24] is a
front-end application that provides data visualization
and search capabilities. It allows the user to create
custom real-time views of the data inside Elastic-
search, which are then rendered by means of charts, pie
and tables from which industrial experts can monitor
the business navigation. We want to stress that those
components are examples of potential data consumers
of the platform. We believe that both a storage and
a real-time view layer in the OT layer of the system
are mandatory. They provide machine’s operators with
information about machine processes in a real-time
manner, so that are able to promptly react in case of
need.

C. Mirroring Layer

The Mirroring Layer is responsible for interconnect-
ing the OT and the IT layer. It is a crucial component,
since it has functional, security and separation respon-
sibilities. The Mirroring layer software subscribes to
Kafka topics of the OT layer and produces messages
to Kafka topics in the IT layer. The component can
be customized to copy only a subset of the topics or

even a subset of the messages flow inside a topic. In
fact, some topics may contain data representing secret
recipes that should be kept protected also within the
company (e.g. the sales office). We opted for Apache
MirrorMaker (a built-in Kafka component) to serve
this purpose. We stress that the two Kafka Brokers
are not configured in cluster mode, as otherwise the
isolation between the two layers would be violated and
all data would flow from OT and IT and vice-versa.
MirrorMaker keeps in synch also the schemas by way
of a dedicated topic named schemas of which the OT
schema-registry is responsible for posting updates.

D. Information Technology Layer

The IT layer accounts for the data analysis needs
of the factory. It provides for a security domain where
aggregate, pre-process and analyze data. The rationale
behind that is to also have a portion of the system
(OT) in which all the data remain certified and do not
undergo any processing, so that in case of failure of the
upper layers the system can still be efficiently restored.
With respect to OT layer, the constraints of IT layer
are more relaxed, since a potential attack cannot di-
rectly harm either workers or manufacturing machines.
This layer replicates almost every component of the
OT layer (except the Hmi-forwarders), and contains
processing elements. In Figure 4 a schematic view of

Fig. 4. Information Technology Layer schema

the IT layers components and its interconnections is
displayed. We implemented processors using the Kafka
Process APIs, that allow to define custom functions to
be executed on ongoing messages flow. There are also
a storage and view layer for the employees that do not
directly act on machines, which provides high-level
information of the plants.

The components discussed so far are all installed
in the Customer establishment. Since third party in-
dustries may also be interested in production data, we
devised a standard interconnection mechanism. Again,
via the Kafka Connect plugins it is possible to export
data to a number of external platforms. Topics can
be selected and pre-processed, so that the Customer
will be able to show a customized view to a third
party. To make a concrete example, we figured out

that the vendor of a machine used in the Customer
establishment is potentially interested in taking a look
at the machine data. Those, in fact, might reveal
the health status and the real time performance of
the machine. We employ an additional Elasticsearch
Connector to export machines data into the so-called
Cloud Layer, which in the example is under the control
of the machines vendor.

E. Cloud Layer

Fig. 5. Cloud Layer schema

The Cloud Layer collects data coming from cus-
tomers’ establishments. This is where advanced data
analytics are elaborated. Here, we can find ETL tools
and advanced cross-customer analytics tools that help
vendors improve the quality of their machines, but also
to identify issues in running machinery. We choose
again Elasticsearch and Kibana for their simplicity of
deployment and testing, but we stress that any storage
and analytical tool can be attached by deploying its
connector in the underlying layers. In Figure 5 a
schematic of this layer is depicted.

IV. TEST AND RESULTS

In this section, we summarize the results of some
integration tests run on the platform. The aim of these
tests is to verify the correct behavior of the system
interconnected with production lines equipped with
MQTT and AMQP. We evaluated two main aspects:
stressing the system and assess its scalability.

Focusing on the software prototype, we imple-
mented the architecture described in the Section III.
We implemented every architecture component as a
Docker container to gain the benefits of lightweight
virtualization (ease of deployment and software main-
tenance). Furthermore, we chose Kuberbetes [25] for
orchestrating the containers, and Rancher [26] to man-
age the Kubernetes clusters.

