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S U M M A R Y
Atmospheric shock waves are a common phenomenon in explosive volcanic eruptions. We
consider the motion of a spherical shock wave generated by a point source in the strong shock
approximation. The shock front corresponds to discontinuities in the gas velocity, density,
pressure and temperature, which are calculated as functions of the energy of the explosion.
The problem is solved analytically for the distributions of velocity, density, pressure and
temperature in the atmosphere as functions of the distance from the source. The motion of
the shock wave being supersonic, the solution is valid for a few seconds after the explosion,
corresponding to a distance of few kilometres. The acoustic effect of the shock wave, expressed
by the peak sound pressure level, is calculated and may reach hundreds of decibels. The pressure
waveform that could be recorded in the vicinity of the volcano is calculated and compared
with typical waveforms in weak shock conditions. The change in the refractive index of air
due to density inhomogeneity is calculated and the conditions under which a condensation
cloud is formed behind the shock front are investigated.
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1 I N T RO D U C T I O N

Atmospheric shock waves are a common phenomenon in explo-
sive volcanic eruptions, indicating that the erupting fluid at the vent
is overpressurized with respect to the atmosphere (Ishihara 1985;
Woods & Bower 1995). The air shock propagates ahead of the erupt-
ing fluid at a velocity exceeding the atmospheric sound speed and
can have enough energy to rattle and even break windows at several
kilometres from the crater (Baxter 2000; Morrissey & Mastin 2000).
Shock waves are well documented for Plinian eruptions (Reed 1987)
and have also been reported for Vulcanian eruptions (Nairn 1976;
Yokoo & Ishihara 2007). Marchetti et al. (2013) presented evidence
of infrasonic shock waves associated with Strombolian activity.

Field measurements of expanding shock waves can be directly
recorded by pressure transducers or imaged under the proper illu-
mination and atmospheric conditions (Morrissey & Chouet 1997).
Air shocks are frequently recorded on microbarographs at distances
greater than 50 km from the eruption vent. The explosions that
destroyed the summit edifice of Krakatau in 1883 were among the
greatest volcanic explosions ever documented, being audible up
to 4600 km away and recorded on barographs around the world
(Yokoyama 1981).

More recently, shock waves were recorded in several explosive
eruptions. The 1958 eruption of Mount Asama (Japan) produced
terrific detonations and air shocks that were heard at the foot of

the volcano in an area 8–18 km away from the crater and caused
damage to windows of houses as far out as 15 km (Baxter 2000).

During the 1975 Ngauruhoe eruption (New Zealand), the over-
pressure produced by the shock wave was recorded at a distance of
9 km from the vent and associated with a burst pressure of 5–6 MPa
(Morrissey & Mastin 2000).

The activity of Sakurajima (Japan) is characterized by an eruption
rate of up to 400 explosive events per year. The onset of the 1989
eruption was marked by a shock wave followed by the ejection of
a pyroclastic cloud. From photographic analysis, the initial shock
wave velocity was about 500 m s−1 (Morrissey & Mastin 2000).

The shock wave produced by the 1980 Mount St. Helens (USA)
eruption was associated with a pressure release as large as 100
MPa. The wave amplitude was large enough to rattle windows up
to 300 km away (Baxter 2000).

In years 1992–1993, the Galeras volcano (Columbia) produced
six explosive eruptions. The first one destroyed the lava dome and
generated shock waves that broke windows 9 km from the volcano
(Vergniolle & Mangan 2000). At Galeras, historic eruptions are
reported to have generated shock waves that knocked down people
as far as 13 km from the vent (Baxter 2000).

Direct measurement of dynamic and thermodynamic quantities
in a shock wave is strongly limited by the dramatic attenuation of
such waves with distance, which corresponds to a rapid decrease in
propagation velocity: thus, even relatively near-source sensors are
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already too far away to detect a supersonic moving front. Therefore,
most of available data concern weak shock waves.

