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Abstract 

We present a new strategy for performing global sensitivity analysis capable to estimate main 

and interaction effects from a generic sampling design. The new strategy is based on a 

meaningful combination of variance- and distribution-based approaches. The strategy is tested on 

four analytic functions and on a hydrological model. Results show that the analysis is consistent 

with the state-of-the-art Saltelli/Jansen formula but to better quantify the interaction effect 

between the input factors when the output distribution is skewed. Moreover, the estimation of the 

sensitivity indices is much more robust requiring a smaller number of simulations runs. Specific 

settings and alternative methods that can be integrated in the new strategy are also discussed. 

Overall, the strategy is considered as a new simple and effective tool for performing global 

sensitivity analysis that can be easily integrated in any environmental modelling framework. 
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Highlights 

• A new strategy to perform global sensitivity analysis is developed 

• Variance- and distribution-based approaches are combined in a meaningful way 

• Main and interactions effect are estimated from a generic sampling design 

• The new strategy converges faster than Saltelli/Jansen formula 
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Software availability 

The analysis has been performed with the statistical software R 3.3.x (R Core Team, 2019) and 

the Saltelli/Jansen analysis using the package “sensitivity” (Iooss et al., 2019). The simulations 

with the hydrological model have been conducted using the package “hydromad” (Andrews et 

al., 2011). An example script on how to implement the new Combined Variance- and 

Distribution-based CVD strategy is freely available under https://github.com/baronig/GSA-cvd. 

1 Introduction 

Global sensitivity analysis (GSA) refers to a group of diagnostic modelling tools developed to 

study how the uncertainty in the output of a mathematical model can be apportioned to the 

uncertainty in the input factors (Saltelli et al., 2000). In this context, the term factor is interpreted 

in a broad sense of anything that can be subject to some degree of uncertainty in the model, e.g., 

parameters, input, boundary conditions or model structure (Ratto et al., 2007). 

In contrast to the local one-at-the-time approach, where one single factor is perturbed while 

keeping the other fixed, GSA approaches are applicable independently of the characteristics of 

the input-output response function, they cover the entire input space and they identify non-

linearity and interactions between the factors (Saltelli et al., 2008). For these reasons, they have 

been recognized as a fundamental analysis to support model understanding and improvements in 

many applications (Baroni et al., 2018; Borgonovo et al., 2017; Demirel et al., 2018; Guse et al., 

2016; Haghnegahdar et al., 2017; Pianosi and Wagener, 2016; Reusser et al., 2011; Rosolem et 

al., 2012; Savage et al., 2016; Schürz et al., 2019; Tang et al., 2007; Xie et al., 2017) and they 

should be preferred to local approaches to avoid a perfunctory analysis (Saltelli et al., 2019; 

Saltelli and Annoni, 2010). 

Several GSA methods have been developed and we refer to review papers and text books for an 

overview (Iooss and Lemaître, 2015; Pianosi et al., 2016; Razavi and Gupta, 2015; Saltelli et al., 

2008; Song et al., 2015; Wagener and Pianosi, 2019; Wei et al., 2015). Here, we narrow the 

discussion to two probabilistic approaches based on Monte Carlo simulations: the variance-based 

approaches and the distribution-based (also called ‘density-based’ or ‘moment independent’) 

approaches. 

Sensitivity analysis based on variance measures has been introduced in the early 70ies (Bier, 

1982; Cukier et al., 1973; Iman, 1987). Major contributions on the approach, however, are 
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attributed to the Russian mathematician I.M. Sobol’ who generalized the approach and provided 

a straightforward Monte Carlo-based implementation (Sobol′, 2001). At present, the most widely 

used variance-based measures are the so-called Sobol’ indices, and in particular Sobol’ first 

order sensitivity measure (or main effect), together with the total sensitivity indices (or total 

effect), introduced by Homma and Saltelli (1996). 

The use of these indices enjoyed success among practitioners probably due to a clear 

interpretation of their meaning (Saltelli et al., 2008). Specifically, as described in 

Ratto et al. (2007), high values in the main effect represent the factors that, when constrained at 

their true value, would reduce the uncertainty in the model output the most and, therefore, make 

the model inference more robust. This type of analysis supports the prioritization in model 

improvements. Thus, it has been identified in literature with the term “factor prioritization”. On 

the contrary, low values for total effect identify those factors that have an irrelevant contribution 

to the uncertainty in the output and, therefore, can be constrained to an arbitrary value within 

their range of uncertainty, e.g., supporting model simplification. This type of analysis has been 

identified with the term “factor fixing”. 

It should also be noted that the two analyses defined above can be performed independently, i.e., 

either estimating the main effect for factor prioritization or the total effect for factor fixing. 

However, it has been underlined that the differences between total and main effect reveals 

interactions among the factors (Saltelli et al., 2008). This additional information is very 

important when the modelers are interested to know if the specific factor is identifiable by, e.g., 

calibration (Ghasemizade et al., 2017; Guillaume et al., 2019). Namely, a factor that shows high 

interactions is likely not identifiable. So, for sake of clarity, we term this third type of analysis 

“factor identification” that, in contrast to “factor prioritization” and “factor fixing”, can be 

achieved only by estimating both indices. 

Despite its wide use, it has been argued that variance-based approaches rely too heavily on the 

assumption that the variance is sufficient to describe the uncertainties and sensitivities 

encountered (Park and Ahn, 1994). The variance measure is ill-suited particularly to measure the 

dispersion of a variable with a heavy-tail or a multimodal distribution, or which contains some 

outliers (Auder and Iooss, 2009). To overcome this limitation, some approaches have been 

developed based on the idea of comparing the entire probabilistic distributions of the model 

output rather than the variance. The first methods have been derived based on the entropy 
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measures (Liu et al., 2006; Park and Ahn, 1994). Borgonovo (2007) developed an important 

measure based on density functions. More recently, Pianosi and Wagener (2015) suggested the 

use of the Kolmogorov-Smirnov test (Kolmogorov, 1933). Generalization of the methods have 

been also presented for comparing the entire distributions (Veiga, 2015) or targeting some of 

their statistical moments (Dell’Oca et al., 2017). 

These distribution-based methods have also been used in several studies (Borgonovo et al., 2011; 

Castaings et al., 2012; Fox et al., 2016; Gillies et al., 2016; Hosseini et al., 2018; Pianosi and 

Wagener, 2016; Pilz et al., 2017; Schürz et al., 2019; Sedighian et al., 2015) and they have 

showed to converge faster than variance-based methods (Pianosi and Wagener, 2015; Zadeh et 

al., 2017). However, these methods focus on estimating only one single effect, and separating 

main, total effect and interactions is not targeted. For this reason, the modelers remain without 

the identification of important features that can be achieved in global sensitivity analysis (Saltelli 

and Tarantola, 2002). 

To overcome this limitation and exploit the advantages of both variance- and distribution-based 

approaches, their combined use has been suggested and tested in literature (Borgonovo et al., 

2017; Massmann and Holzmann, 2012; Pappenberger et al., 2008). Most of the studies 

emphasized the complementarity of the different methods. However, they also highlighted the 

difficulties to directly compare the different indices because they are based on different 

quantities, they explore different ranges in the input-output space and, thus, they carry different 

information (Borgonovo and Tarantola, 2008; Mora et al., 2019). 