The testbed consists of three VMs, each equipped
with Ubuntu 18.04.01 LTS operating system, 6GB
RAM, 100GB hard drive, 6 logical cores and a fiber
connection up to 1GBps. We deployed the OT layer
components and the MirrorMaker on one VM, while
the second VM hosted the IT layer components. Fi-
nally, we put the Cloud layer components on the third
VM. Though tests were conducted on a small testbed,
the platform is cluster-ready and easy to scale by

just adding more computational power. We emulated
machinery, and in general all physical assets, via
software. As for the machine registers, we configured
them to exchanged messages of a size ranging from 2.5
KB (simple registers) up to 3.5 KB for complex infor-
mation aggregating data from multiple registers. The
objective of the test is to stress the system capability to
cope with intense message workload when the MQTT
and the AMQP brokers are respectively employed.
In each experiment, which lasts about 16 minutes,
we switch on the machines and the registries starts
sending messages. Each machine is capable of sending
the brokers 24 messages every 30 seconds. For both
experiments, the number of machines is constantly
incremented, at regular time intervals, from 4 up to
30. We put the focus on two metrics: the number of
messages successfully delivered to the view layer and
the average end-to-end message delay.

In the depicted scenario, we tested the MQTT
performance by deploying an open-source MQTT im-
plementation called Mosquitto [27]. We configured the
simulated assets to publish their data on Mosquitto
topics, exactly as happens with machines that natively
uses MQTT implementations for their internal com-
munications.

Fig. 6. Delay test using Mosquitto Connector

The red line of Figure 6 shows the trend of the
delay measured when the messages are taken from
the Kafka broker. The green line represents the num-
ber of messages that are correctly dispatched by the
MQTT broker. The test proved that the system has
an acceptable delay (average value less than 100ms),
even when the message traffic increases. However,
the reader may notice that at time 14:55, when 30
machines are operating and a message production rate
of 720 per 30 seconds is observed at the input of
the MQTT broker (1440 messages/minute), the rate of
correctly delivered messages decrease and the message
delay becomes unacceptable, with a peak of over 1
second. At this stage, with the current deployment,
the MQTT broker queue reaches a memory saturation,
while no particular misbehaviour of the Kafka brokers
was observed.

Similarly to what was done with MQTT, we tested
the platform with the RabbitMQ broker [28], the most
widely deployed open-source AMQP implementation.

We carried out the experiment keeping the same loads
used for MQTT. As showed in Figure 7, the AMQP

Fig. 7. Delay test using RabbitMQ Connector

protocol outperforms the MQTT’s. AMQP shows an
average delay of only 14 ms, due to its optimized usage
of memory resources. Even though at time 13:35 a
peak in message average delay is observed, AMQP
manage to deliver the 100% of messages. The peak in
the delay is due to the background activity of memory
cleaning tasks that are periodically run by the broker.

At the end of the test, we can conclude that when
a low-medium message load is injected in the system,
the performance in terms of message delivered and
message delay are compatible with those required
in mission-critical contexts. Unfortunately, the per-
formance degradation observed at a given point in
time in both AMQP and MQTT experiments are due
to structural limits of the software employed in the
tests. A better configuration of AMQP and MQTT
parameters and the employment of more powerful VM
would have avoided the misbehaviour.

V. RELATED WORK

As anticipated, one of the main issues in indus-
trial environments is the integration between different
vendor-specific protocols and the overlying SCADA
applications. The literature is full of proposals that try
to implement RAMI 4.0 standard via OPC integration
or via the usage of Message Oriented Middleware
[29] to decouple senders and receivers of data. In
this section we briefly discuss literature contributions
coping with both legacy systems and IoT protocols
respectively.

[30] proposes an Open Middleware for industry
based on a MQTT broker to gather data from the
machines. The proposed solution is not disruptive
and permits to fast develop industrial applications.
The work stresses the importance of having a ded-
icated middleware in IoT applications, and stresses
that MQTT-based middleware is becoming the most
preferred protocol for M2M and IoT scenarios. The
Constrained Application Protocol (CoAP) [31] is not
sufficient for new generation appliances, that need
to rely on pub/sub communication patterns and on
affordable transport protocol capable of re-transmitting
data in case of network failure.