However, optical effects that are produced by a shock wave
may be often observed and can be used to investigate its prop-
erties. The shock wave can be momentarily visible above the vol-
cano when it passes through clear air and condenses water vapour.
The 1975 eruption of Ngauruhoe (New Zealand) was one of the
first well-documented Vulcanian eruptions, with many large ex-
plosions from the summit crater (Nairn 1976). In a series of pho-
tographs of one explosion, taken by different observers, the pas-
sage of the shock front is manifested by the appearance of a
short-lived, white condensation cloud immediately behind the shock
front.

In strong explosions, the so-called flashing arcs may be also
recorded with conventional cameras (Takayama & Saito 2004).
They are explained with the sudden density change occurring across
a shock wave and the consequent refraction of background light.
Thanks to this optical effect, a shock wave was clearly observed
in the 2014 eruption of the Tavurvur volcano, Papua, New Guinea
(Bouvet de Maisonneuve et al. 2015).

Explanation of these phenomena requires a detailed modelling
of the dynamic and thermodynamic quantities describing the shock
wave in the first few seconds after its generation. Previous studies
of volcanic shock waves did not consider this aspect analytically. A
short review was given by Yokoo et al. (2006).

Myagkov (1998) employed a simplified model assuming that the
entire mass of air encompassed by the shock wave is concentrated
in a thin layer behind the shock front. The velocity and pressure
were assumed to be constant in this layer and to be equal to the
front values. The aim of the model was mainly the evaluation of the
erupted mass.

Saito & Takayama (2005) developed a 3-D computer code sim-
ulating the propagation of blast waves generated by explosive vol-
canic eruptions. Application to an imaginary eruption of Mt. Fuji
provided useful information regarding the wave interactions with
local ground geometry.

Medici et al. (2014) used an open-ended shock tube to gener-
ate shock waves in the laboratory that are representative of ex-
plosive volcanic eruptions. They suggested that the strong shock
wave approximation can be used for modelling moderate volcanic
eruptions.

In this paper, a model for the atmospheric shock wave produced
by a strong volcanic explosion is presented. The model is based
on the theory of gas dynamics, considering the motion of an ideal,
homogeneous and isotropic fluid. The problem was first consid-
ered by Latter (1955), Sedov (1959), Landau & Lifshitz (1987) and
later by Kamm (2000). The dynamics of the shock wave is inde-
pendent of the kind of explosion, whether mechanical, chemical or
nuclear.

Under reasonable assumptions, the model has the merit of allow-
ing a complete analytical solution. We derive expressions for the
velocity of the shock front, as well as for velocity, density, pressure
and temperature of the air behind the front. This region is virtually
inaccessible during the shock wave propagation and the model al-
lows to enlighten the relationships between the energy release and
the characteristic of the shock wave, such as the magnitude of pres-
sure and temperature discontinuities and their evolution in time.
The acoustic effect of the shock in terms of the peak sound pressure
level and the propagating pressure waveform are also calculated.
Finally, optical effects such as the change in the refractive index
of air and the generation of a condensation cloud behind the shock
front are investigated.

2 T H E M O D E L

We develop a model for the shock wave under the assumption that
the volcano is the source of a large amount of energy that is released
in a very short time. In detail, the model assumptions are as follows:
(1) the shock wave is strong; (2) the source is point-like, isotropic
and impulsive; (3) the source is placed in an ideal, homogeneous
and isotropic fluid; (4) the fluid is a perfect gas; (5) the interaction
of the shock wave with the Earth’s surface is negligible.

A shock wave is strong when the associated pressure disconti-
nuity is large (Fox & McDonald 1985; Landau & Lifshitz 1987;
Kundu 1990). More precisely, the condition is

p2 � γ + 1

γ − 1
p1, (1)

where p1 and p2 are the gas pressures immediately ahead and behind
the shock front respectively and γ is the ratio between the specific
heat capacities of the gas:

γ = cp

cv

. (2)

For air γ = 1.4, so p2 must be at least six times greater than the
atmospheric pressure p1. In the case of strong explosions, condition
(1) is satisfied in the proximity of the volcano, where pressure can
reach values of tens of MPa (Fagents & Wilson 1993; Mason et al.
2004; Yokoo et al. 2006; Gudmundsson 2016). Since the shock
wave attenuates rapidly with distance, assumption 1 implies that
the model is valid at relatively short distances from the source and
for a short time interval because the initial velocity is supersonic.
From the following calculations it results that, even for large energy
explosions, condition (1) is satisfied for a few seconds after the
explosion.

