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Abstract

In this work, we consider the problem of scheduling a set of trains (i.e., determining their departure
and arrival times at the visited stations) and simultaneously deciding their stopping patterns (i.e.,
determining at which stations the trains should stop) with constraints on passenger demand, given
as the number of passengers that travel between an origin station and a destination station. In
particular, we face the setting in which demand can be uncertain, and propose Mixed Integer Linear
Programming (MILP) models to derive robust solutions in planning, i.e., several months before
operations. These models are based on the technique of Light Robustness, in which uncertainty
is handled by inserting a desired protection level, and solution efficiency is guaranteed by limiting
the worsening of the nominal objective value (i.e., the objective value of the problem in which
uncertainty is neglected). In our case, the protection is against a potential increased passenger
demand, and the solution efficiency is obtained by limiting the train travel time and the number
of train stops. The goal is to determine robust solutions in planning so as to reduce the passenger
inconvenience that may occur in real-time due to additional passenger demand. The proposed
models differ in the way of inserting the protection, and show different levels of detail on the
required information about passenger demand. They are tested on real-life data of the Wuhan-
Guangzhou high-speed railway line under different demand scenarios, and the obtained results are
compared with those found by solving the nominal problem. The comparison shows that robust
solutions can handle uncertain passenger demand in a considerably more effective way.

Keywords: Train Timetabling, Train Stop Planning, Passenger Demand, Robustness, Mixed
Integer Linear Program

1. Introduction

Origin-destination passenger demand is commonly utilized to determine train lines and train
stopping patterns (i.e., the set of stations at which each train will stop), in order to provide an
adequate service to the passengers (Schöbel, 2012). Once the train stops have been decided, the
train schedules or timetables are derived, i.e., for every train, the departure and arrival times at
every station it visits are determined (Cacchiani and Toth, 2012). Both problems, Train Stop
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Planning and Train Timetabling, are solved at the planning stage, i.e., several months before
operations, when the origin-destination passenger demand is often only an estimate of the real
demand. The decisions of the train stopping patterns and timetables have to be made before making
the schedule public for the passengers, since, based on the available train service, the passengers buy
their tickets. Train Stop Planning and Train Timetabling are usually solved in sequence. However,
the integration of these problems in a single (more complex) one can allow finding better solutions.
As shown in the recent literature, the number of works studying the integration of these two stages
is increasing (see e.g., Jiang et al., 2017, Qi et al., 2018b, Yang et al., 2016 and Yue et al., 2016).
In order to integrate these two problems, it is also important to handle the passenger demand
requirement within the decision process: indeed, the train stop selection is strictly related to the
number of passengers who want to travel between an origin station and a destination station. This
requirement can be obtained, for example, by imposing a minimum number of trains stopping at
each station (Yue et al., 2016), by limiting the number of skipped stops within the train scheduling
process (Jiang et al., 2017) or by requiring to satisfy the cumulative passenger demand at each
station (Qi et al., 2018b; Yang et al., 2016). In the latter case, constraints on the maximum train
capacity are usually imposed, and even the passenger distribution on the trains can be tracked (Qi
et al., 2018b).

Passenger demand highly affects train stop plans and timetables, but it varies from day to day,
depending on the season, weather conditions, particular events or holidays, etc. The real passenger
demand may become known only very close to the day of departure, since passengers are allowed to
buy tickets right before the train departs. However, the train stop plans and the timetables must
be defined much earlier than the day of departure, so as to make the schedule public and available
to the passengers, and to determine the rolling stock circulation and the crew schedules, which are
based on the train timetabling solution (Caprara et al., 2007). As a consequence, the fluctuation
of passenger demand can lead to overcrowded trains or even unsatisfied demand, causing passenger
discomfort, and can make the train transport less attractive. On the other hand, the capacity
utilization of the railway network is close to saturation in many countries, and it is thus hard to
increase the train frequency. In this context, we consider the integration of Train Timetabling with
Stop Planning when passenger demand is uncertain, with the aim of determining robust solutions
against this uncertainty. Our aim is to determine, at the planning stage, train stopping patterns
and timetables that are resistant to the changes of the passenger demand that can occur during
operations. Note that adjusting the train stop plans or the timetables during operations is highly
undesirable. First of all, any change would significantly affect the passengers, who have already
bought their tickets: if a stop plan is changed by skipping some stops, then some passengers might
not be able to reach their destination; if, on the contrary, some stops are added, then their travel
time would increase. Similarly, a timetable change would require communicating the variation
to all passengers who have bought a ticket, and the new schedule might not be convenient for
them. Furthermore, a modification of stopping patterns and timetables would strongly influence
the rolling stock plan and the crew schedule, that have been determined based on the original
timetable: a change in this timetable could require additional train units or a different duty for
the crew, making the original plan infeasible. Therefore, we study the integration of train stop
planning and timetabling at the planning stage and aim at deriving robust solutions that can
cope with uncertain passenger demand. We call this problem Robust Train Stop Planning and
Timetabling (RTSPT).

RTSPT and its nominal version are NP-hard, since they generalize the Train Timetabling
problem, which calls for determining the arrival and departure times of trains in a railway network,
and was proven to be NP-hard in Caprara et al. (2002) by a reduction from the well-known Max-
Independent Set Problem.
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We underline that the concept of robustness used in RTSPT is different from that of robustness
against delays or disruptions, where the goal is to minimize the delay propagation or the number
of cancelled train services, and buffer times are inserted in the train schedule to protect against
this type of inconvenience (see e.g. Cacchiani and Toth, 2018, Lusby et al., 2018, Goverde, 2007,
Bešinović et al., 2016, Sparing and Goverde, 2017). More details are provided in Section 2.1.

RTSPT was introduced in Qi et al. (2018a), where a MILP model, based on Light Robustness
(LR), was proposed. LR is a powerful technique, introduced in Fischetti and Monaci (2009), to
determine robust solutions: it consists of inserting a desired protection level against uncertainty,
and using slack variables when the protection level cannot be guaranteed; the goal is to minimize
the sum of the slack variables in order to obtain the maximum robustness against uncertainty,
while limiting, by an additional constraint, the worsening of the objective function value of the
nominal problem (i.e., the non-robust problem). Indeed, as usual in robust methods, a good trade-
off between robustness and quality of the solution must be achieved. A major advantage of LR is
that the complexity of the robust version of the problem remains similar to that of the nominal one,
and robust solutions can be obtained in reasonable computing times for real-life instances. Indeed,
LR consists of a single stage method, as opposed to two-stage approaches, often used in stochastic
programming, that require a set of scenarios to be included in the formulation.

The MILP model proposed in Qi et al. (2018a) requires protection against additional passenger
demand defined for each pair of stations, and limits the worsening of the nominal objective value
by introducing two additional constraints: one is used to limit the train travel time and the other
one to bound the total number of train stops. The model was tested on a real-world instance of
the Wuhan-Guangzhou high-speed railway line, and several scenarios were generated to evaluate
the robustness of the obtained solution. The results showed that the robust solution reduced the
unsatisfied demand by about five times with respect to the nominal case. We will call this model
Demand based Robust Model (DRM).

In this paper, we propose three new MILP models, all based on LR, but featuring different
ways to insert robustness for passenger demand uncertainty. The first model is a new variant of
DRM and considers protection on additional passenger demand to be satisfied as much as possible,
the second one considers protection as a buffer on the train capacity, while the third one uses
a combination of the first two models. Different levels of detail are taken into account for the
passenger demand, leading to different solutions and computing times. These models feature new
characteristics that were not included in DRM and are useful in practice. In particular, it is possible
to limit the changes that can be applied to a given train stop plan, so as to use a stop plan similar
to one chosen by the practitioners, but, at the same time, derive robust solutions. In addition, in
the latter two models, it is possible to control the distribution of passengers on the trains. More
precisely, in one model we reserve some seats for the additional passengers on each train, so that,
when a high-demand scenario occurs, the additional passengers can find seats on many trains, i.e.,
more alternative options are available to accommodate the passengers and transport them to their
destinations. In the other model, we limit the number of additional passengers on each train, so
as to distribute them on several trains, and derive stop plans featuring additional stops at the
most crowded stations, thus making trains less crowded in high-demand scenarios. Therefore, both
models aim at determining more balanced robust solutions than DRM.

We observe that, for all three models, the robustness measures (protecting against additional
demand, reserving seats for additional passengers on each train, limiting the number of additional
passengers on each train) are embedded within the robust models in order to derive robust train
stop plans and timetables. Once the proposed robust models have been solved, the railway operator
can employ the obtained robust train stop plans and timetables, without any need of applying the
robustness measures. Indeed, thanks to the protection inserted within the models, the robust
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train stop plans and timetables are characterized by the capability of effectively handling uncertain
demand scenarios. In particular, since all three robust models aim at transporting additional
passengers, the train stop plans they produce are usually characterized by a larger number of
trains stopping at the most crowded stations compared to the solutions of the nominal model. This
benefit is more evident for the latter two models, since they control the distribution of passengers
on the trains, i.e., they avoid that all passengers are allocated on the same train even if the train
capacity could accommodate all of them, thus forcing more trains to stop at the most crowded
stations in order to transport many passengers. Note that a large number of trains stopping at a
station leads to more travel choices available for the passengers traveling to/from that station, and
thus to train stop plans and timetables more resilient to demand fluctuations. We observe that we
are not requiring Train Operators to control actively the passenger distribution on different trains
in practice: thanks to the control of passenger distribution on trains applied in the models, the
computed robust train stop plans and timetables are characterized by more travel options available
to the passengers in practice. I.e., it is sufficient that the Train Operators operate the computed
robust train stop plans and timetables to benefit of the additional resilience to changes in the
passenger demand.

The robust train stop plans and timetables have different features, depending on which of the
three models has been solved to derive them, as described above. In particular, the first model
allows using an available stop plan, while the two latter models allow deriving more balanced
solutions. Therefore, the railway operator can choose which features are more important, and the
appropriate model is solved to derive the robust train stop plans and timetables.

The three models are tested on the same data of the Wuhan-Guangzhou high-speed railway
line used in Qi et al. (2018a). The obtained results are compared with those of the nominal model,
showing that the robust stop plans and timetables can deal with uncertain passenger demand in a
much more effective way than the nominal one.

The paper is organized as follows. Section 2 presents a brief overview of related works and
highlights our contribution. Section 3 describes the RTSPT problem. In Section 4, we present the
MILP models: we first report the nominal model, since it will be used for comparison purposes;
then, we describe the proposed robust models. Section 5 shows the obtained computational results,
and the paper is concluded with some remarks in Section 6.

2. Literature Overview

In this section, we first present an overview of works from the literature that study Robust
Train Timetabling, but employ different robustness measures (Section 2.1). Then, we focus on
works that are more closely related to the RTSPT problem in Section 2.2.

2.1. Other Robustness Measures in Timetabling

The problem of Robust Train Scheduling or Timetabling, deeply studied in the literature,
considers robustness from a perspective that is different from the one used in RTSPT: in Robust
Train Scheduling, robustness is usually against unexpected train delays or disturbances, such as
uncertain travel times or uncertain departure times, that cause deviations from the nominal plan.
Approaches are proposed to obtain train timetables that are able to absorb delays and reduce
travel time uncertainty. In Robust Train Scheduling, several works propose to include buffer times
between trains or take into account train rerouting as a way to reduce delay propagation. In
Liebchen and Stiller (2009), a theoretical analysis is provided to explain how buffer times should
be distributed, and heuristic algorithms are described to incorporate a certain degree of robustness
while ensuring nominal efficiency in the case of periodic timetabling. By introducing buffer times,
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if trains have enough headway times between each other, a train delay will not impact on the
following trains. We refer to Cacchiani and Toth (2018) for a complete overview on Robust Train
Scheduling.