In this study we develop and test an effective strategy to combine variance- and distribution-

based sensitivity analysis. We refer to this combined strategy with the term CVD strategy. This 

strategy has been developed to take advantages of the two approaches and to allow a meaningful 

combined use of the different indices. The paper is structured as follows: in section 2, we first 

revise variance- and distribution-based approaches to better identify similarities and 

complementarities. This provides the basis for the development of the new CVD strategy. This 

new strategy is tested with four analytic functions (section 3) and on a hydrological model 

(section 4). In all tests, the strategy is compared to the state-of-the-art Saltelli/Jansen formula for 

estimating both main and total effect. The discussion is enriched based on specific settings and 

possible improvements (section 5). Conclusions are reported in section 6. 
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2 Methods 

2.1 Variance-based approaches 

We start considering a numerical deterministic model that can be written in the form: 

𝑦 = 𝑔(𝑥𝑖)  (1) 

where xi are the input factors with i = 1…k, and k the number of factors, g is the generic 

numerical model and y the output of the model. xi can be regarded as any type of input factor 

(parameters, model structure, input and boundary conditions). Considering that all types of 

factors can be associated to a scalar discrete value (Baroni and Tarantola, 2014; Lilburne and 

Tarantola, 2009; Plischke et al., 2013), we proceed also here assuming that the factors xi are a 

scalar input (e.g., parameters). 

We now consider that the values of xi are not known and their uncertainty can be described by 

their probability distributions P(xi), e.g., fully defined by mean and standard deviation in case of 

Gaussian distributions. We underline that this first task (distribution assignment) is a crucial step 

in ensuring the quality and consistency of the results (Baroni et al., 2017; Haghnegahdar and 

Razavi, 2017; Plischke et al., 2013; Shin et al., 2013). Then, the distributions are sampled N 

times creating a 𝑁 x 𝑘 matrix X. The model can be now run in a Monte Carlo approach as 

follows: 

𝑌 = 𝑔(𝑋)  (2) 

The probabilistic distribution of the vector Y can be now defined as P(Y) and can be seen as the 

uncertainty in the model output by propagating the uncertainty in k input factors. 

Variance-based approaches implicitly assume that the variance (the second-moment), here 

identified with the term V[·], is sufficient to describe the probabilistic distribution P(Y). Thus, a 

generic uncertainty importance measure of the factor i in explaining the uncertainty in the model 

output can be introduced as the reduced variance one would achieve by fixing one source of 

uncertainty as follow, expressed in relative terms: 

𝑉(𝑌|𝑋𝑖=𝐸(𝑋𝑖))

𝑉(𝑌)
 (3) 

where E[·] indicates the mean operator and 𝑉(𝑌|𝑋𝑖=𝐸(𝑋𝑖)) indicates the conditional variance in 

the model output Y when the factor i is fixed to its mean E(Xi). Dividing this quantity over the 
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unconditional variance V(Y) leads to an index that quantifies the fraction of remaining variance 

in the model output when the correct value of factor i is known. 

Besides possibly having the problem of an index bigger than one (conditional variance > 

unconditional variance), one should recognize that E(Xi) could be not necessarily the true (i.e., 

optimal) value. Thus, this measure would not be a good estimation of the importance of the 

factor (Iman, 1987). For this reason, it has been suggested to calculate the conditional variance 

V(Y|Xi) based on xi fixed to r values in the range P(Xi) and to calculate their mean as follow: 

𝐸[𝑉(𝑌|𝑋𝑖)]

𝑉(𝑌)
 (4) 

In the simplest case, the number of conditional values r could be limited to the two extreme 

values within the range P(Xi) (Borgonovo, 2010; Francke et al., 2018; Iman, 1987). Most 

preferable, however, the values should cover the entire range in the distributions. Now, when this 

importance measure is small, xi is an important factor. Considering that the model output 

variance can be decomposed as the sum of the variance of the conditional expectations 

E[V(Y|Xi)] and the residual term V[E(Y|Xi)] (Mood et al., 1974): 

𝑉(𝑌) = E[V(𝑌|𝑋𝑖)] + V[E(𝑌|𝑋𝑖)] (5) 

the importance measure can be formulated in a complementary way as: 

𝑆𝑖 =
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
 (6) 

Now when this importance measure is high, xi is an important factor. This expression is usually 

referred to as Sobol’ first order sensitivity measure (or main effect) and it is indicated in 

literature with the symbol “Si”. As discussed in the introduction, this index represents the mean 

variance that one would reduce if the factor is known. For this reason, high values in the main 

effect identify the most important factors that should be considered to decrease the uncertainty in 

the model (or improve the model performance). Thus, this index supports the so-called factor 

prioritization. 

It has been noted that the factor i could have a direct effect on Y or its importance could be 

related to the effect that the factor has due to interactions with other factors. For this reason, 

another index has been proposed as follows: 

𝑇𝑖 =
𝐸[𝑉(𝑌|𝑋~𝑖)]

𝑉(𝑌)
 (7) 
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where V(Y|X~i) indicates the variance of Y fixing all factors but not i. This terms is usually 

referred as total sensitivity index (or total effect) as introduced by Homma and Saltelli (1996). 

Please note that the index is generally denoted with the symbol “𝑆𝑖
𝑇”, but for simplicity we adopt 

the notation Ti as suggested by Glen and Isaacs (2012). As discussed in the introduction, this 

index represents the main effect of the factor and its contribution based on interactions with other 

factors. Low values of Ti identify factors that are not important and can be fixed. Thus, this index 

can serve for factor fixing. 

Finally, we explicitly derive the interaction term as a simple difference between the two indices: 

𝐼𝑖 = 𝑇𝑖 − 𝑆𝑖 (8) 

This index is used to quantify the effect of the factor i due to interactions with the other factors 

and it is used in combination of the main effect to understand a factors’ identifiability, i.e., if Ii is 

small and Si is high, the factor is likely identifiable. 

2.2 Estimation of first and total sensitivity index 

In principle, the computational cost to estimate Si, assuming the same number of samples n for 

approximating the unconditional and conditional distributions is: 

𝑁 = (𝑘 + 1) ∙ 𝑟 ∙ 𝑛 (9) 

where N is the required number of model evaluations, k is the number of factors i, r is the 

number of conditional values and n the sample size to approximate the distributions (Saltelli et 

al., 2008). This tailored sampling design is usually referred to as ‘brute force double loop 

sampling’. In the first loop, for the current factor i, xi is set to r prescribed values, while in the 

second loop n realizations of the remaining inputs x~i are generated. When, additionally, Ti is 

estimated, the cost of the tailored sampling design increases further. 

Obviously, such an estimation is impracticable when the computational cost of running the 

model is high (e.g., more than minutes for one single run). For this reason, several methods have 

been developed to reduce the computational burden. Specifically, there are several 

computationally affordable methods proposed in literature to compute the first-order sensitivity 

indices (Cukier et al., 1973; Lewandowski et al., 2007; Mara et al., 2017; Mara and Joseph, 

2008; McKay et al., 1999; Oakley and O’Hagan, 2004; Plischke, 2010; Ratto et al., 2007; Strong 

et al., 2012; Tarantola et al., 2006). In most of these cases, a dedicated sampling design is used 
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(e.g., based on Fourier transformation or resampling). However, the estimation can be also 

directly performed based on a generic sampling design (Kucherenko et al., 2012; Wainwright et 

al., 2014; Plischke, 2010; Li and Mahadevan, 2016; Strong and Oakley, 2013). In the simplest 

case, Kucherenko et al. (2012) noted that there is no the need of brute-force double-loop 

sampling (eq. 9) but the analysis can be directly performed based on a filtering process over a 

generic sampling design of the cost N. The strategy is illustrated in Figure 1 (upper row) where 

the input-output space of a three parameter function is shown based on scatterplots. Based on this 

strategy, the ranges of Xi are partitioned into m conditioning intervals of equal size. In each 

interval the conditional mean (i.e., E(Y|Xi)) is calculated. These values are represented in Figure 

1 (upper row) by the red dots. Then, the main effect is estimated as the variance of these 

conditional means (variance of the red dots). These indices are shown in the bar plot on the right 

side. The indices indicate, for this case, high importance of the first factor x1 and no main effect 

for x2 and x3. 