As to assumption 2, it will be shown in Section 4 that the pressure
waveform generated by the explosion is a sharp pulse with a duration
of a fraction of second. The spectrum of a pulse with duration �t
is dominated by wavelengths λ > u�t, where u is the propagation
velocity. The validity of the point-like assumption at distance r0

from the source can be estimated from the Fraunhofer condition
(Aki & Richards 2002)

L2 � λr0

2
. (3)

With �t = 10−1 s, u = 103 m s−1 and r0 ranging from 1 to 5 km, it
results L � 200 to 500 m, which can be considered acceptable for
large explosions.

As to the assumption of source isotropy, real explosions may
be irregular and characterized by directionality. Kim et al. (2012)
studied the acoustic emissions in the infrasound band of Tungurahua
volcano, Ecuador, and found that the source could be represented
by a dipole, showing a good agreement with the opening direction
of the vent. Multipole sources were considered by Iezzi et al. (2019)
in modelling the acoustic emissions of Yasur volcano, Vanuatu.

Assumptions 3 and 5 are consistent with the strong shock as-
sumption: considering the motion over a short distance and a short
lapse of time allows the assumption of an ideal, homogeneous and
isotropic fluid, implying that absorption is neglected, as well as vari-
ations of density, pressure and temperature with the elevation above
sea level and the effects of reflection at the Earth’s surface.

When a shock wave meets the surface of a solid body, the line of
intersection is accompanied by reflection of the shock wave. For a
strong shock wave, regular reflection takes place only if the intersec-
tion angle does not exceed about 40◦: for higher values, the incident
shock wave breaks up and a complicated pattern results, which is
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Figure 1. Sketch of the model. The shock wave is a spherical surface of
radius r0 expanding at velocity u.

called Mach reflection (Hornung 1986). In the flat ground approx-
imation (Fig. 1), intersection occurs at about 90◦ and reflection is
negligible. Consideration of topography may alter this conclusion:
acoustic waveform inversion of infrasound data demonstrate that
topographic effects can be relevant (Kim et al. 2015).

Assumption 4 is also commonly used in problems of gas dy-
namics: in the case of a shock wave, it is acceptable because the
relatively high pressures produced behind the shock front are asso-
ciated with high temperatures, so that air can be still approximated
as a perfect gas.

As a consequence of assumptions 2 and 3, the shock wave is a
spherical surface (Fig. 1). Accordingly, a system of spherical coor-
dinates is introduced. It is supposed that the source is at the origin
and releases an energy E at time t = 0. Let r be the distance from
the origin and r0(t) be the position of the shock wave. The regions
r > r0 and r < r0 are called region 1 and region 2, respectively.

The gas is described by its density ρ, pressure p, temperature T,
entropy s per unit mass, specific heat capacities cp and cv. For a
perfect gas

s = cv ln
p

ργ
. (4)

Let ρ1, p1 and T1 be the initial values of density, pressure and
temperature of the gas, respectively: they are the values in region
1, where they are uniform according to assumption 3. However, the
three variables are discontinuous across the shock wave. We call ρ2,
p2 and T2 their values at r = r0 −.

Let v be the velocity of the gas, v1 its value in region 1 and
v2 its value at r = r0 −. In the strong shock wave approximation,
the values v2, ρ2, p2 and T2 are given by the Rankine–Hugoniot
relationships

v2 = 2

γ + 1
u (5)

ρ2 = γ + 1

γ − 1
ρ1 (6)

p2 = 2

γ + 1
ρ1u2 (7)

T2 = (γ − 1)p2

(γ + 1)p1
T1, (8)

where u is the velocity of the shock wave. Except for ρ2, these values
are functions of time which can be made explicit if one knows the
shock velocity u, which is calculated in the next section.