We underline that, in RTSPT, robustness has a different aim: indeed, robustness is against
unexpected passenger demand, i.e., we derive train stop plans and timetables that are able to deal
with uncertain passenger demand and thus avoid unsatisfied demand and overcrowded trains as
much as possible. In RTSPT, we propose to reserve capacity on the trains in order to be able to
transport additional passengers. Therefore, we apply robustness to achieve a new different goal. In
the following, we give a brief overview of works that deal with robustness measures used against
unexpected train delays or disturbances.

Several works on Robust Train Scheduling propose two-stage approaches. Stochastic optimiza-
tion is a typical example of a two-stage method, in which the first stage requires to determine a
timetable, while the second stage considers a set of uncertainty scenarios, occurring under stochas-
tic disturbances, and applies recourse actions to make the timetable feasible. The goal usually takes
into account efficiency and minimization of the expected delay. A seminal work applying stochas-
tic optimization to Robust Train Scheduling with a Periodic Event Scheduling Problem model is
Kroon et al. (2008). In Khan and Zhou (2010), a stochastic programming formulation is proposed
for dealing with uncertain travel times with the goal of minimizing the total travel time and reduc-
ing the expected delay. A decomposition method is developed to reduce the problem complexity, by
sequentially solving the problem for individual trains. More recently, in Liu and Dessouky (2019)
the integration of freight and passenger train scheduling is considered with uncertainty in freight
train departure times in complex railway networks. In this case, train rerouting is also taken into
account as a way to reduce deviations, and a two-stage stochastic model is proposed: the first
stage aims at optimizing passenger train schedules, while the second stage modifies the passenger
train schedules according to the realization of the freight train departure times. A hybrid heuristic
algorithm embedded in a branch-and-bound framework is proposed.

There are works that consider methods that combine different phases (e.g., microscopic and
macroscopic levels routing and timetabling) to determine timetables robust against delays. In
Bešinović et al. (2016), a hierarchical approach, that combines a microscopic model with a macro-
scopic one, is proposed in order to determine timetables that are robust against delays. This
approach iteratively adjusts train travel times and minimum headway times, based on a feedback
loop between macroscopic and microscopic levels, until a feasible and stable timetable at the mi-
croscopic level has been determined. In particular, in the macroscopic model, several solutions are
derived by a randomized multi-start greedy heuristic algorithm that considers the minimization
of running, dwell and transfer times and the robustness cost, represented by the weighted sum of
unresolved train conflicts and delays on a given set of scenarios. In the microscopic model, train
blocking times are computed for detecting potential track conflicts, and, if there are conflicts, new
headways and running times are transferred to the macroscopic model. The process is iterated
until timetable stability is verified. In Burggraeve and Vansteenwegen (2017), an approach that
combines train routing and timetabling is proposed with the aim of optimizing passenger robust-
ness, defined as the total travel time of all passengers in case of frequently occurring small delays.
This approach, applied to complex railway stations, consists of two Integer Linear Programming
models that are solved in sequence. The first model, used to determine the train routing, has the
goal of minimizing the interaction between trains, achieved by minimizing the node usage over the
network, and the use of long routes and detours. The second model, used to determine the train
timetables at a microscopic level, has the goal of maximizing the buffer times between the trains
in order to absorb delays. No feedback loop is executed, but the routing model takes the following
timetabling step into account by considering the node usage, since the latter limits the maximum
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possible buffer time in the corresponding node.
Other two-stage approaches are based on the concept of Recoverable Robustness introduced

in Liebchen et al. (2009): it combines robustness with recoverability, i.e., delay management, and
uses recovery actions to recover a solution in every likely scenario. More precisely, in Robust
Train Scheduling, Recoverable Robustness requires to compute timetables that include extra time
to absorb delays, and to consider recovery options that can be applied during operations when
delays occur: these recovery options are provided as input. In D’Angelo et al. (2009), Recoverable
Robustness is applied to evaluate the effect of robustness on train scheduling in different delay
scenarios occurring on a train line.

LR is also applied in Robust Train Scheduling: in contrast to Stochastic Optimization and
Recoverable Robustness, LR consists of a single stage approach, and has the advantage that it does
not need to include all the uncertainty scenarios in the model. In Fischetti et al. (2009), LR is
applied to a Periodic Event Scheduling Problem in order to improve the robustness against delays
of an existing timetable while imposing a maximum increase of the solution cost with respect to
the nominal one. The robust model requires a certain protection level (buffer time) for the events
(departures and arrivals of trains), so that trains travel at given time distance. The protection
level is allowed to be violated and the goal is to minimize the total violation. In Liebchen et al.
(2010), an extension of a LR method is proposed to compute delay resistant timetables, by taking
the expected number of missed connections into account.

All the considered works aim at deriving timetables that are resistant to delays. In RTSPT
we propose LR models that, differently from the existing literature, are used to handle scenarios
of uncertain passenger demand, instead of train delay scenarios. Therefore, since very different
contexts are considered, the models that we propose are also very different from those found in
the literature. Furthermore, we include decisions on the train stop plans in our models, which
are fundamental when dealing with passenger demand, while they are not considered in works on
Robust Train Scheduling.

2.2. Works on Timetabling with Stop Planning and Passenger Distribution

The works that are most closely related to our consist of those that integrate Train Timetabling
with Stop Planning or integrate Train Timetabling with Passenger Distribution. In the former case,
passenger demand is considered in a cumulative and less detailed way, while, in the latter one, the
passenger flow is taken into account more accurately.

2.2.1. Timetabling with Stop Planning

Train Timetabling has been recently combined with Stop Planning in order to perform the
selection of train stops while determining the departure and arrival times of trains at stations, with
the aim of reducing the train travel time or the passenger travel and waiting times and/or increasing
the number of trains scheduled in the network. The option of skipping stops is frequently used to
reduce passenger travel times and operating costs, for example by letting express trains avoiding
some stops (Niu et al., 2015b). In addition, by stop skipping it can be possible to schedule a larger
number of trains (Jiang et al., 2017). Therefore, the integration of the two problems can improve
the quality of the obtained timetables.

In Yue et al. (2016), the train stop plan and schedule are determined simultaneously with
the goal of maximizing the sum of the train profits, penalized by the stopping times and by the
number of stops. Passenger demand is not explicitly considered, but constraints are imposed on the
minimum number of trains serving passengers travelling between any pair of stations. Lagrangian
relaxation is applied on the constraints for the train stopping time at the stations, and an algorithm
based on column-generation is developed to solve the obtained problem. The algorithm is tested on
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the Beijing-Shanghai high-speed line. The problem of determining train timetables while selecting
a subset of stops that can be skipped is studied in Jiang et al. (2017). Two sets of trains are given:
the existing trains for which a feasible timetable is available and the additional trains for which a
desired timetable is provided. The goal is to maximize the number of additional scheduled trains,
while minimizing the changes to the existing timetables. Also in this case, passenger demand is
not explicitly considered, but constraints are imposed on the maximum number of stops that can
be skipped for each train. A Lagrangian-relaxation based algorithm is developed and tested on
real-world instances of the Beijing-Shanghai high-speed line.

In Niu et al. (2015b), predetermined train skip-stop patterns are given and a time-dependent
passenger demand is considered for each pair of origin and destination stations. The problem calls
for determining the train timetables with the aim of minimizing the passenger waiting time, by
respecting the given train skip-stop patterns, and the train capacity that takes into account the
arriving and departing passengers at each station. A Non-Linear Programming model is proposed
and tested on an instance of the Shanghai-Hangzhou high-speed line of China. In Yang et al. (2016),
train stop planning and train scheduling problems are integrated, and the passenger demand is
considered as a quantity to be satisfied at each station, while respecting train capacity adjusted
according to an estimated loading factor. The goal is to minimize a weighted sum of the total
dwelling time at the visited stations and of the total delay time at the origin stations. A MILP
model is presented and tested on the Beijing-Shanghai high-speed line.

2.2.2. Timetabling with Passenger Distribution

Several works consider detailed information on passenger demand during the timetabling pro-
cess, but neglect the integration with train stop planning. The main goal of combining train
timetabling with passenger distribution on the trains is to select the departure and arrival times of
the trains at the stations so as to minimize the passenger waiting times at stations and their travel
times. In this case, passenger demand is usually provided as a time-dependent origin-destination
matrix. Most of these works deal with a metro line or a rapid transit service system, in which the
passenger waiting time is usually approximated by counting all passengers arriving between the
departure of two consecutive trains and considering that each passenger arriving in this interval
waits, on average, half of the interval time.

In Barrena et al. (2014a), a rapid train service system is considered, and train timetabling is
studied with dynamic passenger demand, with the aim of minimizing the passenger average waiting
time at the stations. In particular, the time horizon is discretized, and the passenger demand is
given for each pair of stations and time interval. Three formulations, based on passenger flow
variables, are proposed. These formulations are solved by a branch-and-cut algorithm, which is
tested on a line of the Madrid Metropolitan Railway. The same problem is studied in Barrena
et al. (2014b), where an Adaptive Large Neighborhood Search algorithm is proposed to solve larger
size instances. Dynamic passenger demand, expressed as time-variant demand ratio for every pair
of stations and time interval, is also considered in Yin et al. (2017) with the goal of minimizing both
passenger waiting time and energy consumption represented by traction energy consumption and
regenerative braking energy. Two MILP models, based on a space-time graph, and a Lagrangian-
relaxation heuristic algorithm are presented. A real-world instance of Beijing metro is solved by
the proposed method.

A bi-level model is presented in Zhu et al. (2017) for the train timetabling problem with pas-
senger demands, represented by an origin-destination pair and a desired arrival time at destination.
The goal is to minimize the total passenger cost, given by the travel time and by penalties due
to early/late departures/arrivals and to overcrowded trains. In the bi-level model, the upper level
model considers the timetabling part, that consists of determining the train headways at the start
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terminal, while the lower level model refers to the passengers and minimizes the total passenger
cost, while satisfying train capacity constraints. A Genetic Algorithm is proposed to solve the
problem, and is tested on an instance of the Yizhuang subway line in Beijing. A metro service
system is also considered in Sun et al. (2014) with the aim of reducing passenger waiting time
and overcrowding. A uniform distribution of passengers that arrive at a station in a specific time
interval is considered, and passenger waiting profiles are given. Three mathematical models, which
consider time-dependent demand, and train capacity and peak/off-peak strategy constraints, are
proposed, and tested on a Mass Rapid Transit service in Singapore. In Wang et al. (2015), an urban
rail transit network is studied, and passenger transfers at stations (i.e., passengers that want to
transfer from one line to another one) are taken into account. Since several routes can be selected to
reach the destination, passengers can choose different lines: therefore, splitting rates, representing
the splitting of passenger flows at transfer stations, are events of an event-driven model proposed
in Wang et al. (2015). The goal is to minimize the total travel time and the consumed energy. A
Sequential Quadratic Programming approach and a genetic algorithm are developed and tested on
a small network. In Yang et al. (2020), a last train timetabling is studied for metro networks, in
which the aim is to improve the accessibility of passenger demand in night operations.