 

Figure 1. Scatterplots showing the input-output space for the Ishigami-Homma function (eq. 19). The input-output 

space is divided in m = 10 intervals. In each interval, the mean of the conditional distribution E[Y|Xi] is plotted as 

red dot. The variance of these conditional means can be used to estimate the main effect Si as shown in the bar plot 

on the top-right corner. The estimation can be improved by interpolating the E[Y|Xi] (dashed green line) and 

calculating the variance over the interpolated values. In the lower row, the centered conditional distributions are 

plotted (i.e., removing the conditional mean). The interactions term Ii derived based on eq. 18 are shown in the bar 

plot in the lower-right corner. 
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This method has been found to perform well in estimating Si in comparison to other approaches 

(Kucherenko and Song, 2017; Li and Mahadevan, 2016). Similar simple approaches have been 

not found, however, for estimating the total effect. In contrast, the estimation of this index relies 

on specific sampling designs (Fourier or resampling) and it is much more expensive to compute 

(Glen and Isaacs, 2012; Saltelli et al., 2010, 1999). Currently, one of the most applied and 

effective method is the one discussed by Saltelli et al. (2010). It has shown to perform well in 

several applications with the advantage of being extendable to the analysis of any sources of 

uncertainty (Baroni and Tarantola, 2014; Lilburne and Tarantola, 2009; Savage et al., 2016). We 

briefly introduce this approach also within the present study as reference. 

First, two independent sets of input sample matrices A and B, each of which is an 𝑛 × 𝑘 matrix 

containing n sets of k-dimensional parameter vectors from Monte-Carlo sampling are generated. 

Sobol’ quasi-random sampling (Sobol, 1976) is usually suggested for this purpose because it 

showed to increase the rate of convergence of the estimators (Becker et al., 2018; Kucherenko et 

al., 2011; Tarantola et al., 2012) but other techniques can be used as well, e.g., Latin hypercube 

sampling. From A and B, a matrix Ci (i = 1, 2, ….k) is created for each factor such that the i-th 

column of Ci is the same as the i-th column of A, and the other columns of Ci are the same as B. 

The number of required simulations is then 𝑁 = 𝑛 ∙ (𝑘 + 2). Based on these matrices, different 

estimators of the main effect (eq. 6) and total effect (eq. 7) can be applied (Saltelli et al., 2010). 

For ease of interpretation, we report here the estimation first presented by Jansen ( 1999): 

𝑆̂𝑖 =  1 −
1

2𝑁
∑ [𝑔(𝐴)−𝑔(𝐶𝑖)]2𝑘

𝑖=1

𝑉[𝑔(𝐴)]
 (10) 

𝑇̂𝑖 =  
1

2N
∑ [𝑔(𝐵)−𝑔(𝐶𝑖)]2k

i=1

V[𝑔(𝐴)]
 (11) 

𝐼𝑖 = 𝑇̂𝑖 − 𝑆̂𝑖  (12) 

The “hat” is here used to indicate that these terms are estimation of the indices expressed by 

Equations 6-8. As discussed by Wainwright et al. ( 2014), these estimations offer an intuitive 

way to understand the meaning of the Sobol’ indices that we report also here for the sake of 

clarity. The equations represent in fact a correlation-based measure between two matrices. In the 

first estimation (eq. 10), the parameter sets in A and Ci share the same values only for parameter 

i. Perturbing all the other factors except for i includes the total effects involving all the factors 

except for the first-order effect of i. If i is very influential, its value mainly determines the results 
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so that g(A) and g(Ci) should be similar and the differences [𝑔(𝐴) − 𝑔(𝐶𝑖)] small. In the second 

index (eq. 11), B and Ci have the same values except for i. When we perturb i with the other 

parameters fixed, the difference [𝑔(𝐵) − 𝑔(𝐶𝑖)], hence Ti, accounts not only for the impact of i 

as a single factor, but also for the interaction effects with the other factors. If the parameter i is 

very influential, this factor determines the results so that g(B) and g(Ci) should now be different 

and the differences [𝑔(𝐵) − 𝑔(𝐶𝑖)] become high. Finally, the difference Ii between total effect 

and main effect (eq. 12) quantifies only the contribution of the factor i due to interactions. 

2.3 Distribution-based approaches 

Distribution-based important measures follow the same derivation as described in section 2.1 for 

variance-based approach. They vary only in the statistical operator to compare the conditional 

and the unconditional probabilistic distributions (Plischke et al., 2013; Veiga, 2015). 

Specifically, some authors (Liu et al., 2006; Park and Ahn, 1994) compared the distributions 

based on the Kullback-Leibler entropy metric (Kullback and Leibler, 1951). In both cases, 

however, the analysis has been performed only by fixing xi to its mean value (i.e., as in eq. 3 for 

the case of variance-based approach): 

𝐾𝐿𝑖 = ∫ 𝑃(𝑌|𝑋𝑖=𝐸(𝑋𝑖)) ∙ log
𝑃(𝑌|𝑋𝑖=𝐸(𝑋𝑖))

𝑃(𝑌)
𝑑𝑦 (13) 

Alternative distance measures have also been proposed (Chun et al., 2000). Later, Borgonovo 

(2007) developed the so-called -measure based on the absolute difference between the density 

functions f(·). In addition, he extended the previous methods by taking a statistic (half of the 

average E) over r conditional values to eliminate the dependency of the conditional point (the 

mean of Xi) as it has been developed for the variance-based approach (see eq. 4): 

𝛿𝑖 =
1

2
𝐸 ∫|𝑓(𝑌|𝑋𝑖) −  𝑓(𝑌)|𝑑𝑦 (14) 

More recently, Pianosi and Wagener (2015) introduced the PAWN method which uses r 

conditional values as well but the comparison between conditional and unconditional 

distributions is performed on the cumulative probabilistic distribution based on the Kolmogorov-

Smirnov test KS (Kolmogorov, 1933). 

𝑃𝐴𝑊𝑁𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐾𝑆[𝑃(𝑌|𝑋𝑖), 𝑃(𝑌)]} (15) 



11 

 

where median is often used as statistical operator even if other operators (e.g., mean, maximum) 

can also be considered (Pianosi and Wagener, 2015). Additional measures have also been 

introduced underlining the strong analogy between them (Veiga, 2015). However, a 

comprehensive comparison of the different operators has not been carried out so far. 

All these distribution-based approaches have been proposed based on the same tailored sampling 

design discussed for estimating the main effect in variance-based approach (eq. 9). However, in 

the same way that it has been tested for estimating the main effect (Kucherenko et al., 2012), 

later it has also been noted that the estimation of the distribution measures can also be performed 

based on filtering a generic sampling of the cost N without the need of the double-loop brute-

force sampling design (Pianosi and Wagener, 2018; Plischke et al., 2013). 