Velocity v, density ρ and pressure p in region 2 can be obtained by
solving three partial differential equations: the equation of motion,
the equation of continuity and the equation of entropy (Landau &
Lifshitz 1987). The unknown functions v, ρ and p depend only on
the coordinate r, so that the three equations are

∂v

∂t
+ v

∂v

∂r
= − 1

ρ

∂p

∂r
(9)

∂ρ

∂t
+ 2ρv

r
+ ∂

∂r
(ρv) = 0 (10)(

∂

∂t
+ v

∂

∂r

)
ln

p

ργ
= 0. (11)

From the knowledge of ρ and p, temperature T can be obtained from
the equation of state

p

ρ
= m RT, (12)

where m is the number of moles per unit mass and R is the gas
constant. The method of solution is given in the Appendix. The gas
velocity v, density ρ, pressure p and temperature T in region 2 are
obtained as functions of a non-dimensional variable

ξ = r

r0
(13)

ranging from 0 to 1. The four variables, expressed as ratios to their
values immediately behind the front, are

v

v2
= γ + 1

2
V ξ (14)

ρ

ρ2
= γ − 1

γ + 1
G (15)

p

p2
= γ + 1

2γ

ρ

ρ1
Zξ 2 (16)

T

T2
= ρ2

p2

p

ρ
, (17)

where V, G and Z are functions of ξ defined in the Appendix.

3 D I S C U S S I O N

Density, pressure and temperature in region 1 have the unperturbed
values ρ1, p1 and T1, respectively. We take the values for air at sea
level, which are ρ1 = 1.225 kg m−3, p1 = 101 kPa and T1 = 288 K.
In a reference system fixed to the ground, the gas velocity v1 is
assumed to be zero.

A crucial parameter is the amount of kinetic energy E released
by the explosion. In the 1980 Mount St. Helens explosion, wave
amplitudes at 50–300 km distance were about what might be ex-
pected from a nuclear explosion of between 1 and 10 Mton yield
(Reed 1987). A value of 7 Mton was estimated by Kieffer (1981),
corresponding to E � 3 × 1016 J. At the upper boundary of kinetic
energy, observations of broken window panes 100 miles away from
the 1883 Krakatau eruption can be used (Galanopoulos & Bacon
1970). On this basis, Kozlov et al. (1994) estimated an energy re-
lease of 370 Mton, corresponding to E � 1.5 × 1018 J. Accordingly,
for medium-size to large-size eruptions, an energy release E ranging
between 1016 and 1018 J will be assumed. The total thermal energy
release can be two or three orders of magnitude greater (Pyle 2000).

In Fig. 2, the velocity u of the shock wave and the distance
r0 travelled by the shock front are shown as functions of time, for
different values of the energy E. The ratio u/c1 is plotted in Fig. 2(a),
where c1 is the sound velocity in region 1:

c1 =
√

γ p1

ρ1
. (18)

Supersonic velocities are maintained for a few seconds, according to
the energy of the explosion. The corresponding distances travelled
by the front, amounting to a few kilometres, are shown in Fig. 2(b).

We next consider the discontinuities of dynamic and thermody-
namic variables across the shock wave. While the variables at r =
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(a)

(b)

Figure 2. (a) Velocity u of the shock wave in units of the sound velocity c1

and (b) distance r0 travelled by the shock wave, as functions of time t. The
curves refer to different values of the energy release E. The dashed lines are
respectively the sound velocity and the distance travelled by sound.

(a)

(b)

Figure 3. (a) Pressure p2 and (b) temperature T2 immediately behind the
shock wave in units of their values p1 and T1 in region 1, as functions of
time, for different values of energy E.

r0+ are constant, their values at r = r0− are in general functions of
time. An exception is density ρ2, which is constant and equal to 6ρ1,
as given by eq. (6). The pressure and temperature discontinuities
are determined by the energy E and can be arbitrarily large.

From eqs (7), (A4), (A2) and (A1), pressure p2 as a function of
time is

p2 = 8

25

β2

γ + 1

(
E2ρ3

1

t6

)1/5

(19)

and temperature T2 is obtained from eq. (19) according to eq. (8).
In Fig. 3, the ratios p2/p1 and T2/T1 are shown as functions of time,
for different values of E. Both ratios tend rapidly to 1 following

Figure 4. Peak sound pressure level P of the shock wave as a function of
the wave radius r0, for different values of energy E.

the attenuation of discontinuities. Velocity v2 is proportional to the
shock wave velocity u according to eq. (5).