Not only urban rail or metro systems are studied in this context, but also railway networks.
In particular, in Cordone and Redaelli (2011), the classical Cyclic Train Timetabling Problem is
extended to deal with variable passenger demand that depends on the quality of the timetable, aim-
ing at maximizing the total served demand. A Mixed Integer Non-Linear Programming (MINLP)
model based on the Cycle Periodicity Formulation combined with a discrete-choice model to handle
variable demand is proposed. The former computes a timetable, and the latter is used to derive the
demand captured by the new obtained timetable, and a feedback between the two models leads to
convergence. The MINLP model is linearized, and a branch-and-bound algorithm is used to solve
the problem. The algorithm is tested on real-world instances of a regional network in the North of
Italy.

Several works study the situation of overloaded trains. In Niu and Zhou (2013), a congested
urban rail corridor with limited train availability is studied. A time-dependent demand is given,
and not all passengers can board the desired train but some of them have to wait. An Integer
Non-Linear Programming model is presented, which takes into account the number of passengers
arriving, departing or waiting at each station in each time interval, and considers train capacity
constraints. The objective is to minimize the weighted sum of the number of passengers waiting at
a station and of the number of passengers that could not board the train. A Genetic Algorithm is
proposed to solve the problem and tested on a real-world instance of the subway line in Guangzhou
in China. In Shang et al. (2018), an oversaturated urban rail transit system is considered. In this
system, train capacity is a scarce resource and passengers have to wait at the stations because
the train is full. The possibility of skipping some stops is used to reach an equitable schedule.
The problem is formulated as a multi-commodity flow model, in which passengers correspond to
commodities. Lagrangian decomposition is applied to solve the problem, and an instance of the
Batong line in Beijing is used for testing the algorithm.

The problem of oversaturated situations is considered also in Li et al. (2017), Shi et al. (2018),
Xu et al. (2016) and Liu et al. (2020), where the focus is on improving the passenger flow for the
access to platforms in metro lines. In particular, passenger flow control is applied in China to
regulate the passenger arrivals and reduce the risk of accidents and the delays caused by increased
train dwell times. In Li et al. (2017), the optimization of headway regularity and train commercial
speeds is combined with passenger flow control strategies in a dynamic model, solved by a model
predictive control algorithm and tested on a line of the Beijing metro. In Shi et al. (2018), an Integer
Non-Linear Programming model for the problem of determining the train schedules together with
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a passenger control strategy is presented and then linearized. The model is decomposed into
subproblems, and a heuristic local search algorithm is proposed to solve them. The algorithm is
tested on a metro line of Beijing. In Xu et al. (2016), the concept of station service capacity is
introduced, by taking into account inbound, outbound and transfer passenger flows, and a model is
proposed in the case of uncertain demand. A simulation method that embeds Data Envelopment
Analysis (DEA) with a Genetic Algorithm (GA) is presented. In this method, DEA is used to
evaluate the quality of the solutions found by the GA.

Demand uncertainty in the train scheduling field is also faced in Yang et al. (2009) and Yin
et al. (2016). In Yang et al. (2009), a train timetabling problem with fuzzy passenger demand,
representing the number of passengers that board each train, is considered for a railway line. A
mathematical model with two objectives, namely the minimization of the total passenger travel time
and of the difference between the actual and the minimum train travel time, is presented, and a
branch-and-bound algorithm is proposed. In Yin et al. (2016), uncertain demand is represented as a
Poisson distribution (instead of a deterministic time-dependent value), and handled in a stochastic
programming model for train rescheduling in a metro line. The objective is to minimize the delay,
the travel time and the consumed energy. An approximate dynamic programming algorithm is
proposed to solve the problem, and tested on an instance of the Yizhuang line in Beijing. Train
rescheduling in an overcrowded scenario after a disruption occurred is also studied in Gao et al.
(2016). In this case, skipping stops is a method used to minimize the passenger travel time during
and after the disruption as well as the number of passengers waiting. In this problem, time-
dependent passenger flows are considered, and train capacity constraints are imposed. The problem
is formulated as a MILP model, and decomposed into subproblems. A heuristic algorithm is
proposed to solve it, and tested on data of the Yizhuang metro line in Beijing.

In Qi et al. (2018b), the integration of the stopping pattern selection with train scheduling
and passenger distribution on trains is studied. The passenger demand is given as a matrix of
origin-destination pairs, and the primary goal is to minimize the sum of the train travel times,
while satisfying the given demand and train capacity, and constraints on running, dwelling and
headway times. The secondary goal, that is considered once the train stop plans and timetable are
determined, is to minimize the total passenger travel time, which is computed by optimizing the
passenger distribution over the different trains. A MILP model is proposed in Qi et al. (2018b) and
tested on the Wuhan-Guangzhou high-speed railway line.

2.3. Contribution

As mentioned above, we consider robustness for handling additional passenger demand, while
all the works described in Section 2.1 introduce robustness for dealing with delays or disturbances.
Therefore, the robustness goal considered in our work differs from that in the literature. For
what concerns the works described in Section 2.2, we observe that they consider either train stop
planning and timetabling (Section 2.2.1) or passenger demand within the train timetabling process
(Section 2.2.2), but there is no integration that includes train stop planning, timetabling and
passenger distribution. To the best of our knowledge, only Qi et al. (2018b) studies the problem of
integrating the stopping pattern selection with train scheduling and passenger distribution on the
trains, but it does not consider demand uncertainty, while we consider the integration of train stop
planning with timetabling and passenger distribution in a setting of uncertain passenger demand.
The importance of facing demand uncertainty is shown in several papers presented in Section 2.2.2:
however, no work, except from our former paper Qi et al. (2018a), considers robustness for handling
passenger demand uncertainty in this integrated problem setting. In Qi et al. (2018a), the DRM
model was proposed: it inserts protection against additional passenger demand defined for each
pair of stations, and limits the increase of travel time and number of train stops. The goal of DRM
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is to minimize the unsatisfied passenger demand. As shown in Qi et al. (2018a), DRM is able to
significantly reduce the unsatisfied demand compared to the nominal model.

In this paper, we propose a new variant of DRM and two novel models, aiming at achieving
robust solutions with new characteristics useful in practice. With respect to DRM, the new variant
uses a different way of limiting the number of additional stops: in particular, it restricts the changes
to the train stop plan based on the nominal stop plan. This allows utilizing a stop plan similar to
one chosen by the practitioners, and, at the same time, deriving robust timetables. In addition to
this variant, we propose two novel models: in one model, the protection against uncertain demand is
required not only for each pair of stations but also for each train. In the other model, the protection
is required for each pair of stations as in DRM, but the number of additional passengers on each
train is controlled. Both these latter models require to reserve capacity on the trains for handling
additional passenger demand, and aim at minimizing the unavailable train capacity, a different
goal from the unsatisfied demand minimization used in DRM. Note that the unsatisfied demand
represents the number of passengers that cannot be transported, and minimizing it corresponds
to minimizing the lost sales. The minimization of unavailable capacity also goes in the direction
of minimizing the lost sales, because we aim at transporting additional passengers. However, the
difference is that, when minimizing the unavailable capacity, we are minimizing the number of seats,
on each train, which cannot be reserved for transporting additional passengers. The usefulness of
reserving seats for each train, as is done in the first new model, is that these seats are available for
the additional passengers on each train, and, thus, more options are provided to the passengers,
in a high-demand scenario, to reach their destinations. Similarly, in the second new model, by
controlling the number of additional passengers on each train, we avoid that all passengers are
distributed without any limit, thus leading to more travel choices available to the passengers for
reaching their destinations, and consequently making trains less crowded. On the contrary, in DRM,
nominal and additional passengers can be distributed on any train without any limit. Therefore,
the solutions of the new models can be more balanced in terms of travel options for the additional
passengers and number of additional passengers traveling on each train, useful features in scenarios
with high passenger demand.

To summarize, the contribution of this paper is threefold:

� we study the integrated Train Stop Planning and Timetabling Problem with passenger dis-
tribution, when passenger demand is uncertain;

� we propose three robust optimization models for the RTSPT problem, all based on Light
Robustness: these models differ in the way they manage the uncertainty, and have different
levels of detail for dealing with the passenger demand, as explained above;

� we perform computational experiments by using a real-world instance of the Wuhan-Guangzhou
high-speed railway line, and compare the quality of robustness achieved under different de-
mand scenarios. In addition, we perform a sensitivity analysis of the parameters used in the
proposed models.

3. Problem Description

In this section, we describe the problem by using the same notation as in Qi et al. (2018a). We
first describe the problem setting, and then present the nominal and robust goals.

Let T be the planning horizon (e.g. one day with time discretization in minutes), S the set of
stations belonging to the considered railway line, and K the set of trains, travelling in the same
direction, to be scheduled. In addition, let Qij represent the passenger demand between stations i
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and j, i.e. the number of passengers who want to travel between i and j (i, j ∈ S, i 6= j). Passenger
demand Qij is the nominal demand, i.e. the demand that occurs in the nominal (standard) scenario.
This demand has to be fulfilled by appropriately selecting the train stopping patterns and the train
departure and arrival times at every visited station. More precisely, for each train k ∈ K, we know
the subset Sk ⊆ S of stations that the train visits, which include its fixed origin station Ok and its
fixed destination station Dk. For each station s ∈ Sk \ {Ok, Dk}, we have to decide if train k has
to stop or not at s: clearly, if trains stop only at a small subset of the stations, the travel time for
the passengers to reach their destinations will be shorter; on the other hand, train service must be
guaranteed at every station. To meet these two conflicting requirements, we are given in input, for
each train k ∈ K, the maximum number Nk of stops where k can stop along its trip, and for each
station i ∈ S the minimum number Ri of trains that have to stop at i.

One of the requirements for having a good quality of service for the passengers is that every
passenger can have a seat on the train: thus, we have to satisfy the passenger demand Qij (i, j ∈ S,
i 6= j) and respect the train capacity Ck (k ∈ K). Clearly, the choice of the train stopping patterns
depends on the constraints on passenger demand and train capacity. More precisely, we have to
keep track of the passengers getting on and off the trains at every station (i.e., the passenger
distribution on the trains) to verify the train capacity constraints.

For each train k ∈ K, we are also given its desired departure time Tk from its origin station
Ok, and a maximum deviation time ∆Tk that can be used to modify the departure of train k from
Ok. In addition, for each k ∈ K, we are given the fixed running time trunki from station i to the
successive station i+1 (i, i+1 ∈ SK), and the minimum dwelling time tdwell

ki at each station i ∈ Sk,
representing the minimum time that train k needs to dwell at station i, if i is chosen as a stop in
its stopping pattern.

In order to avoid train conflicts, minimum headway times are required between any two trains
departing from or arriving at the same station along the railway line: we call hd the minimum
departure headway time and ha the minimum arrival headway time. Finally, since we deal with a
single railway line, overtaking can only be performed at stations. All trains travel along the line in
the same direction, hence train crossing cannot occur.