[16] stresses the need of integration between Op-
erational Technologies (OT) and Information Tech-
nologies (IT), and proposes an interoperability layer
between them. The layer remaps data into a Common
Information Model based on the ISA95 [32] industrial
standard for legacy systems. The model is composed
of three major parts. The Raw Data Importer extracts
data from machine registers via low-level specific
protocols (such as MODBUS). After the extraction,
data in JSON notation are passed on to the Mapper
component. The Mapper uses the ISA95 as a reference
model for describing assets and enriches the data with
semantic tags. Enriched data flows from the Mapper
to the Information Provider that is an OPC-UA server
integrated with ISA95 information model. Finally, data
are exposed in a standard way and can be accessed via
any OPC-UA client.

[33] proposes a platform for collecting and pro-
cessing of real-time factory shop floor streams of data.
The authors adopts a classical IoT approach providing
a hub and a gateway to connect devices. The required
message exchange is done within state of the art
technologies and protocols, e.g., MQTT protocol and
REST-based interface. A prototype of the described
approach was implemented, deployed and tested in an
industrial-based scenario.

The works presented above stress the necessity of
having software solutions capable of a) providing a
standard way of accessing normalized data from the IT
layer and b) being equipped with many specific tools
capable of gathering data from OT layer. Furthermore,
the industrial revolution also advocates smart legacy
machinery integration via message oriented middle-
ware and dealing with the issues affecting the many-to-
many communication protocols. However, none of the
discussed works devises a layered solution capable of
splitting the complexity of the industrial environments
from the very bottom machine layer to the upper
business layers, addressing the needs of customization
and protocol flexibility. Our work follows the RAMI
4.0 guidelines with respect to near real-time moni-
toring requirements and tackles the industrial division
between OT and IT. The latter is not only applied to
low-level protocol interactions, but also to conceive a
data visibility approach that meets the stakeholders’
different needs.

VI. CONCLUSION

The Industry 4.0 revolution is expected to bring new
business opportunities to manufacturing companies,
provided that the latter are keen to enact a fast digitiza-
tion of their assets supported by enabling technologies
like IoT and Cloud, to name a few. Though some
standardization initiatives have led the way on how
such a transition ought to occur, there is only a few
proposals of concrete systems and tools that can get

the industry ready for the digitization leap. The data
integration platform discussed in this paper enables
the industry to communicate with the IoT world,
and proves to be capable of meeting the real-time
requirements that are typical of manufacturing work
spaces. Future work will explore non technical issues
of OT/IT integration, with focus on data security in a
context of multiple stakeholders.

REFERENCES

[1] “Alignment report for reference architectural
model for industrie 4.0/ intelligent manufacturing
system architecture,” last visited in Jan.
2020. [Online]. Available: https://www.plattform-
i40.de/PI40/Redaktion/EN/Downloads/Publikation/hm-2018-
manufacturing.html

[2] “Unified architecture part 1 overview and con-
cepts,” last visited in Jan. 2020. [Online]. Avail-
able: https://opcfoundation.org/developer-tools/specifications-
unified-architecture/part-1-overview-and-concepts/

[3] K. Stouffer and J. Falco, “Guide to supervisory control and
data acquisition (scada) and industrial control systems secu-
rity,” 2006.

[4] “Industrial internet reference architecture,” last
visited in Jul. 2019. [Online]. Available:
https://www.iiconsortium.org/IIRA.htm

[5] Y. Lu, K. Morris, and S. Frechette, Current
Standards Landscape for Smart Manufacturing Systems,
2016, vol. 8107, no. April. [Online]. Available:
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8107.pdf

[6] Q. Li, H. Jiang, Q. Tang, Y. Chen, J. Li, and J. Zhou, “Smart
manufacturing standardization: Reference model and standards
framework,” in On the Move to Meaningful Internet Systems:
OTM 2016 Workshops, I. Ciuciu, C. Debruyne, H. Panetto,
G. Weichhart, P. Bollen, A. Fensel, and M.-E. Vidal, Eds.
Cham: Springer International Publishing, 2017, pp. 16–25.