The velocity and pressure values shown in Figs 2(a) and 3(a)
are consistent with estimates of other authors. Calculations made
by Wohletz et al. (1984) show that large caldera-forming eruptions
with a magma chamber overpressure of 100 MPa form an air shock
wave of 3 MPa (i.e. p2/p1 � 30) with a velocity greater than 1 km
s−1 (i.e. u/c1 > 3).

The acoustic effect of the shock wave can be expressed by the
peak sound pressure level, defined as (Pierce 1994)

P = 20 log
p2 − p1

p0
, (20)

where p0 is the threshold of audibility for pressure (p0 = 3 × 10−5

Pa). From eq. (A2), when the wave front is at distance r from the
source, the time elapsed from the explosion is

t0 =
√

ρ1r 5

β5 E
. (21)

From eq. (19) with t = t0 and r = r0, we obtain then

p2 = 8β5 E

25(γ + 1)r 3
0

, (22)

showing that p2 decreases as the cube of the distance covered by the
front. The peak sound pressure level P as a function of the shock
wave radius r0 is shown in Fig. 4 for different values of energy E.
Sound pressure levels larger than 200 dB are predicted within some
kilometres from the source.

For a comparison, the sound tolerance limit of the human ear
is 120 dB, corresponding to an overpressure of about 30 Pa. Ac-
cording to Baxter (2000), shock waves with overpressures of 7 kPa,
corresponding to P = 170 dB, may break windows and the thresh-
old for rupture of the eardrum is 35 kPa (P = 180 dB). During the
1888–1890 eruptions at Vulcano (Italy), shock waves broke win-
dows 7 km from the vent and during the 1992–1993 eruption of
Galeras volcano (Colombia) a shock wave broke windows as far as
9 km (Morrissey & Mastin 2000), suggesting much higher pressure
levels closer to the source.

The dynamic and thermodynamic variables in region 2 are shown
in Fig. 5. Gas velocity v, density ρ, pressure p and temperature T
are plotted as functions of ξ , in units of the respective values v2, ρ2,
p2 and T2 at ξ = 1 −, according to eqs (14)–(17). The plotted ratios
are independent of energy E.

The gas velocity v has its maximum v2 immediately behind the
shock front and then decreases almost linearly, vanishing at ξ = 0
(Fig. 5a). A very rapid decrease in density ρ behind the front can
be noted: almost all the gas is concentrated in a relatively thin layer.
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(a)

(b)

Figure 5. (a) Air velocity v, pressure p, density ρ and (b) temperature T
behind the shock wave (region 2) as functions of the similarity variable ξ .
The plotted ratios are independent of the energy release E.

This is related to the fact that the maximum density ρ2 is six times
the normal density ρ1. Density vanishes at ξ = 0.

The ratio p/p2 also decreases rapidly behind the front, but it
approaches a constant value for ξ → 0. From eq. (16), this constant
is

k = 2− 6
5

(
2γ + 1

7 − γ

)α6(γ + 1

γ

)α7

(23)

where α6 and α7 are given in the Appendix. The value of k depends
only on γ and is equal to 0.365 for air (Fig. 5a).

On the contrary, temperature increases very rapidly as ξ decreases
(Fig. 5b). Since pressure is a constant, while density vanishes at ξ =
0, temperature approaches infinity. However, it must be considered
that the air is extremely rarefied in the proximity of the source during
the shock wave propagation.

4 P R E S S U R E WAV E F O R M S

The obvious way to measure shock wave intensity is by pressure
sensors. However, shock fronts travelling at supersonic velocities
have been only observed visually (Nairn 1976; Yokoo & Ishihara
2007), but never reported directly from pressure records, due to the
rapid attenuation of shock waves with distance, which corresponds
to a reduction in propagation velocity (Fig. 1a); thus, even the near-
est sensors to the source are too far away to detect a supersonic
moving front. In principle, thermal imagery could detect the pres-
sure wave as soon as it exits the vent, but it has been used so far only
for weak shock waves (Marchetti et al. 2013). Therefore observed
and simulated (e.g. Morrissey & Chouet 1997) pressure waveforms
do not correspond to the strong shock condition considered by the
present model.