Given this problem setting, the goal of the nominal problem is the minimization of the sum of
the train travel times (Qi et al., 2018b), one of the most frequent objectives in the Train Timetabling
Problem. Indeed, one of the key elements that passengers look for is a short travel time to reach
their destination. Therefore, train timetables and stop plan must be determined to fulfill the
passenger demand and, at the same time, keep the travel time low. However, if the demand
exceeds the provided service, e.g. trains become overcrowded or passengers cannot buy a ticket
because trains are full, then the passengers will decide to use an alternative transportation mode.
To avoid that a solution obtained for the nominal problem turns out to be infeasible or shows poor
quality when critical scenarios occur, the RTSPT problem calls for determining train timetables
and a stop plan that not only feature short travel times, but are capable of handling unexpected
additional passenger demand. This can be achieved by developing LR models for RTSPT, in which
a desired protection level is inserted to protect against unexpected uncertain demand scenarios.
In particular, we consider this protection alternatively as an additional number of passengers that
want to travel between every pair of stations i and j (i, j ∈ S, i 6= j) or as a buffer of empty
capacity on every train k ∈ K between every pair of stations i and j (i, j ∈ S, i 6= j). The goal
of the RTSPT problem is then to minimize the unachievable protection level, i.e. the unsatisfied
passenger demand or the unavailable train capacity, respectively. Obviously, the need to transport
more passengers can lead to different stop plans and train timetables, since more trains than in
the nominal solution might stop at some highly requested stations. Consequently, longer travel
times and additional train stops might be needed in crowded scenarios. This could lead to robust
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solutions characterized by low efficiency, i.e., long travel times and a large number of train stops,
that are not appreciated by the passengers. Therefore, the goal of the nominal problem needs to
be taken into account also in the RTSPT, in order to obtain a solution that not only is robust
but also efficient. To this aim, constraints are added to the RTSPT model on the maximum
increase of the total train travel time and/or on the maximum increase of the total number of
stops. Both these constraints limit the worsening of the solution efficiency, as it is typically done
in LR approaches. Notice that, although the goal of the nominal problem is the minimization of
the total train travel times, we further impose in RTSPT a constraint on the maximum number of
additional stops, so as to control both these aspects that highly affect the passengers trips and the
railway operators costs. Indeed, a plan with more stops can have more risk of delays, since at every
stop passengers board on and get off the trains, and the required time is unknown. Furthermore,
when the train stops it needs to decelerate and then to accelerate, and this implies a higher energy
consumption. In summary, the RTSPT problem calls for deriving train timetables and stopping
patterns with minimum unachievable protection against uncertain demand, while satisfying the
following constraints:

� the nominal passenger demand must be transported;

� train capacity must be respected by taking into account the passengers that get on/off at
stations where the train stops, and the passenger distribution on different trains;

� every train can stop at a given maximum number of stations, and must stop at its origin and
destination stations;

� a given minimum number of trains must stop at every station;

� train deviation time at the origin station, as well as train running and dwelling times must
be respected;

� overtaking is only allowed at stations;

� a given protection level must be achieved or slack variables (to be minimized in the objective
function) must account for it;

� a maximum worsening of the nominal objective value must be guaranteed;

� a maximum number of additional stops with respect to the nominal solution can be inserted.

4. Mathematical Models

We first report, in Section 4.1, the MILP model for the nominal problem, since it contains most
of the constraints used also in the robust models, and then present, in Sections 4.2, 4.3 and 4.4,
the three new robust models. For each robust model, we highlight the differences with respect to
the nominal model and the other robust ones.

4.1. Nominal Model

The MILP model for the nominal problem, proposed in Qi et al. (2018b), is reported here for
sake of clarity. It contains four classes of decision variables to account for train timetables, i.e.,
both departure and arrival times, train ordering for avoiding overtaking outside stations, train stop
plans (i.e., selection of the stations where each train has to stop) and passenger distribution over
the different trains. To define the train timetables, let tdki (k ∈ K, i ∈ Sk \ {Dk}) and taki (k ∈ K,
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i ∈ Sk \{Ok}) be non-negative integer variables that represent, respectively, the departure time and
the arrival time of train k at station i. In addition, let ykli be binary variables used to establish the
order of trains between consecutive stations: in particular, ykli assumes value 1 if train k departs
from station i and arrives at the successive station i+ 1 before train l, and 0 otherwise (k, l ∈ K,
k < l, i ∈ Sk \{Dk}∩Sl \{Dl},). Binary variables xki are introduced for determining the train stop
plans: xki (k ∈ K, i ∈ Sk) assumes value 1 if train k stops at station i, and 0 otherwise. Finally, the
passenger distribution is represented by non-negative integer variables qkij (i, j ∈ Sk, i < j, k ∈ K):

qkij represents the number of passengers travelling on train k from station i to station j.
The MILP model for the nominal problem reads as follows:

min TT =
∑
k∈K

(takDk
− tdkOk

) (1)

s.t.

xkOk
= xkDk

= 1, k ∈ K (2)∑
k∈K:i,j∈Sk

qkij = Qij , i, j ∈ S, i < j (3)

∑
j∈Sk,i<j

qkij ≤
∑

j∈Sk,i<j

Qijxki, k ∈ K, i ∈ Sk \ {Dk} (4)

∑
j∈Sk,i>j

qkji ≤
∑

j∈Sk,i>j

Qjixki, k ∈ K, i ∈ Sk \ {Ok} (5)

∑
i′∈Sk,i′≤i

∑
j∈Sk,i<j

qki′j ≤ Ck, k ∈ K, i ∈ Sk \ {Dk} (6)

∑
i∈Sk

xki ≤ Nk, k ∈ K (7)

∑
k∈K:i∈Sk

xki ≥ Ri, i ∈ S (8)

Tk ≤ tdkOk
≤ Tk + ∆Tk, k ∈ K (9)

tdki − taki ≥ tdwell
ki xki, k ∈ K, i ∈ Sk \ {Ok, Dk} (10)

taki+1 − tdki = trunki , k ∈ K, i ∈ Sk \ {Dk} (11)

tdki + hd ≤ tdli +M(1− ykli), i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl}), k, l ∈ K, k < l (12)

tdli + hd ≤ tdki +Mykli, i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl}), k, l ∈ K, k < l (13)

taki+1 + ha ≤ tali+1 +M(1− ykli), i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl}), k, l ∈ K, k < l (14)

tali+1 + ha ≤ taki+1 +Mykli, i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl}), k, l ∈ K k < l (15)

tdki ≥ 0, integer, k ∈ K, i ∈ Sk \ {Dk} (16)

taki ≥ 0, integer, k ∈ K, i ∈ Sk \ {Ok} (17)

xki ∈ {0, 1}, k ∈ K, i ∈ Sk (18)

qkij ≥ 0, integer, k ∈ K, i, j ∈ Sk, i < j (19)

ykli ∈ {0, 1}, i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl}), k, l ∈ K, k < l. (20)

The nominal objective function (1) calls for the minimization of the sum of the train travel
times. In the following, we define this sum as TT (Travel Time). By imposing constraints (2) it is
ensured that every train stops at its origin and destination stations (i.e., all trains are scheduled and
the train operating zone cannot be changed). Constraints (3) guarantee that the total passenger
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demand is transported between every pair of stations: this demand corresponds to the number of
passengers travelling in the nominal (standard) scenario.

Constraints (4) and (5) consider the passenger flow between any two stations i and j. Con-
straints (4) establish that, given a train k and a station i, if k does not stop at i, then no passenger
can depart from i by using k. On the contrary, if k stops at i, the maximum number of passengers
that can depart from i on train k is bounded by the total passenger demand from station i towards
any other station j. Constraints (5) impose the same requirements, given a train k and a station
i, on the passenger arrivals at i by using train k.

By constraints (6) it is ensured that the train capacity Ck is respected for every train k ∈ K:
this is guaranteed by limiting the number of passengers on train k at any station i between i′ (i′ ≤ i)
and j (i < j) to be at most Ck. In particular, constraints (6) consider all passengers that boarded
the train before or at station i and will get off after i. With constraints (7) and (8), two conflicting
requirements are satisfied: the maximum number of stops for each train, and the minimum number
of trains stopping at each station are restricted to Nk and Ri, respectively.

Constraints (9)-(11) are used to impose the requirements on the feasibility of the timetable
for train k: in particular, the departure time from the origin station can be moved by at most
∆Tk (constraints (9)), the dwelling time at each station i where k stops must be at least tdwell

ki

(constraints (10)), and the running time of k from station i to the successive station i+ 1 must be
trunki (constraints (11)).

Constraints (12)-(15) are used to avoid train conflicts along the line. In particular, the order of
trains k and l between station i and the successive station i+ 1 is determined by variables ykli: if k
departs from i before l (ykli = 1), then, by constraints (12), the departure time of l from i must be at
least hd time units (minimum departure headway) after the departure time of k, while constraints
(13) are inactive. The opposite occurs if l departs from i before k (ykli = 0). Similarly, constraints
(14)-(15) are imposed for the minimum arrival headway time. Finally, constraints (16)-(20) define
the variable domains.

Constraints (2), (4)-(20) will be used in all the LR models proposed in the following sections.
Indeed, they define the requirements for the train stop plans, timetables and passenger distribution.
Constraints (3) will be replaced by new ones to deal with uncertain passenger demand in the
LR models. The objective function (1) will be replaced by the minimization of the unachievable
protection level against uncertain demand, and a constraint will be added to all the LR models
to limit the TT worsening, where parameter α will be used to control the allowed percentage of
worsening. In the following sections, we will call ∆ the protection level that we desire to achieve
and γ the slack variables: different indexes and meanings are associated with ∆ and γ according
to the considered LR model.

4.2. Nominal-Plan based Robust Model

The first model that we propose for RTSPT is a new variant of the DRM, presented in Qi et al.
(2018a). We call this model Nominal-Plan based Robust Model (NPRM), since its peculiarity is the
requirement of deriving a solution that is not too different from the nominal one in terms of the
train stop plan. The motivation is that it can be useful in practice to increase the robustness of a
train stop plan without building it from scratch. In this case, a limit is imposed on the number of
changes that can be applied to the existing nominal plan.

In NPRM and DRM, the desired protection level is introduced for each pair of stations along
the line: we define ∆ij (i, j ∈ S, i < j) as the number of additional passengers that might need to
be transported from station i to station j. To maintain the feasibility of NPRM (and DRM) when
the protection level cannot be achieved, we introduce integer slack variables γij (i, j ∈ S, i < j),
that will assume the value of the number of passengers that cannot be transported between stations
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i and j. Consequently, the sum of all slack variables corresponds to the Unsatisfied Demand (UD).
The goal of both NPRM and DRM is to minimize UD, and both models impose a limit on the
maximum worsening of the nominal objective value TT.

In addition, in DRM, a limit was imposed on the number of additional stops used in the train
stop plan with respect to the nominal plan, by the following constraint:∑

k∈K

∑
i∈Sk

xki ≤ (1 + β)NS∗, (21)

where NS∗ represents the total number of stops in the nominal solution, and β is a parameter
to control the allowed increase over NS∗. However, although the number of additional stops is
bounded, the train stop plan obtained by solving DRM can be very different from the nominal
one, as many stops can be removed and/or replaced by other ones. In NPRM, constraint (21) is
replaced by an alternative one, shown below, that limits the number of changes with respect to the
nominal plan. To this aim, we define:

� x∗: the nominal stop plan, where x∗ki has value 1 if train k stops at station i;

� Sstop
k ⊆ Sk: the subset of stations at which train k stops in the nominal stop plan (x∗ki = 1

for every station i ∈ Sstop
k of train k);

� N change: the maximum number of changes allowed with respect to the nominal stop plan.