It should be noted, however, that extending the distribution-based approach to quantify both 

main and total effects as performed for variance-based approach (i.e., also comparing conditional 

distributions when all factors except i are fixed as defined in eq. 7) is not practical as the number 

of simulation greatly increases (Kucherenko et al., 2012; Saltelli et al., 2010, 1999). For this 

reason, the distribution-based approach has been used mainly to estimate one index and it has 

been extended to quantify main and total effects when the number of conditional points r have 

been limited to one, i.e., the mean of Xi (Liu et al., 2006). 

Finally, it is interesting to note that despite the difficulties to directly compare variance- and 

distribution-based measures, it has been underlined that the distribution-based index contains 

global information and should be compared to the total effect index derived in variance-based 

approach (Auder and Iooss, 2009). This can be seen by noting that the estimation of the variance-

based total effect Ti in eq. 11 (i.e., [𝑔(𝐵) − 𝑔(𝐶𝑖)]) is equivalent to assessing the difference in Y 

when perturbing Xi with the other parameters fixed. This is like what happens also for the 

distribution-based comparison (see eq. 13-15). 

2.4 An effective combined strategy 

The basis for an effective strategy for combining variance- and distribution-based global 

sensitivity analysis starts by recognizing two key aspects of the approaches. First, both main 

effect (Kucherenko et al., 2012; Kucherenko and Song, 2017; Li and Mahadevan, 2016; 

Wainwright et al., 2014) and distribution indices (Pianosi and Wagener, 2018; Plischke et al., 

2013) can be estimated based on a generic sampling design, i.e., N samples are filtered into m 
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intervals to approximate the conditional distributions. This reduces the computational cost in 

comparison to the double loop sampling design. In addition, it facilitates the analysis because it 

can be used after any generic Monte Carlo simulations that has been previously conducted for, 

e.g., uncertainty propagation assessment. Second, the two indices calculated based on variance- 

and distribution-based approaches carry different meanings. In the variance-based approach, the 

index refers to the main effect while in the distribution-based approach it carries global 

information associated also to interactions. For these reasons, the combined use has the potential 

to address, based on a generic sampling design, all the three purposes of a global sensitivity 

analysis: factor prioritization based on main effect, factor fixing based on total effect and factor 

identifiability based on interaction effect. 

At this stage, however, the combined use of main effect and distribution-based index is not 

meaningful because the actual values are not comparable. To overcome this limitation, we 

proceed as follow. 

First, we estimate the main effect Si (eq. 6) based on a generic sampling design. Specifically, the 

estimation can be simply performed based on the filtering approach previously described 

(Kucherenko et al., 2012; Kucherenko and Song, 2017), i.e., based on the variance of the 

conditional mean E(Y|Xi) estimated in m intervals (Figure 1, upper row, red dots). The 

estimation, however, can be boosted by interpolating the input-output model response (green 

dashed lines in Figure 1) and calculating the variance over the interpolated values as suggested in 

other studies (Saltelli et al., 2008; Wainwright et al., 2014). In the following, we applied this 

approach using a smooth spline for interpolating the one-dimensional input-output space. We 

refer to this estimation with the term 𝑆̃𝑖 to distinguish it from the term 𝑆̂𝑖 that is used to denote 

the index estimated based on Saltelli/Jansen approach (eq. 10). A comparison between 

calculating the variance over the interpolated values (green dashed line) versus using the 

conditional means (red dots) is presented in the discussion section. 

We now remove the main effect from the conditional distributions by centralizing each 

conditional distribution (i.e., removing the mean): 

𝑃̃(𝑌|𝑋𝑖) = 𝑃(𝑌|𝑋𝑖 − 𝐸(𝑌|𝑋𝑖)) (16) 
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These m centralized conditional distributions are shown in Figure 1 (lower row). Differences to 

the upper row result only for factor x1, for which now the mean of the conditional distributions 

(red dots) are equal to zero, too. 

By removing the main effect, we now define an index based on these centered conditional 

distributions to have an estimation of the interaction effects alone (Figure 1, lower right corner). 

Namely, we can compare the conditional and unconditional distribution as performed by the 

distribution-based approaches (see eqs. 13, 14 and 15). However, we rather define the interaction 

index by comparing only all the combinations 𝑐 = (
𝑚
2

) of the centered conditional distributions 

𝑃̃(∙) to better isolate the effect to the output of changing Xi as follow: 

𝐼𝑖 = 𝑠𝑡𝑎𝑡 {𝑂 [𝑃̃ (𝑌|𝑋𝑖=𝑅𝑗
) , 𝑃̃ (𝑌|𝑋𝑖=𝑅𝑗+1

)]} (17) 

where R1…Rm represent the m intervals, stat is a statistical operator (e.g., mean, median) and O is 

the distribution-based measure. We use here the term 𝐼𝑖 to distinguish from the term 𝐼𝑖 calculated 

as the difference between total and main effect estimated using variance-based approach (eq. 12). 

In the following we refer to this general Combined Variance- and Distribution-based strategy 

with the term CVD strategy. 

In principle, any operator O described above (e.g., entropy-based, -measure or Kolmogorov-

Smirnov test) can be used within the CVD strategy. Although it is shown that these measures 

have some analogies (Veiga, 2015), however, a comprehensive inter-comparison in their use 

within the distribution-based approaches has not been performed so far. In the following, we 

proceed with the use of the -measure of Borgonovo (2007) (eq. 14). Specifically, we fit the 

centered conditional distributions 𝑃̃(∙) via a kernel density function (Parzen, 1962) and we 

quantify the difference between all the combination 𝑐 = (
𝑚
2

) of the centered conditional density 

functions 𝑓(∙) as follow: 

𝐼𝑖 =
1

2𝑐
∑ ∑ |𝑓 (𝑌|𝑋𝑖=𝑅𝑗

) − 𝑓 (𝑌|𝑋𝑖=𝑅𝑝,𝑝>𝑗
)|𝑚

𝑝=2
𝑚−1
𝑗=1  (18) 

A comparison between this operator and the alternative Kolmogorov-Smirnov test used in the 

PAWN method is presented in the discussion section. 
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3 Test functions 

3.1 Functions and settings 

We test the CVD strategy described in section 2.4 for estimating main effect 𝑆̃𝑖 and interaction 

effect 𝐼𝑖 on four analytic functions often used as a benchmark for sensitivity analyses studies 

(Borgonovo, 2007; Cuntz et al., 2015; Kucherenko et al., 2009; Kucherenko and Song, 2017; 

Mai and Tolson, 2019; Pianosi and Wagener, 2015; Plischke et al., 2013; Saltelli et al., 2008). 

These functions represent model of increasing complexity (number of factor k between 3 and 15) 

and with different output distributions (increasing skewness). For comparison, we also apply the 

method of Saltelli/Jansen for estimating main effect 𝑆̂𝑖 and interaction effect 𝐼𝑖 based on eqs. 10-

11-12 and the distribution-based measure PAWNi (eq. 15). Thus, for each function we calculate 

and compare five indices. 

The first function is the Ishigami-Homma function: 

𝑦 = sin(𝑥1) + 𝑎1 sin(𝑥2)2 + 𝑎2 𝑥3
4 sin(𝑥1) (19) 

where all xi follow a uniform distribution over [ ‒π,+ π]. Different values of the parameters a and 

b are encountered in literatures. In the following we use a1 = 2 and a2 = 1 as used by Pianosi and 

Wagener (2015) to allow for a direct comparison. The function exhibits strong non-linearity and 

non-monotonicity with interactions between the two terms x1 and x3. The input-output response 

is also shown in the scatter plots of Figure 1. 