We define the pressure waveform as the function

p′(t) = p(t) − p1. (24)

An analytical expression for p
′
(t) is not available in the general case.

A theorem in gas dynamics (Landau & Lifshitz 1987) states that in

(a)

(b)

(c)

Figure 6. Pressure waveforms p
′
(t) at different distances from the source:

r = 2 km (a), 2.5 km (b), and 3 km (c). An energy E = 1017 J is assumed.

a spherical shock wave the integral of p
′

over all time for a given
r must be zero. Therefore, as a spherical wave passes through a
given point, both compression (p

′
> 0) and rarefaction (p

′
< 0) will

be observed. This behaviour is usually described by the empirical
Friedlander function (Friedlander 1946):

p′(t) = p0

(
1 − t − t0

τ

)
e− t−t0

τ , t ≥ t0, (25)

where p0 is the peak value recorded at t = t0, when the wave reaches
the observer, and τ is a characteristic time. However, for p0 greater
than about one atmosphere, the Friedlander function is no longer
able to describe accurately the pressure time history (Dewey 2010).

The present model provides an analytical expression for the pres-
sure waveform in strong shock conditions. At a generic distance r
from the source, the waveform can be obtained from (16), (19), (15)
and (13) as

p′(t) =
⎧⎨
⎩

0, 0 < t < t0

4ρ1r 2

25γ

G Z

t2
− p1, t > t0

, (26)

where G and Z are functions of time and t0 is the time at which the
wave reaches distance r, which is given by (21). Pressure waveforms
at three different values of r are shown in Fig. 6, where the rapid
decrease of the peak value p2 − p1 with distance is evident.

In strong shock conditions, the waveform is dominated by the
compression phase: rarefaction takes place in a subsequent time,
when condition (1) is no longer satisfied. A description of the shock
wave in the short space and time interval, where it can be con-
sidered strong, is crucial for explaining the optical effects that are
considered in the next section.
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Figure 7. Refractive index n behind the shock wave (region 2) as a function
of the similarity variable ξ .

5 O P T I C A L E F F E C T S

As mentioned in Section 1, in certain circumstances the shock wave
can be observed directly, thanks to the change in the refractive index
of air or the formation of a condensation cloud. The refractive index
n is a function of density and increases with increasing density due
to the corresponding decrease in the speed of light. The change is
small and n can be expressed to a first approximation as a linear
function of ρ (e.g. Edlén 1966):

n(ρ) = n1 + dn

dρ
(ρ − ρ1), (27)

where

n1 = n(ρ1), (28)

and

dn

dρ
= n1 − 1

ρ1
. (29)

Then, thanks to eq. (6),

n = n1 + (n1 − 1)
(γ + 1

γ − 1

ρ

ρ2
− 1

)
(30)

where the ratio ρ/ρ2 is given by eq. (15). The function n(ξ ) − 1 is
plotted in Fig. 7, showing that n is sensibly greater than 1 only in a
thin shell behind the shock wave (approximately 0.9 < ξ < 1). At
ξ = 1 −, the index has the value

n2 = n1 + 2
n1 − 1

γ − 1
(31)

that is about 0.15 per cent greater than n1 and is equal to 1 at ξ =
0. The refractive index does not depend on the energy release E
because the ratio ρ/ρ2 is independent of E.

In order that condensation may occur, pressure p must exceed
the vapour pressure pv of water, which is an increasing function of
temperature. Therefore, condensation is favoured by an increase in
pressure and by a decrease in temperature. The passage of the shock
wave produces a sudden increase both in pressure and temperature.
Behind the front, pressure decreases while temperature increases,
as shown in Fig. 5.

To ascertain whether vapour condensation may occur, pressure
p(ξ ) must be compared with vapour pressure pv(ξ ) in region 2 at dif-
ferent times during the motion of the shock wave. The dependence
of pv on T can be expressed by the approximate Magnus formula
(Alduchov & Eskridge 1996):

pv(T ) = p0e
a(T −T0)

T −T0+T ∗
, (32)

where p0 = 610.94 Pa, a = 17.625, T0 = 273.15 K and T∗ =
243.04 K.