The proposed NPRM reads as follows:

min UD =
∑

i,j∈S, i<j

γij (22)

s.t.

constraints (2), (4)− (20)∑
k∈K:i,j∈Sk

qkij ≥ Qij , i, j ∈ S, i < j (23)

∑
k∈K:i,j∈Sk

qkij + γij = Qij + ∆ij , i, j ∈ S, i < j (24)

∑
k∈K

(takDk
− tdkOk

) ≤ (1 + α)TT ∗ (25)∑
k∈K

∑
i∈Sstop

k

(x∗ki − xki) +
∑
k∈K

∑
i∈Sk\Sstop

k

xki ≤ N change (26)

γij ≥ 0, integer, i, j ∈ S, i < j. (27)

The objective function (22) corresponds to the minimization of the unsatisfied demand, i.e.,
of the sum of the γ variables that are activated by constraints (24). Constraints (2), (4)-(20) are
inherited by the nominal model, while constraints (23) replace (3), i.e., we require that the nominal
demand is satisfied but we also allow for transporting additional passengers. Constraints (24) are
used to insert the protection level ∆ij , representing the number of passengers, in addition to the
nominal demand Qij , that might want to travel between stations i and j. In these constraints, the
slack variables γij are used to keep the feasibility when the protection level cannot be reached. To
guarantee that the nominal goal, i.e., the minimization of the total travel time, is also taken into
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account, constraint (25) requires a maximum worsening controlled by parameter α with respect to
the nominal total travel time TT ∗. Constraint (26) is used to restrict the changes to the nominal
stop plan: the number of deleted stops summed with the number of new stops must be at most
N change. This constraint is used instead of (21) adopted in DRM. Finally, the slack variables are
required to be non-negative integer by constraints (27).

The main advantage of NPRM is that, by constraint (26), the number of changes to the nominal
stop plan is kept limited. Therefore, this model can be used if practitioners want to modify the
existing plan as little as possible, while allowing an improvement of its robustness. As will be shown
in the computational results (Section 5), NPRM can provide a level of robustness similar to that
of DRM but with much fewer changes to the nominal stop plan.

4.3. Train-Capacity based Robust Model

In NPRM, we have inserted the protection against additional demand on each pair of stations
i, j ∈ S (i < j). Therefore, the passengers can be distributed on any train, provided that the train
stops at the origin and destination stations of the passengers. However, this could lead to solutions
in which some trains are completely used to satisfy the nominal passenger demand. Although
unbalanced solutions can happen also in the nominal case, the issue becomes more relevant in
scenarios with increased passenger demand, since it is important to distribute passengers among
trains to guarantee more alternative options to transport passengers to their destinations.

In this model, called Train-Capacity based Robust Model (TCRM), we introduce this type of
robustness that is also associated with the specific train. We introduce a protection level ∆ijk for
every pair of stations i, j ∈ S (i < j) and train k ∈ K: it represents the additional number of
passengers that might need to be transported between i and j on train k. The protection ∆ijk can
also be seen as a buffer on the train capacity, i.e., it is the empty capacity that, after satisfying the
nominal demand Qij , we want to keep on each train. This buffer could be used to satisfy additional
demand that occurs in critical scenarios. In other words, when determining the stop plan and train
timetables, we satisfy the nominal passenger demand and, at the same time, keep, on each train, a
number of empty seats, so that additional passengers can use this train, in scenarios of increased
demand. We note that ∆ijk can be chosen to assume the same value for every train k ∈ K or
different values for different trains. In the former case, reserving some capacity on each train allows
to distribute passengers in a more uniform way, while in the latter case some trains that are expected
to be more crowded than other ones can be given more protection. More precisely, ∆ijk values can
be used to establish that, on each train k ∈ K, some capacity must be reserved for the additional
passengers, i.e., we cannot have a train that is completely used by the nominal passengers because
some seats are reserved for the additional passengers. In this way, in planning, we require that
every train has some available seats, and, thus, limit the risk that, when the scenario occurs, that
passengers cannot board some trains. Clearly, if some trains are expected to be more crowded than
other ones, i.e., Qk

ij (k ∈ K) values were known, TCRM can be used to assign different protection
levels ∆ijk to different trains.

To maintain the feasibility of TCRM we introduce slack variables γk, assuming the value of
the missing buffer on the capacity of train k (k ∈ K). Note that the values assumed by the γk
variables after solving TCRM can provide to the railway company useful information on the rolling
stock types or coupling/decoupling of train units needed to perform the considered train services,
in order to guarantee a certain level of robustness.

The goal of TCRM is to minimize the sum of the γk variables, i.e., the Unavailable Capacity
(UC). In addition, we impose a limit of the worsening of the nominal objective value and a limit on
the number of additional stops that can be used in the train stop plan with respect to the nominal
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one. These limits are controlled, respectively, by parameters α and β. The proposed TCRM reads
as follows:

min UC =
∑
k∈K

γk (28)

s.t.

constraints (2), (4)− (20)

constraints (21), (23), (25)∑
i′∈Sk,i′≤i

∑
j∈Sk,i<j

(qki′j + ∆i′jk) ≤ Ck + γk, k ∈ K, i ∈ Sk \ {Dk} (29)

γk ≥ 0, integer, k ∈ K. (30)

The objective function (28) asks for minimizing the unavailable train capacity. Constraints (2),
(4)-(20) are in common with the nominal model. Constraint (21) is the same bound used in DRM
to limit the increase of the number of stops in the train stop plan. As in NPRM, constraints (23)
replace the corresponding constraints (3), i.e., we impose to satisfy the nominal passenger demand
and possibly transport additional passengers. In addition, we ensure the quality of the nominal
objective value with constraint (25). Constraints (29) are used to insert the desired protection level
∆ijk between stations i and j on train k. In particular, given a train k and a station i, we consider
all passengers qki′j that are on train k when travelling from a station i′ before (or corresponding to)
i towards a successive station j, and require that at least ∆ijk seats are left empty on the train.
I.e., either the sum of passengers qki′j and the empty seats ∆ijk respects the train capacity Ck, or
variable γk will take the value of the missing buffer.

We observe that, with respect to NPRM, TCRM requires to specify the protection for every
train, thus allowing to reserve capacity for the additional passengers in a more balanced way. In
addition, we note that constraint (21) can be replaced by (26). We first consider the model with
constraint (21), to have more flexibility, since the requirement of the protection level (for each pair
of stations and train) is more restrictive in TCRM than in NPRM. The variant of TCRM that
includes constraint (26) in place of (21) is analyzed in Section 5.3.

4.4. Passenger-Distribution based Robust Model

The last model that we propose combines the advantages of NPRM and TCRM: roughly speak-
ing, it requires the protection level only between every pair of stations as in NPRM, but, at the
same time, controls the passenger distribution on the trains, i.e., it limits the number of additional
passengers on each train. Thus, we call this model Passenger-Distribution based Robust Model
(PDRM). To formulate PDRM, we define:

� ∆ij : as in NPRM, it is the required protection level between stations i and j (i, j ∈ S, i < j),
representing the number of additional passengers that might need to be transported between
i and j;

� γk: as in TCRM, these variables are used to keep the model feasible, and their sum, corre-
sponding to the unavailable capacity, is minimized in the objective function;

� pkij : they are non-negative integer decision variables that represent the additional number of
passengers travelling on train k from station i to station j. These variables are similar to
the qkij ones used in the nominal model, but they correspond to the additional demand that
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might need to be satisfied. We require that this additional demand equals the protection
level ∆ij . Moreover, we require that either the passenger flow qkij summed with the additional

passenger flow pkij respects the train capacity Ck or, if not, γk assumes the value of the
unavailable capacity;

� Hk: it represents the maximum number of additional passengers that we allow to be trans-
ported on train k. These parameters are used to control the passenger distribution on the
trains with the aim of obtaining a balanced load for all trains.

The proposed PDRM reads as follows:

min UC =
∑
k∈K

γk (31)

s.t.

constraints (2)− (20)

constraints (21), (25)∑
k∈K

pkij = ∆ij , i, j ∈ S, i < j (32)∑
i′∈Sk,i′≤i

∑
j∈Sk,i<j

(qki′j + pki′j) ≤ Ck + γk, k ∈ K, i ∈ Sk \ {Dk} (33)

∑
i′∈Sk,i′≤i

∑
j∈Sk,i<j

pki′j ≤ Hk, k ∈ K, i ∈ Sk \ {Dk} (34)

∑
j∈Sk,i<j

pkij ≤
∑

j∈Sk,i<j

Qijxki, k ∈ K, i ∈ Sk \ {Dk} (35)

∑
j∈Sk,i>j

pkji ≤
∑

j∈Sk,i>j

Qjixki, k ∈ K, i ∈ Sk \ {Ok} (36)

constraints (30)

pkij ≥ 0, integer, k ∈ K, i, j ∈ Sk, i < j. (37)

The objective function asks for minimizing the unavailable capacity, i.e. it is the same objective
used in TCRM. Constraints (2)-(20) are those of the nominal model: we observe that, differently
from the other robust models, we here require, with constraints (3), to satisfy the nominal passen-
ger demand with equality constraints, as in the nominal model. Indeed, the additional passenger
demand is handled by variables pkij in constraints (32)-(36). Constraints (21) and (25) limit, respec-
tively, the number of additional stops and the increase of the total travel time through parameters
β and α, as in TCRM. With constraints (32) we insert the desired protection against uncertain de-
mand between stations i and j: the slack variables are not inserted in these constraints, but in the
following ones, i.e., constraints (33), that impose to respect the train capacity. In this way, we can
keep track of the additional passenger flow on each train, but do not need to specify the protection
level for each train. The additional passenger flow is then limited in the following constraints (34)
by parameter Hk, which specifies the accepted limit for each train k ∈ K. Similar to constraints
(4) and (5), constraints (35) and (36) are used to avoid that passengers depart from or arrive at,
respectively, station i if the train does not stop at i. Finally, constraints (30) and (37) define the
domain of variables γk and pkij .

The PDRM has the advantage of allowing to control the additional passenger distribution on
each train, while inserting the desired protection directly on the demand between pairs of stations.
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This can be seen as a compromise between NPRM and TCRM, since PDRM only requires protection
for each pair of stations but also limits the number of additional passengers distributed on each
train. As in TCRM, also in PDRM, we first use constraint (21) instead of (26) to give more freedom
to the problem solution. The variant of PDRM that includes constraint (26) in place of (21) is
analyzed in Section 5.3.

4.5. Comparison of the Models

This section compares the proposed robust models by considering the types and number of
variables, and the number of constraints involved in each model to ensure robustness, the model
objective function, and the additional constraints required to guarantee efficiency with respect to
the nominal problem. Since all the proposed robust models contain the nominal variables and
constraints, we first report, in Table 1, the corresponding numbers, and then indicate, in Table 2,
the number of additional variables and constraints used by each robust model. We include in this
comparison model DRM, presented in Qi et al. (2018a).

Table 1 reports the sets of variables (Var.) used in the nominal model and the corresponding
number (#), as well as the sets of constraints (Constr.) contained in the nominal model and the
corresponding number (#).

Var. or Constr. Total number #

Positive integer variable tdki
∑

k∈K(|Sk| − 1)
Positive integer variable taki

∑
k∈K(|Sk| − 1)

Positive integer variable qkij
∑

k∈K |Sk| ∗ (|Sk| − 1)/2
Binary variable xki

∑
k∈K |Sk|

Binary variable ykli
∑

k,l∈K,k<l(|(Sk \ {Dk}) ∩ (Sl \ {Dl})|)
Constraints (2) 2 ∗ |K|
Constraints (3) |S| ∗ (|S| − 1)/2
Constraints (4)-(6) 3 ∗

∑
k∈K(|Sk| − 1)

Constraints (7) |K|
Constraints (8) |S|
Constraints (9) 2 ∗ |K|
Constraints (10)

∑
k∈K(|Sk| − 2)

Constraints (11)
∑

k∈K(|Sk| − 1)
Constraints (12)-(15) 4 ∗

∑
k,l∈K,k<l(|(Sk \ {Dk}) ∩ (Sl \ {Dl})|)

Table 1: Number of variables and constraints of the nominal model.