The second function has been introduced by Oakley and O’Hagan (2004): 

𝑦 = 𝒂1
𝑇 𝑋 + 𝒂2

𝑇 sin(𝑋) + 𝒂3
𝑇 cos(𝑋) + 𝑋𝑇𝑀𝑋 (20) 

where X is a vector of k =15 input factors sampled over a standard normal distribution (i.e., 

mean = 0 and standard deviation = 1) and aj (j = 1, 2, 3) and M are three k-vectors and a matrix 

𝑘 × 𝑘 of parameters, respectively. The weights a1, a2 and a3 are chosen so that one group of five 

input factors (xi = 10…15) accounts for most of the output variance while the remaining factors have 

smaller effect. In contrast, interaction contribution is almost equally distributed to all the factors. 

The values of these weights and of the matrix M can be downloaded from 

www.sheffield.ac.uk/st1jeo and are also reported in Saltelli et al. (2008). 

The third function is the so-called G-function: 

http://www.sheffield.ac.uk/st1jeo
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𝑦 = ∏
|4𝑥𝑖−2|+𝑎𝑖

1+𝑎𝑖

𝑘
𝑖=1  (21) 

where the terms xi are k independent variables uniformly distributed in the unit hypercube [0, 1] 

and the terms ai are positive integers that condition the importance of the factor xi: the smaller ai, 

the higher main and total effects of xi on the function are (Mara, 2009). This function is a more 

complicated nonlinear and non-additive function that produces a right-skewed output 

distribution. It is characterized by the presence of interactions among the model inputs, generated 

by their multiplication. We use a six-dimensional version of the function (k = 6), with 

coefficients ai equal to [0, 0.5, 3, 9, 99, 99] as used in other studies (Glen and Isaacs, 2012; 

Saltelli et al., 2010), resulting in decreasing sensitivity of the output to the six factors. 

Finally, we consider the function introduced by Bratley et al. (1992): 

𝑦 = ∑ (−1)𝑖 ∏ 𝑥𝑗
𝑖
𝑗=1

𝑘
𝑖=1  (22) 

where k = 10 and all xi follow a uniform distribution over [0, 1]. Like the G-function, the input 

factors also have a wide range of main and interaction effect, decreasing with j, but the function 

produces a left-skewed model output distribution. 

For each function, the five sensitivity indices are estimated based on Sobol’ quasi-random 

sampling (Sobol, 1976). Saltelli/Jansen estimations are performed based on 𝑁 = (𝑘 + 2) ∙ 215 

simulation runs. The PAWN and CVD indices are estimated based on N = 217 simulation runs. 

All these indices are calculated by increasing sample size N to assess the convergence of the 

estimation. Moreover, the analyses are repeated 100 times to assess the robustness of the 

estimation and the approach of Owen (1995) is used to introduce randomness to the deterministic 

Sobol’ sequence. The accuracy of the estimation is quantified based on the absolute mean error 

MAE as follow: 

𝑀𝐴𝐸 =
1

𝑘
∑ |ℰ𝑖 − ℛ𝑖|𝑘

𝑖=1  (23) 

where k is the respective number of input factors i, and ℰ and ℛ represent the estimated and 

reference sensitivity index, respectively. For the main effect (𝑆̂𝑖 and 𝑆̃𝑖), the analytic values are 

used as references. For the interaction terms (𝐼𝑖 and 𝐼𝑖), however, the comparison is not 

straightforward as the values represent different quantities and the analytic values of the 

distribution-based indices are not available. For this reason, the assessment of the interaction 
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terms is performed using as references in eq 23 the average indices over the 100 repetitions 

obtained with the maximum sample size N. 

3.2 Results of the test functions 

Figure 2 shows the five indices obtained for the four test functions. The average indices over the 

100 repetitions achieved with the maximum number of simulation N are plotted. The indices are 

combined as conducted for other approaches (Morris, 1991) to visualize their relation and their 

different information content. Please also note that error bars (± one standard deviation based on 

the 100 repetitions) are also plotted but they are not always visible, indicating the robustness of 

the estimation achieved with the maximum sample size N. 

The analysis conducted based on Saltelli/Jansen method on the Ishigami-Homma function 

(Figure 2, first column, second row) identifies x1 as an important factor based on the main effect 

𝑆̂𝑖 (see also scatter plots of Figure 1). The same interaction effects 𝐼𝑖 are quantified for the factors 

x1 and x3. The results suggest that x2 is not relevant and can be fixed to any value (e.g., mean), x1 

and x3 have interactions and are not identifiable. 

The PAWNi index (Figure 2, first column, third row) ranks the factors consistently (x1 > x3 > x2). 

However, based on this index alone, it is not possible to identify whether the factors have 

interactions or not. The comparison between PAWNi index and the main effect 𝑆̂𝑖 suggests that 

the importance of the parameters x2 and x3 result from interactions. But it is not possible to 

conclude if these interaction effects are similar or not, indicating the difficulties to compare 

variance- and distribution-based indices as underlined in other studies (Borgonovo and 

Tarantola, 2008; Mora et al., 2019). 

The main effect 𝑆̃𝑖 estimated based on the spline interpolation implemented in the CVD strategy 

(Figure 2, first column, last row) is consistent with Saltelli/Jansen method. In addition, the new 

interaction term 𝐼𝑖 (eq. 18) correctly identifies the same interaction effects on x1 and x3. Thus, the 

results show how the CVD strategy correctly removes the main effect and the distribution 

measure is now able to discriminate specifically the contribution due to the interaction effect. 
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Figure 2. In the upper row, the output distribution of each analytic function is shown. The other plots show the 

sensitivity indices estimated based on the different methods: from top, main effect 𝑺̂𝒊 and interaction effect 𝑰̂𝒊 based 

on Saltelli/Jansen method; PAWNi index; and main effect 𝑺̃𝒊 and interaction term 𝑰̃𝒊 based on the CVD strategy. The 

points indicate the average indices over the 100 repetitions obtained with the maximum sample size N. Please also 

note that error bars (± one standard deviation based on the 100 repetitions) are also plotted for each index. 

 



18 

 

The same conclusions are derived by looking at the results of the Oakley and O’Hagan function 

(Figure 2, column 2). The Saltelli/Jansen method correctly identifies the most important five 

input factors based on the main effect (xi = 10…15). Moreover, it quantifies interaction as evenly 

distributed over all the factors. In contrast, the PAWNi indices show strong correlation with the 

main effect but we are not able to conclude if this contribution is due to direct effect of the input 

factors to the model output or based on interactions. In contrast, the CVD strategy estimates well 

the main effect and it quantifies the interaction terms as detected by Satelli/Jansen method. 

Some additional considerations arise by looking at the results of the other two functions for 

which model outputs show strong skewed distributions (Figure 2, column 3 and 4). All the three 

approaches rank the factors consistently. However, PAWNi indices and the interactions terms 𝐼𝑖 

of the CVD strategy show higher values for the input factors x1. In contrast, the interaction terms 

𝐼𝑖 estimated based on Saltelli/Jansen method rank x1 and x2 equally. While it cannot be concluded 

by looking at PAWNi indices what is the reason of these differences, by removing the main effect 

with the CVD strategy (eq. 16), the results suggest that the difference is due to stronger 

interactions of the factor x1 with the other factors that cannot be detected using the variance as 

summery statistic. 