Figure 8. Air pressure p (solid curves) and vapour pressure pv (dashed
curves) behind the shock wave (region 2) as functions of the similarity
variable ξ , at different times after the explosion: 1 s (a), 1.2 s (b), and 1.4 s
(c). An energy E = 1017 J is assumed.

From eq. (17), with T2 depending on time according to eq. (8),
we obtain T(ξ ). From eq. (32) we obtain then pv(ξ ). As to pressure,
we use solution (16) for p(ξ ), with p2 depending on time according
to eq. (7).

Graphs of the functions p(ξ ) and pv(ξ ) for three values of time
are shown in Fig. 8, in the case of an energy E = 1017 J. Conden-
sation starts at ξ = 1−, where pressure has the highest value and
temperature has the lowest one. Initially, temperature T2 can be very
high, exceeding the critical temperature of water. As time increases,
both T2 and p2 decrease, as shown in Fig. 3.

At t = 1 s, the values of temperature, vapour pressure and pressure
at ξ = 1− are T2 = 490 K, pv = 2.5 MPa and p2 = 1 MPa, that is still
smaller than pv (Fig. 8a). But at t = 1.2 s the values are T2 = 394 K,
pv = 0.2 MPa and p2 = 0.8 MPa, that is greater than pv. At this
temperature, pressure is sufficiently high to produce condensation
and the thickness of the condensation layer is about 1 per cent of the
radius r0 of the shock wave (Fig. 8b). At t = 1.4 s, the thickness
is about 3 per cent (Fig. 8c). The lifetime of the layer is very short
because the decrease of p2 is very fast.

A comparison can be made with the largest 1975 explosion of
Ngauruhoe (New Zealand), when a nearly spherical, hollow con-
densation cloud was observed about 1 s after the explosion (Nairn
1976). At that time, the shock wave velocity was estimated to be
at least 600 m s−1, or u/c1 � 2. According to Fig. 2, this velocity
corresponds to an energy E � 1016 J and the distance r0 covered by
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the shock front at that time is approximately 1.5 km. One second
later, the cloud had disappeared. This is consistent with eq. (19) and
Fig. 3(a), showing that at t = 2 s pressure p2 had decreased to less
than 0.2 MPa.

This phenomenon can be also observed in lower energy events. In
a Strombolian explosion of the Yasur volcano (Vanuatu), Marchetti
et al. (2013) observed a condensation cloud with a thickness increas-
ing in time, similarly to what is predicted by the present model. The
cloud was ascribed to the compressive wave front, propagating at
a velocity close to 400 m s−1 and causing instantaneous vapour
condensation.

6 C O N C LU S I O N S

A model for the shock wave generated by an explosive volcanic
eruption has been presented. Assuming that a large amount of en-
ergy is released by the eruption in a very short time, the strong
shock wave approximation has been considered. The source has
been assumed to be point-like and placed in a homogeneous and
isotropic ideal fluid, considered as a perfect gas.

The model allows a theoretical study of a phenomenon that is fre-
quently observed, but is hardly measured due to its unpredictability
and short duration, as well as to the inaccessibility of the region
behind the shock front. A merit of the model is that analytical solu-
tions can be obtained for the dynamic and thermodynamic variables,
allowing a detailed study of the relationships between them.

For the considered energy range, the shock wave velocity is su-
personic for a few seconds after the explosion, during which the
shock front covers a distance of a few kilometres. In the region
behind the front, the air velocity, density and pressure are monoton-
ically increasing functions of the distance from the source, reaching
their maximum values immediately behind the front. Temperature
is instead a decreasing function of distance. The amplitudes of dis-
continuities in gas velocity, pressure and temperature are functions
of the energy release. The propagation of the shock wave is accom-
panied by a rapid decrease in the amplitude of such discontinuities.

The acoustic effect of the shock wave, expressed by the peak
sound pressure level, has been calculated as a function of the dis-
tance travelled by the wave and yields very high values in the consid-
ered time interval. The pressure waveforms that could be recorded
by pressure sensors in the vicinity of the volcano have been calcu-
lated and compared with typical waveforms in weak shock condi-
tions.