The nominal model contains variables tdki and taki to determine the departure and arrival times
of each train at each station, xki to decide the train stops, qkij to define the passenger distribution on
each train between each pair of stations, and ykli to establish the order of trains between consecutive
stations. The nominal model contains constraints (2)-(6) to control the train operating zone and
the passenger distribution, (7)-(8) to limit the maximum number of stops per train and to guarantee
a minimum number of trains stopping at each station, (9)-(11) to guarantee the feasibility of the
timetable for each single train in terms of departure, running and dwelling times, and (12)-(15) to
avoid train conflicts.

All the variables and constraints indicated in Table 1 are included in the robust models, with
the exception of constraints (3), which are replaced by (23) in DRM, NPRM and TCRM. We
report, in Table 2, the name of the model, its objective function identified by UD if the model
aims at minimizing the unsatisfied demand or UC if it aims at minimizing the unavailable capacity,
the required protection (Prot.) against uncertain demand, the set of additional variables required
to ensure robustness (Robust Var.), their number, the set of additional constraints used to ensure
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robustness (Robust Constr.), the corresponding number, the set of additional constraints used to
guarantee efficiency (Eff. Constr.), i.e., to limit the worsening of the nominal objective value in the
robust solution, and the corresponding number.

Model Obj. Prot. Robust Var. Total number #

DRM UD ∆ij γij |S| ∗ (|S| − 1)/2
NPRM UD ∆ij γij |S| ∗ (|S| − 1)/2
TCRM UC ∆ijk γk |K|
PDRM UC ∆ij γk, pkij |K|+

∑
k∈K |Sk| ∗ (|Sk − 1|)/2

Model Robust Constr. Total number # Eff. Constr. Total number #

DRM (23)-(24) |S| ∗ (|S| − 1) (21), (25) 2
NPRM (23)-(24) |S| ∗ (|S| − 1) (25), (26) 2
TCRM (23),(29) |S| ∗ (|S| − 1)/2 +

∑
k∈K(|Sk| − 1) (21), (25) 2

PDRM (32)-(36) |S| ∗ (|S| − 1)/2 + 4 ∗
∑

k∈K(|Sk| − 1) (21), (25) 2

Table 2: Number of additional variables and constraints of the robust models.

We note that DRM and NPRM differ only for constraint (26) that replaces constraint (21)
in NPRM. By comparing NPRM and TCRM, we observe that the number of robust variables in
NPRM depends on the number of stations while that of TCRM on the number of trains: this is
clearly due to the two different ways used for achieving robustness in these models, i.e., either by
requiring to transport additional passengers, as in NPRM, or by reserving capacity on the trains,
as in TCRM. Except for the |S| ∗ (|S| − 1)/2 constraints (23), that appear both in NPRM and
TCRM, the number of other constraints is

∑
k∈K(|Sk| − 1) in TCRM, while it is |S| ∗ (|S| − 1)/2

in NPRM: indeed, in TCRM, the protection against uncertain demand is imposed by requiring
an empty buffer on train capacity for each train and each pair of stations, while, in NPRM, the
protection is imposed by requiring to transport additional passengers between each pair of stations.
PDRM has the largest size, as it contains more variables and constraints than each of the other
two models: indeed, this model combines the protection enforced for each pair of stations, leading
to |S| ∗ (|S| − 1)/2 constraints, with the control of additional passenger distribution, corresponding
to 4 ∗

∑
k∈K(|Sk| − 1) constraints. As will be shown in Sections 5.1 and 5.2, despite its largest size,

PDRM has a very good performance.
We conclude this section by summarizing advantages and disadvantages of the proposed models.

An advantage of DRM and NPRM is that they have the smallest size, since usually in real-life
instances the number of stations is smaller than the number of trains. In addition, NPRM contains
constraint (26) that allows controlling the number of changes applied to the nominal stop plan.
Note that, even though the stop plan can be changed, as we work at a planning stage, practitioners
often prefer to limit the changes with respect to a stop plan used, for example, in the previous year,
because they are used to it. Another characteristic of NPRM is that the protection ∆ij against
uncertain demand is imposed for every pair of stations i and j. This can be seen as an advantage,
because it is enough to specify aggregated data on the additional passenger demand between origin
and destination stations. However, the drawback is that passengers can be distributed on any train
without any control. This drawback is overcome by TCRM, that imposes protection ∆ijk for every
pair of stations i and j and every train k, so that in each train a certain number of seats is reserved
for the additional passengers. In addition, TCRM can also require different protection levels for
different trains. A disadvantage of TCRM is that it requires longer computing times than NPRM,
as will be shown in Section 5.1: indeed, TCRM requires to satisfy, through constrains (29), the
required protection for every train. PDRM tries to overcome the drawbacks of NPRM and TCRM.
It applies the required protection as in NPRM: therefore, it suffices to define the protection between
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pairs of stations. However, to avoid the distribution of passengers on any train without any limit,
and, at the same time, the higher complexity of TCRM, PDRM controls, by using variables pkij ,
the distribution of additional passengers on the trains, and limits their number to be at most Hk

for each train k ∈ K.
As summarized in Table 2, the proposed robust models have different objectives and structures.

In particular, DRM and NPRM aim at minimizing the unsatisfied demand, while TCRM and PDRM
have the goal of minimizing the unavailable capacity. For this reason, we will computationally
compare only solutions of models that share the same goal. Moreover, we will compare each robust
solution with the nominal solution by evaluating their behavior with a set of scenarios of uncertain
demand, in order to assess the robustness of the computed train stop plans and timetables. These
computational comparisons are reported in Section 5.

4.6. Extensions to the Models

We present some additional constraints and features that can be included in the proposed
models and are left as future work. The first extension is to consider station capacity constraints,
i.e., limit the number of trains that can be simultaneously presented at a station. These constraints
can be modelled in several ways (see e.g., Yang et al., 2014, Yue et al., 2016, Jiang et al., 2017,
Gao et al., 2018). To express these constraints in the proposed models, additional variables would
be required in order to count, for every station i and time instant, the number of trains that are
using one of the tracks available at i.

Another extension consists in explicitly considering acceleration and deceleration times that
have to be added to the train travel time between two consecutive stations when the train stops
at these stations. Acceleration and deceleration times are often assumed to be directly included in
the travel times. However, in some works, they are explicitly handled (see e.g., Jiang et al., 2017,
Gao et al., 2018). In the proposed models, constraints (11) use a fixed travel time trunki for train k
between consecutive stations i and i+ 1. However, to include acceleration and deceleration times,
we can add an acceleration time after k leaves i if the train stops at station i (i.e., xki = 1), and, a
deceleration time before k arrives at i+ 1 if the train also stops at station i+ 1 (i.e., xki+1 = 1).

Another generalization of the models would be to consider passenger transfers, i.e., the possibil-
ity of passengers to travel from their origin to their destination by using different trains. Note that,
even though we consider a single line, passenger transfers could be useful for passengers to reach
their destination faster. Consider the example shown in Figure 1 with a line with five stations A,
B, C, D and E, and suppose that a passenger wants to travel from B to E. Consider two trains
travelling on this line: train 1 goes from A to E and stops only in C, while train 2 goes from A
to E and stops in every station, so that train 1 is faster than train 2. A passenger can decide to
travel from B to E by using train 2, which takes a longer time, or to travel from B to C on train 2
and then from C to E on train 1, thus having overall a shorter travel time, if the waiting time in C
is not too long. Another reason for considering transfers is that train 2 could be full of passengers
between C and E, and thus the only way for the passenger to reach his/her destination would be to
make a transfer in C and take train 1. Although this generalization would allow considering these
additional possibilities for the passengers, we expect that, since we deal with a single line, transfers
would not be frequently chosen: indeed, changing train implies waiting at the transfer station, and
potential delays could cause missing the connection. Thus, we decided not to incorporate these
constraints to keep the models more tractable. Indeed, this generalization would require including
in the models information on the route followed by the passengers and on the transfer possibilities
(see e.g., Niu et al., 2015a, Wang et al., 2015).

The described generalizations are characterized by different levels of complexity. The first one
requires several additional variables and “big-M” constraints. In particular, new binary variables
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A B C D E

train 1

train 2

Figure 1: Example about passenger transfer on a single line with five stations.

should determine if train k arrives at station i before or at time r, and other ones if train k
departs from station i after or at time r, and these variables should be linked by new “big-M”
constraints with the taki and tdki variables. Therefore, this generalization is not straightforward
from a computational point of view. On the contrary, the second extension could be obtained
without increasing the number of variables and constraints in the model, but simply modifying
constraints (11) by adding acceleration and/or deceleration (constant) times multiplied by xki
variables. Thus, the model would not become more difficult to solve. Finally, the last extension is
the most complex one: in order to explicitly route the passengers through the network and take
the transfer possibilities into account, additional flow variables should be introduced for all pairs
of stations, with a consequent notable increase of the model size. Therefore, this extension could
require different solution methods.

What’s more, in the formulation of train timetable problem, the space-time network representa-
tion method has been applied in many literatures (Zhang et al., 2019 and Zhang et al., 2020) since
this formulation can transform the timetabling problem into a routing selection problem with se-
lecting different paths for different trains. Thus, our proposed models also can be extended by using
the time-space network representation method and also taking the choice behavior of passengers
into consideration.

5. Computational Results

In this section, we report the computational results obtained with the proposed models. In
Section 5.1, we compare the performances of the proposed robust models, by considering the un-
satisfied demand or unavailable capacity, optimality gap, computing time, and values of the total
travel time and number of stops, regarded as elements of efficiency. In Section 5.2, we further
analyze these models by evaluating their behavior under several scenarios of passenger demand
uncertainty. Finally, in Section 5.3, we report the results obtained through an extensive sensitivity
analysis of the parameters used in the proposed models.

To test the proposed models we consider the same real-world instance used in Qi et al. (2018b):
it consists of the Wuhan-Guangzhou high-speed line in China, composed of 18 stations. In this
line, 36 trains run in a time horizon of seven hours and 30 minutes. In particular, 30 trains are
G-trains and 6 trains are D-trains, whose maximum speeds are, respectively, 300 and 250 km/h.
The maximum train capacity of each train is assumed to be 650. We show in Figure 2 the layout
of the considered line. The departure time window ∆Tk for each train is set to 10 minutes. As it
was done in Qi et al. (2018a), we increase the nominal passenger demand by 5% so as to deal with
a saturated setting. The nominal solution has an objective value of 7297 minutes, corresponding to
the total travel time, and contains 138 stops in the stop plan. The nominal solution is computed
by solving model (1)-(20).

All nominal and robust models were developed using GAMS and solved by CPLEX on a Win-
dows 7 workstation with two Intel Core i3-4130M CPUs and 4 GB of RAM. We consider two
alternative termination conditions: we stopped the solver either when the optimality gap becomes
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Figure 2: Layout of the Wuhan-Guangzhou high-speed line.
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Figure 3: Representation of the considered scenarios.

less than 5% or after two hours of computation. For the results reported in Sections 5.1 and 5.2,
parameters α and β were both set to 5%, and parameters N change and Hk (k ∈ K) were set,
respectively, to 3 and 50, while they are varied in Section 5.3.