[7] “Unified architecture,” last visited in Jan. 2020.
[Online]. Available: https://opcfoundation.org/developer-
tools/specifications-unified-architecture

[8] “Classic,” last visited in Jan. 2020. [Online]. Available:
https://opcfoundation.org/about/opc-technologies/opc-classic/

[9] A. ISA, “Isa-95.00. 03-2005 enterprise control system inte-
gration part 3: Activity models of manufacturing operations
management, isa-the instrumentation,” System, and Automation
Society, 2005.

[10] “Modbus 101 - introduction to modbus,” last
visited in Jan. 2020. [Online]. Available:
https://www.csimn.com/CSI pages/Modbus101.html

[11] “Message queuing telemetry transport,” last visited in Jan.
2020. [Online]. Available: https://mqtt.org/

[12] “Amqp,” last visited in Jan. 2020. [Online]. Available:
https://www.amqp.org/

[13] “Opc foundation,” last visited in Jan. 2020. [Online].
Available: https://opcfoundation.org/

[14] “Distributed component object model (dcom)
remote protocol,” last visited in Jan.
2020. [Online]. Available: https://docs.microsoft.com/en-
us/openspecs/windows protocols/ms-dcom/

[15] A. Arsanjani, “Service-oriented modeling and architecture,”
IBM developer works, vol. 1, p. 15, 2004.

[16] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo,
“Interoperability for industrial cyber-physical systems: An
approach for legacy systems,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 6, pp. 3370–3378, 2017.

[17] E. Tovar and F. Vasques, “Real-time fieldbus communications
using profibus networks,” IEEE transactions on Industrial
Electronics, vol. 46, no. 6, pp. 1241–1251, 1999.

[18] “Schema management,” last visited in Jan. 2020.
[Online]. Available: https://docs.confluent.io/current/schema-
registry/index.html

[19] Apache, “apache/avro,” Jan 2020, last visited in Jan. 2020.
[Online]. Available: https://github.com/apache/avro

[20] “Apache kafka introduction,” last visited in Jan. 2020.
[Online]. Available: https://kafka.apache.org/intro.html

[21] “Welcome to apache zookeeper™,” last visited in Jan. 2020.
[Online]. Available: https://zookeeper.apache.org/

[22] “Kafka connect,” last visited in Jan. 2020. [Online]. Available:
https://docs.confluent.io/current/connect/index.html

[23] “What is elasticsearch,” last visited in Jan. 2020. [Online].
Available: https://www.elastic.co/what-is/elasticsearch

[24] “What is kibana,” last visited in Jan. 2020. [Online].
Available: https://www.elastic.co/what-is/kibana

[25] “Production-grade container orchestration,” last visited in Jan.
2020. [Online]. Available: https://kubernetes.io/

[26] “Run kubernetes everywhere,” last visited in Jan. 2020.
[Online]. Available: https://rancher.com/

[27] “Eclipse mosquitto,” Jan 2018, last visited in Jan. 2020.
[Online]. Available: https://mosquitto.org/

[28] “Rabbitmq,” last visited in Jan. 2020. [Online]. Available:
https://www.rabbitmq.com/

[29] E. Curry, “Message-oriented middleware,” Middleware for
communications, pp. 1–28, 2004.

[30] G. D. S. Ch, C. Venegas, M. Baca, I. Rodrı́guez, and L. Mar-
rone, “Open middleware proposal for iot focused on industry
4.0,” in 2018 IEEE 2nd Colombian Conference on Robotics
and Automation (CCRA). IEEE, 2018, pp. 1–6.

[31] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained
Application Protocol (CoAP),” RFC 7252, Jun. 2014. [Online].
Available: https://rfc-editor.org/rfc/rfc7252.txt

[32] B. Scholten, The road to integration: A guide to applying the
ISA-95 standard in manufacturing. Isa, 2007.

[33] W. M. Mohammed, B. R. Ferrer, U. Iftikhar, J. L. M. Lastra,
and J. H. Simarro, “Supporting a Cloud Platform with Streams
of Factory Shop Floor Data in the Context of the Industry
4.0,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), July 2018, pp. 786–791.