We further explore this hypothesis by looking at the input-output space of the first two input 

factors of the Bratley function (Figure 3). The variability of the conditional means calculated in 

the m intervals (red dots in the upper row) is larger for the factor x1 than for x2, confirming also 

by visual inspection that the first factor is more important in explaining the model output 

variability (higher main effect). We now remove these main effects by centralizing each 

conditional distribution (eq. 16) to isolate the interaction effect (Figure 3, lower row). When 

removing these conditional means, the obtained centered conditional distributions of each input 

factor are very different. In the case of x1, the distribution in the first left interval m is very 

narrow and then the spread strongly increases. In contrast, the differences between the centered 

conditional distributions of the factor x2 are smaller. Despite these differences, when looking at 

the two factors, it is interesting to note that the variances calculated in each centered distributions 

are comparable (see green square in Figure 3, lower row). Thus, the results show how the 

variance is not an adequate summary statistic in this specific case. For this reason, the variance-

based sensitivity analysis fails to reveal the difference between the factors and assigns the same 

interaction terms to both. In contrast, these differences can only be distinguished by looking at 
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their entire distributions and for this reason, the distribution-based measures are better suited to 

quantify these interaction terms. Same conclusions are supported by looking at the input/output 

space of the G-function (data not shown). 

 

Figure 3. Scatterplots showing the input-output space for the first two input factors (x1, x2) of the Bratley function 

(eq. 22). The input-output space is divided in m = 10 intervals. In each interval, the mean of the conditional 

distribution E[Y|Xi] is plotted as a red dot. The spline interpolation of these values is shown as a dashed green line. 

In the lower row, the centered conditional distributions are plotted (i.e., removing the conditional mean). In each 

interval m the variance of each conditional centered distribution is also plotted as a green square. 

3.3 Convergence and robustness of the estimations 

The mean absolute error MAE (eq. 23) is shown in Figure 4 for increasing sample size N to 

assess the convergence of the estimation of the indices. In addition, we visualize the width of the 

95% confidence intervals of the performance metric distribution obtained with the 100 

repetitions to assess the robustness of the estimation (variability over the repetitions). Please also 

note that the x-axis is plotted in log10 base to illustrate the behavior for small N. 
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Figure 4. Sensitivity indices estimated with different methods and increasing sample size N for the four test 

functions: (from top) Ishigami-Homma function, Oakley and O’Hagan function, G-function function and Bratley 

function. In the left column, main effect estimated by Saltelli/Jansen formula (𝑆̂𝑖) and based on the spline 

interpolation integrated in the CVD strategy (𝑆𝑖̃). In the right column, the interaction effect estimated by 

Saltelli/Jansen formula (𝐼𝑖) and based on the CVD strategy (𝐼𝑖). The colored envelopes demark the inner 95% 

confidence interval of the 100 repetitions. 
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Results show that the numerical estimates converge towards the reference values and the 

dispersion is constantly reduced as the sample size increases. The results confirm the accuracy of 

Saltelli/Jansen approach in estimating references indices but the need of a relatively high number 

of simulations (N ~ 104). In contrast, indices estimated based on the CVD strategy are more 

robust (lower spread over the replicates) and converge faster than Jansen/Saltelli method 

(N ~ 103). Specifically, the spline interpolation method used to estimate the main effect 

integrated in the CVD strategy outperforms Jansen/Saltelli method in all the test functions. 

Therefore, the results confirm the availability of efficient alternative methods when we are 

interested to quantify only the main effect (Kucherenko and Song, 2017; Plischke et al., 2013; 

Strong and Oakley, 2013; Wainwright et al., 2014). In contrast, the estimation of the interaction 

terms requires a relative larger sample size also with the CVD strategy. Still, the CVD strategy 

shows to converge faster to the reference index and to be much more robust (smaller spread over 

the replicates) than the Saltelli/Jansen method. 

The only exception is detected for the interaction terms of the Ishigami-Homma function (Figure 

4, second column, first row) for which the robustness is still much stronger than Saltelli/Jansen 

method (smaller colored envelopes) but the convergence to the reference values requires a larger 

sample size N. This behavior is explored in detail by looking at the estimation of the indices of 

each input factor (Figure 5). The results confirm that the interaction terms estimated based on 

Saltelli/Jansen method are well estimated (upper plot), but the estimation is not robust at a 

relative low sample size (N < 104). When looking at the CVD strategy (bottom plot), the factors 

are well ranked at relative low samples size too. Noteworthy, however, the convergence of the 

estimation of the interaction term for the factor x2 is much slower than for the other two factors. 

This low performance can be explained considering that x2 has a negligible interaction 

contribution (I ~ 0). When a relative low sample size N is used, however, the distribution-based 

measure (eq. 18) is affected by the numerical approximation of the conditional distributions and 

a higher value is quantified. Some possible improvements to address the estimation of very low 

values of the interaction indices are discussed in section 5. 



22 

 

 

Figure 5. Interactions terms of the Ishigami-Homma function estimated based on Saltelli/Jansen method (upper plot) 

and based on the CVD strategy (bottom). The indices are estimated for increasing sample size N. The colored 

envelopes demark the inner 95% confidence interval of the 100 repetitions. In the upper plot the analytic indices are 

also plotted as dash-dotted horizonal lines for comparison. 

4 A practical workflow based on a hydrological model 

4.1 SAC-SMA model and setting analysis 

We performed the global sensitivity analysis based on the CVD strategy and on the variance-

based approach of Saltelli/Jansen to the Sacramento Soil Moisture Accounting Model (SAC-

SMA). This is an intermediate-complexity conceptual rainfall-runoff model that represents the 

soil column by an upper and lower zone of multiple storages (Burnash, 1995). It has been used 

extensively in both research and operational applications. The model has also been used in the 

context of GSA and parameter identifiability (Blasone et al., 2008; Shin et al., 2013; van 

Werkhoven et al., 2009, 2008). The input, parametrizations and observations of Shin et al. (2013) 

is used within the present study to allow a comparison. The 13 parameters and ranges are listed 

in Table A1 in the appendix. The model runs for 10 years. The first year was not included in the 

sensitivity calculations to allow the model states to warm up and remove any impact of uncertain 
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initial conditions. The ranges of the parameters are sampled based on Sobol’ sampling design 

with 𝑁 = (13 + 2) ∙ 214 = 122880 model evaluations for the Saltelli/Jansen estimation and 

𝑁 = 217 = 131072 for the CVD strategy. These sample sizes have also been used in other 

studies (Shin et al., 2013; van Werkhoven et al., 2009). Simulations and analyses are repeated 

100 times and the approach of Owen (1995) is used to introduce randomness to the deterministic 

Sobol’ sequence. The modelling results are evaluated based on the following performance 

metrics, for which the sensitivities are assessed: 

𝑁𝑆𝐸 = 1 −
∑ (𝑜𝑡−𝑦𝑡)2𝑇

𝑡=1

∑ (𝑜𝑡−𝐸[𝑜])2𝑇
𝑡=1

 (22) 

𝑁𝑆𝐸∗ =
1−

∑ (𝑜𝑡−𝑦𝑡)2𝑇
𝑡=1

∑ (𝑜𝑡−𝐸[𝑜])2𝑇
𝑡=1

1+
∑ (𝑜𝑡−𝑦𝑡)2𝑇

𝑡=1

∑ (𝑜𝑡−𝐸[𝑜])2𝑇
𝑡=1

 (23) 

where T is the number of time steps t, y and o are simulated and measured river discharge, 

respectively, and E[o] indicates the mean of observation over the time series. Equation 23 is the 

Nash-Sutcliffe-index and has been commonly used for river discharge assessment. Its value is 

within in the range [−∞, +1]. The modified version (eq. 23) has been introduced by Mathevet et 

al. (2006) and it is bounded between [−1, +1]. Thus, it reduces the influence of large negative 

values without otherwise changing the interpretation of the objective function (Shin et al., 2013). 