To test the robustness of the proposed models, we define 20 scenarios characterized by different
passenger demands. In particular, we use the same scenarios generated for testing DRM in Qi et al.
(2018a), and set the same values of protection. More precisely, each scenario ω ∈ Ω was generated
by randomly increasing, for each pair of stations i, j ∈ S, the passenger demand in Qi et al. (2018b)
by an integer number ∆ω

ij between 4% and 6% of Qij . The increase of passenger demand for each
pair of stations of these scenarios is not very large, because, in the considered instance, the capacity
of the trains is almost saturated by the nominal passenger demand. When the train capacity is
nearly reached, the possibility of reserving capacity to achieve a robust solution is very limited, and
it is not possible to consider very large demand fluctuations. However, our goal is to determine
train stop plans and timetables that are robust against demand fluctuation in everyday situations,
and, thus, the considered scenarios are appropriate: this is similar to what is done in the literature
of robustness against delays, in which small delays and disturbances are considered, rather than
large disruptions. Indeed, it is very important that the derived robust solution is also efficient, as
it will be used as a standard everyday plan.

In Figure 3, we show a graphical representation of the considered scenarios. On the horizontal
axis we show the scenarios and, for each scenario, all the origin-destination pairs of stations, and on
the vertical one the additional demand represented as number of additional passengers. The graphic
shows, for each scenario and each origin-destination pair of stations, a vertical line corresponding
to the number of additional passengers that want to travel between these two stations. As it can
be seen, some origin-destination pairs have much larger demand increases than other ones: this is
because we used a percentage of the nominal demand as the number of additional passengers, in
order to have realistic demand scenarios. Clearly, the train capacity can rapidly be saturated if we
consider larger demand for origin-destination pairs that have a large nominal demand. However,
we think that it is more interesting and realistic to increase the demand for origin-destination pairs
that are more often used by the travellers.

For NPRM and PDRM, we define the protection values ∆ij , for each pair of stations i, j ∈ S,
i < j, in the same way as for DRM. More precisely, let Ω be the set of scenarios, and ∆ω

ij the
passenger demand between stations i and j in scenario ω ∈ Ω, with ∆ω

ij chosen to be in the interval
[4%,6%] of the passenger demand in Qi et al. (2018b). The protection level ∆ij , for every pair of
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stations i, j ∈ S, i < j, is then chosen so that ∆ij ≥ ∆ω
ij for 90% of the scenarios in the set Ω. For

TCRM, we need to define the protection level for each train: in this case, we set ∆ijk so that, for
every pair of stations i, j ∈ S, i < j, the equation

∑
k∈K ∆ijk = ∆ij holds, and consider ∆ijk either

uniformly or randomly distributed on all trains k ∈ K (with i, j ∈ Sk). More precisely, distributing
∆ijk in a uniform way implies that ∆ijk is the same for all trains k ∈ K that visit both stations
i and j (k ∈ K, i, j ∈ Sk). To distribute ∆ijk in a random way, we randomly select ∆ij times
a train, among all trains that visit both stations i and j, and then set ∆ijk for train k equal to
the number of times that train k was randomly selected (k ∈ K, i, j ∈ Sk). In all experiments of
TCRM, we use the same random values for ∆ijk (k ∈ K, i, j ∈ Sk). The values ∆ω

ijk are obtained
from ∆ω

ij by computing, for each scenario ω, them in the same way as ∆ijk are obtained from ∆ij ,
i.e., for a scenario ω, we set ∆ω

ijk so that, for every pair of stations i, j ∈ S, i < j, the equation∑
k∈K ∆ω

ijk = ∆ω
ij holds, and consider ∆ω

ijk either uniformly or randomly distributed on all trains
k ∈ K (with i, j ∈ Sk).

5.1. Performance of the Robust Models

We solved all the robust models with the parameters and protection levels set as described above.
The obtained results are reported in Table 3. The first column shows the name of the robust model.
The second and third ones give the objective value that corresponds to UD (unsatisfied demand)
for NPRM or to UC (unavailable capacity) for TCRM (with uniformly or randomly distributed
demands) and PDRM. Then, we show the optimality gap, the computing time expressed in seconds,
and the total travel time and number of stops of the robust solution. We also report the results
obtained by DRM presented in Qi et al. (2018a).

Model UD UC Gap% CPU time Travel time # Stops

DRM 268 0.0 120 7662 145
NPRM 268 0.0 840 7548 141

TCRM-un 726 4.5 180 7662 145
TCRM-rand 1020 4.3 434 7662 145
TCRM-un-2H 716 3.2 7200 7662 145
TCRM-rand-2H 995 1.9 7200 7662 145
PDRM 268 0.0 231 7662 145

Table 3: Comparison of the performance of the robust models.

As it can be seen, DRM and NPRM obtain the same UD value. However, NPRM finds a
smaller increase of the total travel time and number of stops than the other model, and derives
better train stop plans and timetables than those of DRM. However, we note that the solution
computed for NPRM is also feasible for DRM, because constraint (26) in NPRM is more restrictive
than (21) in DRM, and the CPLEX solver could have derived it for DRM as well. Both models
are solved to optimality and the largest computing time is 840 seconds, which happens for NPRM,
showing that it is harder to obtain a stop plan robust against uncertain demand and also close
to the nominal plan. Even when the termination condition is that the optimality gap goes below
5%, for DRM and NPRM the optimal solution is obtained, because the optimality gap dropped
down directly from above 5% to 0%. For TCRM, when we consider this termination condition, the
solver stops with an optimality gap of more than 4% both with uniformly and randomly distributed
demands: indeed, the optimality gap goes down more slowly, showing that it is harder to find the
optimal solution when the protection is specified not only for every pair of stations but also for
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every train. Since the optimal solution was not found with this termination condition, for TCRM,
we also report the results obtained within two hours: although with longer computing times the
optimality gap can be reduced, the solver cannot find an optimal solution within the time limit.
This confirms that it is harder to solve TCRM, due to the more specific protection requirements
it includes in constraints (29). We also observe that TCRM with uniformly distributed demands
shows a smaller UC value than TCRM with randomly distributed demands, and can also be solved
in shorter computing times: indeed, distributing additional demands on trains in a uniform way
gives to the model more flexibility. PDRM can be solved to optimality in 231 seconds, as the
optimality gap directly reaches 0% from above 5%. The UC value found by PDRM is smaller than
all values obtained by TCRM, confirming that it is easier to require protection only between pairs
of stations, even when a limit on the number of additional passengers is imposed for each train
by constraints (34). DRM, TCRM and PDRM find the same increase of the total travel time and
number of stops: indeed, 7662 corresponds to an increase of 5% over the nominal travel time and
145 to an increase of 5% over the nominal number of stops. Therefore, in absence of additional
constraints, all allowed flexibility is used in the robust solution.

We can conclude that NPRM and DRM have similar performances, and the former can be
effectively used when utilizing a stop plan similar to one chosen by the practitioners. If we consider
the UC goal, PDRM finds the solution with the smallest unavailable capacity, and is thus better
than TCRM in terms of robust objective value. To assess the gain that is obtained by using the
robust solutions, in the next section, we evaluate them under a set of scenarios characterized by
different passenger demands.

5.2. Evaluation of the Robust Solutions under Uncertain Demand Scenarios

Beside the comparison of the robust models in terms of optimality gap and computing time,
we use the scenarios in Ω to assess the robustness of the obtained solutions, and to compare the
robustness quality with that of the nominal solution. The aim of this comparison is to evaluate
the reduction of unsatisfied demand or unavailable train capacity that is achieved when the robust
stop plan and timetables, obtained by solving the robust models, are used in place of the nominal
one. This is to show that, although the travel time and number of train stops are slightly larger
in the robust solutions, as shown in Table 3, the latter solutions can handle uncertain passenger
demand more effectively. To perform the comparison, we compute, for every scenario ω ∈ Ω, the
unsatisfied demand or unavailable capacity by solving a validation model both for the robust and
the nominal solutions. More precisely, the validation model for NPRM, TCRM and PDRM is
obtained by considering the same objective function and constraints of the corresponding robust
model. Then, variables tdki (k ∈ K, i ∈ Sk \ {Dk}), taki (k ∈ K, i ∈ Sk \ {Ok}), xki (k ∈ K, i ∈ Sk),
ykli (k, l ∈ K, k < l, i ∈ (Sk \ {Dk}) ∩ (Sl \ {Dl})) are fixed, alternatively, as in the corresponding
robust solution or as in the nominal one. The protection parameters ∆ij (or ∆ijk for TCRM) are
fixed in every scenario as ∆ω

ij (or ∆ω
ijk for TCRM). Overall, we have thus three validation models,

corresponding to NPRM, TCRM and PDRM, respectively. In each of these validation models, we
first fix the robust solution and compute, for every scenario ω ∈ Ω, the corresponding objective
value. Then, in each validation model, we fix the nominal solution and compute, for every scenario
ω ∈ Ω, the corresponding objective value. In this way, we can compute the unsatisfied demand or
unavailable capacity for every scenario ω ∈ Ω, and assess the quality and robustness of the robust
and nominal solutions.

In the following, we report one table for each model (Tables 4, 5, 6 and 7), showing the com-
parison between the nominal and robust solutions. In each table, the first column is the number
of the considered scenario ω ∈ Ω and the second one shows the total additional demand (or ca-
pacity) required in ω. Note that for TCRM we report, in the second column, the sum of the total
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additional capacity already summed over all trains. Then, we show, for the nominal and robust
solutions, respectively, the objective value (unsatisfied demand UD or unavailable capacity UC)
and the computing time (expressed in seconds) of the validation model. In the last two rows, we
report the sum and the average of the total demand and unsatisfied demand or unavailable capacity
both for the nominal and robust solutions.

In Table 4, we show the comparison for NPRM. We recall that the maximum number of allowed
changes N change in the train stop plan with respect to the nominal one was fixed to three, obtained
by rounding up 2% of the total number of stops in the nominal stop plan. The total UD value in
the robust solution is about five times smaller than in the nominal one. Even though the additional
demand in every scenario is rather large (close to 2000), on average the UD value is only 164.3
for the robust solution, showing that almost all passengers can be transported. In addition, the
UD value is significantly reduced with respect to the nominal one (164.3 instead of 798.1). The
computing time of the validation model is very short in both cases, since the train stop plans and
timetable are fixed, and, thus, the solver needs only to determine, for each scenario, the passenger
distribution on the trains. We wish to mention that DRM proposed in Qi et al. (2018a) has the
same performance as NPRM in terms of UD value for all the considered scenarios, and, hence, the
same average unsatisfied demand value 164.3. Even though the performance in the 20 scenarios is
the same, the specific UD values between stations i and j (i, j ∈ S, i < j) are not the same due
to the different stop plans. Indeed, very different stop plans are derived for the two models: in
particular, DRM shows a much larger number of stop changes (about 100) than NPRM.

Tables 5 and 6 show the results obtained for TCRM, when the ∆ij (i, j ∈ S, i < j) are distributed
on trains either uniformly or randomly, respectively. In each table, we report the results obtained
by validating, through the validation model, the robust solutions computed with the two alternative
termination conditions, i.e., having the optimality gap below 5% or reaching the time limit of two
hours. Note that the computing times shown in Tables 5 and 6 are very short, since the train stop
plans and timetable are fixed in the validation model. In both tables, the UC value is considerably
reduced with respect to the nominal solution (UC is, respectively, 1.99 and 1.78 times smaller in
the robust solution than in the nominal one). However, the reduction is not as large as it is for the
UD value in NPRM: indeed, solving TCRM is usually harder than solving NPRM, as we require a
certain protection level for each train, i.e., the passenger distribution on trains is more constrained
in TCRM. We can also observe that requiring a uniform distribution or a random one does not
give very different results. Finally, we note that by evaluating the TCRM-un solution obtained in
two hours we obtain an average unavailable capacity value that is slightly larger than that of the
solution obtained in 180 seconds. This happens because the protection buffers ∆ijk are placed on
different trains in the two robust solutions, and the fewer buffers of the solution computed in shorter
time turn out to be more effective for the considered scenarios than those of the solution computed
in two hours. On the contrary, in TCRM-rand, a smaller average unavailable capacity is found for
the solution obtained in two hours of computation. Indeed, when using two hours of computation
time, a smaller optimality gap (1.9%) was obtained in the case of randomly distributed demand
with respect to the case of uniformly distributed demand, for which the gap was still 3.2% (see
Table 3).