Owing to the density inhomogeneity, the refractive index of the
air is inhomogeneous in the region behind the shock wave. A thin
shell with a higher value of the index is generated immediately
behind the shock front. The model also predicts the formation of
a thin condensation layer immediately behind the shock front, in
agreement with observations.

We remark that the strong shock wave approximation is valid
during the first few seconds of the shock wave propagation, as long
as the pressure discontinuity is large. Later, the discontinuities in
dynamic and thermodynamic variables gradually vanish and the
wave becomes a weak shock, which must be treated differently.
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A P P E N D I X : M E T H O D O F S O LU T I O N

Eqs (9)–(11) can be solved by the similarity approach (e.g. Sedov
1959), based on the fact that the only length scale in the problem
is

L =
(

Et2

ρ1

)1/5

. (A1)

The position r0(t) of the shock wave must also scale with L and we
can write

r0 = βL , (A2)

where β is a constant that can be calculated numerically from the
conservation of energy. Its value for air is 1.033 (Landau & Lifshits
1987).

The shock wave velocity u can be obtained by differentiating
(A2) with respect to time:

u(t) = 2

5
β

(
E

ρ1t3

)1/5

(A3)

or

u(t) = 2

5

r0(t)

t
. (A4)

Thanks to (A3), we can obtain v2, p2 and T2 as functions of time
from eqs (5), (7) and (8), respectively.

Following Landau & Lifshitz (1987), eqs (9)–(11) can be ex-
pressed in non-dimensional form. In the place of pressure, we use
the square of the sound velocity

c2 = γ p

ρ
(A5)

and introduce the non-dimensional variables V, G and Z, defined as
follows:

v = 2r

5t
V (A6)

ρ = ρ1G (A7)

c2 = 4r 2

25t2
Z . (A8)

As the variable ξ varies from 0 to 1, they range in the intervals

1

γ
≤ V ≤ 2

γ + 1
(A9)

0 ≤ G ≤ γ + 1

γ − 1
(A10)

∞ > Z ≥ 2γ (γ − 1)

(γ + 1)2
. (A11)

Introduction of eqs (A6)–(A8) into eqs (9)–(11) yields a system of
ordinary differential equations for V, G and Z as functions of ξ :

γ (1 − V )V

(
1 + d ln V

d ln ξ

)
= Z

(
2 + d ln Z

d ln ξ
+ d ln G

d ln ξ

)
(A12)

dV

d ln ξ
− (1 − V )

d ln G

d ln ξ
= −3V (A13)

d ln Z

d ln ξ
− (γ − 1)

d ln G

d ln ξ
= −5 − 2V

1 − V
. (A14)

The solution of the system yields ξ , G and Z as functions of V:

ξ (V ) =
(

γ + 1

2
V

)−2/5

Aα1 Bα2 (A15)

G(V ) = γ + 1

γ − 1
Aα3 Bα4 Cα5 (A16)

Z (V ) = γ (γ − 1)(1 − V )V 2

2(γ V − 1)
, (A17)

where A, B and C are linear functions of V, while α1, α2, α3, α4 and
α5 are constants, which are defined as

A(V ) = (γ + 1)(γ V − 1)

γ − 1
(A18)

B(V ) = (γ + 1)[5 − (3γ − 1)V ]

7 − γ
(A19)

C(V ) = (γ + 1)(1 − V )

γ − 1
(A20)

α1 = γ − 1

2γ + 1
, α2 = − 13γ 2 − 7γ + 12

5(3γ − 1)(2γ + 1)
,

α3 = 3

2γ + 1
(A21)

α4 = 13γ 2 − 7γ + 12

(2 − γ )(3γ − 1)(2γ + 1)
, α5 = − 2

2 − γ
(A22)

α6 = 13γ 2 − 7γ + 12

5(2 − γ )(3γ − 1)
, α7 = 4γ

3γ − 1
. (A23)

The gas velocity v, density ρ, pressure p and temperature T in region
2 are then obtained as functions of V from eqs (A6), (A7), (A5) and
(12), respectively. Their expressions are given by eqs (14)–(17).
Each value of V in the interval (A9) corresponds to a value of ξ

according to eq. (A15). Then the four variables can be plotted as
functions of ξ .
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