The two metrices have been selected as example to show the differences in the sensitivity results 

when model output present different distributions. 

4.2 Results of the hydrological model 

The results of the sensitivity analysis are shown in Figure 6. The indices are plotted to visualize 

the relation between main and interaction effect of each parameter as conducted for other 

approaches (Morris, 1991). Each plot is also arbitrary divided (dashed gray line) to better 

highlight low values in the indices. 
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Figure 6. Results of the sensitivity analysis based on the modified NSE* performance metric (upper row) and based 

on the standard NSE (lower row). The analysis is performed based on Saltelli/Jansen method (a and c) and based on 

the CVD strategy (b and d). 

For the case of the modified NSE*, the Saltelli/Jansen approach estimates low main effect and 

low interaction for most of the parameters (Figure 6a, gray dots). Thus, the values of these 

parameters can be fixed to any arbitrary values within their ranges and they can be omitted 

during further analysis. In contrast, the main effect of the parameters UZTWM and PCTIM, 

related to the soil water capacity and the land surface characteristic, respectively (see appendix), 

is relatively large (~0.26). For this reason, these parameters can be targeted for further model 

improvements by, e.g., calibration. The estimated interaction term, however, is low for PCTIM 

while is large for UZTWM. Thus, the analysis suggests that PCTIM is likely identifiable while 

the optimum value of UZTWM can have strong dependencies with the values of the other 

parameters. For this reason, this parameter could be not identifiable. 
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These conclusions are also supported by the corresponding indices estimated based on the CVD 

strategy (Figure 6a, gray dots). The main difference is only detected for the parameter PCTIM 

for which a large interaction term is quantified (even larger than the interaction index estimated 

for the parameter UZTWM). This difference to the results of the Saltelli/Jansen method can be 

explained by looking at the input-output space for these parameters (Figure 7). The variability of 

the conditional means (red dots) of the two parameters is similar in terms of range and 

smoothness (Figure 7a and b). However, when removing these conditional means to isolate the 

interaction effect, the obtained centered conditional distributions are very different. In the case of 

UZTWM (Figure 7c), the distributions are very similar and the main difference is in the variance 

(see green squares in Figure 7c). For this reason, the variance-based approach can capture the 

interaction term. In contrast, the centered conditional distributions for the parameter PCTIM are 

very similar when looking at the variances (green squares in Figure 7d) and they can only be 

distinguished by looking at their entire distributions. For this reason, the distribution-measure 

can capture the interaction term for this parameter while the variance-based approach does not 

quantify any interaction. 

These results are particularly interesting in the light of the parameter identifiability. As an 

example, the best 1% simulations are filtered and represented in the scatterplots (orange color, 

Figure 7a and b). In the case of the parameter UZTWM, the best 1% simulations narrow the prior 

distribution to the lower value of its range. In contrast, the same best 1% simulation are evenly 

distributed in the range of the parameter PCTIM. Thus, the results show how PCTIM is less 

identifiable than UZTWM. For this reason, these results underline how the CVD strategy can 

better capture the interaction effects between the parameters and it is more consistent with the 

identifiability analysis when the differences in the distributions are not well represented by their 

variance. 
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Figure 7. Scatterplots showing the response function of two parameters (UZTWM and PCTIM) of the SAC-SMA 

model and the model output with regard to the modified NSE*. The input-output space is divided in m = 10 

intervals. The mean of the conditional distribution E[Y|Xi] is plotted as red dot in each interval m and the spline 

interpolation as dashed green line. The best 1% of the simulations are colored in orange. In the lower row, the 

centered conditional distributions are plotted (i.e., removing the conditional mean). In each interval m the variance 

of each conditional centered distribution is also plotted as green square. 

The same results are obtained when looking at the interaction terms obtained with the standard 

NSE (Figure 6, lower row). In contrast, however, a lower main effect is estimated for the 

parameters UZTWM and PCTIM. In addition, the parameter PCTIM becomes slightly more 

influential than UZTWM. These differences can be explained considering that the standard NSE 

yields strongly skewed distribution with very low performances obtained on a few samples. In 

this case, it is hard to compute meaningful statistics to summarize the whole distribution (i.e., 

mean and variance can be biased by few outliers). Thus, the result confirms the sensitivity of the 

variance metric to measure the dispersion of a variable with a heavy-tail or which contains some 

outliers (Auder and Iooss, 2009) and the need to properly defined the performance matric for the 
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model output. It is noteworthy, moreover, that the confidence intervals calculated based on 100 

replicates are very large in the case of Saltelli/Jansen estimations. Thus, these results show the 

difficulties to apply this method when the output distributions are strongly skewed. For this 

reason, we recommend checking for the normality of the output distribution to understand the 

reliability in the use of this method. In contrast, the indices estimated based on the CVD strategy 

are very well estimated even in the face of the skewed distributions in the output response. For 

this reason, they represent a more general and robust estimation. 

5 Discussion 

5.1 Sample size N and the number of intervals m 

The results have shown that the analysis conducted based on the CVD strategy provides the same 

(or even more detailed) information as the state-of-the-art of variance-based approach (Saltelli et 

al., 2010) with also the advantage of using a generic sampling design and converging with a 

lower sample size. Still, the number of samples N and the number of intervals m used to calculate 

the conditional distributions are two free parameters of the strategy and they should be selected 

with caution. 

The sensitivity of the results to these free parameters has been explored for instance for the case 

of distribution-based approaches. It has been shown that in the case of PAWN, results are quite 

independent of the chosen value of m when N is relatively high and m > 5 (Mora et al., 2019; 

Pianosi and Wagener, 2018). Similarly, Plischke et al. (2013) underlined that increasing the 

number of m beyond 50 classes has negligible effect on the estimation accuracy. More recently, 

however, a more detailed analysis conducted on these free parameters have shown the risk of 

achieving perfunctory results (Puy et al., 2020). For this reason, assuming the number of 

simulations N being the maximum achievable based on the specific model run-time, we advise to 

test the robustness of the indices and of the factor ranking by modifying the number of intervals 

m, as performed in other studies (Li and Mahadevan, 2016; Puy et al., 2020). 

We tested this approach by repeating the analyses varying the intervals m in the range [5 - 45] by 

increments of 5 and we found negligible differences in the indices (results not shown). This 

robustness is explained considering that the spline interpolation well represents the input-output 

space independently from the number of interval m. In contrast, the interaction index is 

calculated over the combination of all the conditional distributions, leading to a relative high 



28 

 

number of pairs even when m is relatively low (e.g., when m = 10, the combinations 𝑐 = (
𝑚
2

) =

45). Thus, the results of the CVD strategy show to be largely independent from the number of 

intervals m and all the conclusions reported on the role of the different factors of the tests are 

considered well supported by the analyses. 

5.2 Alternative methods in the CVD strategy 

The CVD strategy has been applied using the spline interpolation for the estimation of the main 

effect and the -measure for the interaction index. In principle, however, other methods can be 

applied as well. 

In the present study, we repeated the analyses using two different methods: the main effect is 

estimated based on the variance of the conditional mean E[Y|Xi] (Kucherenko and Song, 2017) 

without the interpolation step and the interaction index is estimated based on Kolmogorov-

Smirnov test, instead of the -measure. 

Differences between the use of these approaches were negligible in most of the cases. Some 

differences in the estimation of the main effect have been identified only in the case the model 

response was highly skewed. For example, the main effects of the skewed functions (eq. 21-22) 

did not reach the analytic references but they show some differences also at large sample size. 

For the case of the distribution approach, the ranking was consistent in all the cases. However, it 

has been noted how -measure proposed by Borgonovo (2007) better discriminate the factors in 

comparison to the Kolmogorov-Smirnov test.  

Thus, we suggest applying the CVD strategy based on the spline interpolation and the -measure. 

Still, further settings can be also tested. For instance, the spline interpolation can be optimized 

based on an iterative step as proposed by Ratto and Pagano (2010). Similar optimization could be 

also envisioned for the kernel density estimation. For this reason, while we consider the CVD 

strategy as a new effective strategy for combining variance- and distribution-based approaches, 

we leave to further studies comparing different settings or other alternative specific methods that 

can be integrated in the strategy and can perform better in specific conditions (Cukier et al., 

1973; Lewandowski et al., 2007; Mara et al., 2017; Mara and Joseph, 2008; McKay et al., 1999; 

Oakley and O’Hagan, 2004; Plischke, 2010; Ratto et al., 2007; Tarantola et al., 2006; Veiga, 

2015). 
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5.3 Correlated factors 

In principle, it is straightforward to apply the CVD strategy also in the presence of correlated 

input factors. The only difference would be to sample from joint probability distributions before 

estimating the sensitivity indices. However, it should be noted that these indices lose their 

interpretability when factors are correlated (Saltelli and Tarantola, 2002). The main effect still is 

used in the context of identifying the model inputs that, when fixed, lead to the greatest reduction 

in output variance. However, it contains also interactions information “carried over” by 

correlation. For this reason, removing this main contribution by centralizing the conditional 

distributions (eq. 16) does not isolate anymore the interaction effects, and the distribution-based 

index (eq. 17) loses its information content. Thus, the main effect can be estimated as suggested 

by Kucherenko and Song (2017). However, we are not able to estimate the interaction effect with 

eq. 18. For this reason, we advise to work with uncorrelated samples whenever possible, e.g., by 

treating dependencies as explicit relationships with a noise term (Saltelli et al., 2008). We leave 

possible improvements to future studies and we refer to the following references for a deeper 

discussion on global sensitivity analysis applied to correlated input factors (Borgonovo and 

Tarantola, 2008; Kucherenko et al., 2017; Mara et al., 2015; Tarantola and Mara, 2017; Zhao et 

al., 2015). 

5.4 Integrating good practices in the CVD strategy 

Most of the GSA relies on Monte-Carlo simulations. For this reason, a good practice is to repeat 

the analysis to assess the robustness of the estimation as conducted within the present study (i.e., 

100 replicates). When this is not possible, most likely due to computational burden to run the 

model, complementary approaches can be integrated in the CVD strategy to assist the 

interpretation of the results as it has been performed for other methods. 

Bootstrapping (Efron and Tibshirani, 1994) is a widely applied approach to provide confidence 

intervals based on resampling the original sample set with replacement. This approach has 

extensively been used in global sensitivity analysis (Nossent et al., 2011; Sarrazin et al., 2016). 

This method is, however, inappropriate with small sample sizes. For this reason, the use of 

dummy variables (Mai and Tolson, 2019; Plischke et al., 2013; Zadeh et al., 2017) or bias-

controlling statistical test (Plischke et al., 2013) has been introduced to support the assessment of 

the indices and the ranking of the different factors. Further improvements can also be performed 
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by iteratively decreasing the input space to be sampled by discarding the factors that are well 

identified in an iterative screening approach (Cuntz et al., 2015; Lo Piano et al., 2017). Working 

with groups by perturbing all factors of the same group simultaneously is also very advantageous 

for models containing a high number of factors (hundreds or thousands). This method allows for 

the reduction of the number of model executions required, at the cost of losing information on 

the relative strength of the inputs belonging to the same group (Campolongo et al., 2007). The 

groups are generally defined a priori introducing some subjectivities into the analysis. More 

recently, however, an automatic selection of the groups has also been presented to overcome this 

limitation (Sheikholeslami et al., 2019). Comparison of all these different auxiliary methods 

should be performed in future studies to identify their advantages and to better guide their use in 

specific applications. 

6 Conclusions 

We developed a new strategy called CVD that combines the strength of variance- and 

distribution-based global sensitivity analysis in a meaningful and effective way. This new 

strategy enables to estimate main and interaction effects directly from a generic sampling design 

(random, Latin hypercube, quasi-Monte Carlo, etc.). For these reasons, it provides a 

comprehensive analysis of the model response that can be easily implemented in any modelling 

framework and assessment (Baroni and Tarantola, 2014; Uusitalo et al., 2015). 

The new combined strategy has been tested on four analytical functions and on a hydrological 

model. The strategy has been implemented based on a spline interpolation (Saltelli et al., 2008) 

and the -measure (Borgonovo, 2007) for the estimation of the main and interaction term, 

respectively. However, other methods can be easily integrated and tested in future studies 

(Kucherenko and Song, 2017; Liu et al., 2006; Pianosi and Wagener, 2015; Ratto and Pagano, 

2010). The results are compared to the state-of-the-art of variance-based approach for global 

sensitivity analysis (Saltelli et al., 2010). 

The results showed that the new CVD strategy quantifies main and interaction effects correctly 

and with a lower sample size. The strategy is also better able to capture the interactions term 

when distributions are not Gaussian (i.e., the variance does not well represent the distributions). 

Thus, the strategy combines the strength of variance- and distribution-based approaches to 

explore the input-output space and the role of the different factors. Overall, the new strategy 
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provides a new simple and comprehensive basis for performing a global sensitivity analysis that 

can be useful to improve and to facilitate the use of these diagnostic tools for environmental 

models and to avoid perfunctory analysis that are still very common in many modelling studies 

(Saltelli et al., 2019). 

7 Appendix 

Table A1: parameters description and ranges (as taken from Shin et al., 2013). All the parameters follow a uniform 

distribution. 

Parameter name Unit Range Description 

UZTWM [mm] 1–150 Upper zone tension water maximum capacity 

UZFWM [mm] 1–150 Upper zone free water maximum capacity 

UZK [1/day] 0.1–0.5 Upper zone free water lateral depletion rate 

PCTIM [–] 0.000001–0.1 Fraction of the impervious area 

ADIMP [–] 0–0.4 Fraction of the additional impervious area 

ZPERC [–] 1–250 Maximum percolation rate coefficient 

REXP [–] 0–5 Exponent of the percolation equation 

LZTWM [mm] 1–500 Lower zone tension water maximum capacity 

LZFSM [mm] 1–1000 Lower zone supplementary free water maximum 

capacity 

LZFPM [mm] 1–1000 Lower zone primary free water maximum capacity 

LZSK [1/day] 0.01–0.25 Lower zone supplementary free water depletion rate 

LZPK [1/day] 0.0001–0.25 Lower zone primary free water depletion rate 

PFREE [–] 0–0.6 Direct percolation fraction from upper to lower 

zone free water storage 

SIDE [–] 0.0 (fixed) Fraction of base flow that is draining to areas other 

than the observed channel 

RSERV [–] 0.3 (fixed) Fraction of the lower zone free water that is 

unavailable for transpiration purposes 

RIVA [–] 0.0 (fixed) Fraction of the riparian vegetation area 
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