Finally, in Table 7, we show the results obtained for PDRM. We recall that this model can be
seen as a compromise between TCRM and NPRM, since it requires a certain protection on every
pair of stations but also controls the passenger distribution on every train through Hk (k ∈ K).
PDRM significantly reduces the UC value with respect to the nominal case (UC is more than
three times smaller for the robust solution). Thus, PDRM obtains a better reduction than TCRM,
by allowing the model to distribute passengers in a less constrained way. Indeed, the UC value
obtained by PDRM is about two times smaller than that of TCRM.
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust solution
UD CPU time UD CPU time

1 1915 871 0.6 207 2.0
2 1936 849 0.4 189 0.6
3 1866 771 0.5 112 0.6
4 1895 781 0.5 186 0.6
5 1925 825 0.5 203 0.6
6 1873 794 0.7 137 0.7
7 1920 820 0.4 205 0.7
8 1865 784 0.4 156 0.6
9 1903 775 0.5 180 0.5
10 1894 777 0.5 161 0.6
11 1875 806 0.7 159 0.7
12 1921 824 0.9 140 0.6
13 1872 790 0.4 174 0.7
14 1866 779 0.5 130 0.5
15 1903 802 0.8 144 0.6
16 1885 787 0.5 198 0.7
17 1893 804 0.5 192 0.6
18 1842 741 0.5 112 0.5
19 1938 860 0.8 188 0.6
20 1823 721 0.5 113 0.5

Sum 37810 15961 3286
Avg 1890.5 798.1 164.3

Table 4: Comparison of the nominal and robust solutions for NPRM.
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust solution Robust solution 2H
UC CPU time UC CPU time UC CPU time

1 1915 708 0.5 349 0.6 363 0.7
2 1936 659 0.9 328 0.5 358 0.6
3 1866 610 0.5 292 0.5 293 0.6
4 1895 612 0.6 332 0.7 328 0.6
5 1925 636 0.6 306 0.5 350 0.6
6 1873 643 0.6 327 0.5 310 0.7
7 1920 678 0.8 328 0.6 342 0.8
8 1865 593 0.7 290 0.4 294 0.6
9 1903 597 0.8 301 0.4 307 0.6
10 1894 614 0.6 308 0.5 313 0.8
11 1875 633 0.6 305 0.5 322 0.8
12 1921 652 0.6 346 0.5 330 1.4
13 1872 641 1.0 309 0.8 324 0.6
14 1866 620 0.7 319 0.5 301 0.7
15 1903 640 0.5 319 0.7 322 0.5
16 1885 609 0.8 293 0.5 322 0.8
17 1893 599 0.6 306 0.5 322 0.7
18 1842 584 0.8 309 0.5 296 0.8
19 1938 630 0.6 301 0.5 320 0.5
20 1823 543 0.7 285 0.4 274 0.7

Sum 37810 12501 6253 6391
Avg 1890.5 625.1 312.7 319.6

Table 5: Comparison of the nominal and robust solutions for TCRM with demands uniformly distributed over trains.
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust solution Robust solution 2H
UC CPU time UC CPU time UC CPU time

1 1915 733 0.5 404 0.4 373 0.7
2 1936 687 0.7 383 0.6 423 0.7
3 1866 650 0.7 330 0.5 323 0.5
4 1895 643 0.5 378 0.4 285 0.6
5 1925 661 0.7 361 0.6 353 0.6
6 1873 664 0.7 353 0.7 347 0.6
7 1920 671 0.6 417 0.6 262 0.7
8 1865 615 0.7 380 0.8 275 0.7
9 1903 591 0.6 383 0.6 333 0.6
10 1894 625 0.7 374 0.5 340 0.6
11 1875 652 0.6 348 0.4 328 0.6
12 1921 677 0.6 330 1.1 311 0.7
13 1872 688 0.6 382 0.5 273 0.6
14 1866 652 0.7 378 0.5 283 0.8
15 1903 666 0.6 335 0.7 305 0.8
16 1885 617 0.6 356 0.5 338 0.7
17 1893 623 0.6 378 0.5 342 0.6
18 1842 618 0.6 349 0.5 274 0.7
19 1938 654 0.6 378 0.5 341 1.1
20 1823 576 0.8 324 0.7 297 1.2

Sum 37810 12963 7321 6406
Avg 1890.5 648.2 366.1 320.3

Table 6: Comparison of the nominal and robust solutions for TCRM with demands randomly distributed over trains.
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust solution
UC CPU time UC CPU time

1 1915 636 0.9 207 0.7
2 1936 594 0.7 189 0.7
3 1866 548 0.7 126 0.6
4 1895 547 0.8 186 0.7
5 1925 548 0.8 203 0.8
6 1873 574 1.3 137 0.6
7 1920 594 0.8 205 0.8
8 1865 522 0.9 170 0.7
9 1903 499 0.8 181 0.6
10 1894 534 0.7 161 0.6
11 1875 554 0.8 159 0.7
12 1921 582 0.8 140 0.7
13 1872 586 0.8 174 0.7
14 1866 549 0.7 132 0.7
15 1903 566 0.7 144 0.6
16 1885 534 1.0 198 0.6
17 1893 513 0.8 192 0.7
18 1842 531 0.8 131 0.7
19 1938 559 0.7 188 0.7
20 1823 476 0.9 144 0.7

Sum 37810 11046 3367
Avg 1890.5 552.3 168.4

Table 7: Comparison of the nominal and robust solutions for PDRM.
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We can conclude that the three proposed robust models deal effectively with uncertain passenger
demand, being able to significantly reduce the unsatisfied demand or unavailable capacity with
respect to the nominal solution, while requiring limited increase of the total travel time and number
of stops.

5.2.1. Summary of comparison

We report in Table 8 the summary of the results obtained in Sections 5.1 and 5.2 for all
the robust models. As explained in Section 4.5, although all the proposed robust models aim at
achieving robustness against uncertain passenger demand, they use different ways for reaching it.
To compare the performances of the models that share the same goal, in Table 8, we report, for each
model, the average unsatisfied demand or unavailable capacity computed over the 20 considered
scenarios, and the corresponding travel time and number of train stops: the first term measures
the robustness of the solution, while the other two terms assess its efficiency.

Model Avg. UD Avg. UC Travel time # Stops

DRM 164.3 7662 145
NPRM 164.3 7548 141

TCRM-un 312.7 7662 145
TCRM-rand 366.1 7662 145
PDRM 168.4 7662 145

Table 8: Summary of comparison.

We can see that, on the considered instance, NPRM has a better performance than DRM, since
it achieves the same unsatisfied demand with a better efficiency, shown by shorter travel time and
smaller number of stops. However, as observed earlier, the solution obtained for NPRM is also
feasible for DRM, and the former model should be preferred when it is useful to utilize a stop plan
similar to one chosen by the practitioners. All the other models obtain solutions with the same
travel time and number of train stops, but PDRM reaches the smallest unavailable capacity. This
model turns out to be the most promising one when using buffer capacity for robustness. However,
we observe that the level of detail used in TCRM allows inserting protection for every train, while
this is not possible in the other models. Similarly, PDRM allows controlling the distribution of
additional passengers over different trains, while this is not possible for DRM and NPRM. Therefore,
each model has its advantages, but PDRM includes most of them, as also described in Section 4.5.

5.2.2. Comparison with different scenario sets for the protection level and the robustness evaluation

The protection levels ∆ij (∆ijk, resp.), used in the previous experiments, have been determined
based on 20 scenarios of uncertain demand, and the same set of scenarios has been used to evaluate
the robustness quality of the obtained solutions. In this section, we show that by determining ∆ij

(∆ijk, resp.) based on the first ten scenarios, and evaluating the corresponding robust solutions
on the second set of ten scenarios, we obtain very similar (and in some cases better) results. We
first report, in Table 9, the results obtained by solving the robust models with ∆ij (∆ijk, resp.)
determined according to the first ten scenarios. The models are named with suffix ‘10’ to show that
∆ij (∆ijk, resp.) are based on the first ten scenarios. Then, we report one table for each model
(Tables 10, 11, 12 and 13), showing the comparison between the nominal and new robust solutions
evaluated on the second set of ten scenarios. In these tables, we also report, for ease of comparison,
the results over the second set of ten scenarios, already reported in Tables 4, 5, 6 and 7.
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Model UD UC Gap% CPU time Travel time # Stops

NPRM10 272 0.0 199 7506 141
TCRM-un10 667 4.8 7026 7662 145
TCRM-rand10 889 3.3 261 7662 145
PDRM10 272 0.0 115 7662 145

Table 9: Comparison of the performance of the robust models with protection levels based on the first ten scenarios.

Table 9 shows that by solving the models with protection levels determined according to the
first ten scenarios we obtain objective function values that are very similar to those computed with
protection levels based on 20 scenarios. The optimality gaps and computing times are also in line
with those reported in Table 3, except for TCRM-un10 which requires longer computing time than
TCRM-un.

Results reported in Tables 10, 11, 12 and 13 show that the robust solutions obtained by using
only the first ten scenarios to determine the protection levels are equally or more robust than those
obtained by using all scenarios. In particular, NPRM10 obtains the same average UD as NPRM:
we observed that ∆ij values, although similar, are not the same for NPRM and NPRM10, but the
same robust solution is obtained in both cases, since the limitation of N change restricts the set of
feasible solutions. This robust solution has two different UD values (268 and 272, respectively), due
to the different ∆ij values in the two models. On the contrary, TCRM-un10, TCRM-rand10 and
PDRM10 obtained smaller UC than the corresponding models solved with protection levels based
on 20 scenarios. Indeed, we observed that, in some cases, the values of ∆ij (∆ijk, resp.) can be
larger if computed on the first ten scenarios than when considering all scenarios: in fact, we require
that ∆ij ≥ ∆ω

ij for 90% of the scenarios, and a smaller scenario set can even imply higher protection.
Moreover, we note that the unsatisfied demand and unavailable capacity are significantly smaller
than for the nominal solution. Therefore, we can conclude that the performance of the robust
models has not worsened by setting the protection levels based on a set of scenarios and evaluating
them under a different set.

Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust NPRM Robust NPRM10
UD CPU time UD CPU time UD CPU time

11 1875 806 0.7 159 0.7 159 0.9
12 1921 824 0.9 140 0.6 140 0.7
13 1872 790 0.4 174 0.7 174 0.6
14 1866 779 0.5 130 0.5 130 0.5
15 1903 802 0.8 144 0.6 144 0.5
16 1885 787 0.5 198 0.7 198 0.6
17 1893 804 0.5 192 0.6 192 0.6
18 1842 741 0.5 112 0.5 112 0.5
19 1938 860 0.8 188 0.6 188 0.5
20 1823 721 0.5 113 0.5 113 0.5

Sum 18818 7914 1550 1550
Avg 1881.8 791.4 155 155

Table 10: Comparison of the nominal and robust solutions for NPRM10.
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust TCRM-un Robust TCRM-un10
UC CPU time UC CPU time UC CPU time

11 1875 633 0.6 305 0.5 233 0.6
12 1921 652 0.6 346 0.5 220 0.6
13 1872 641 1.0 309 0.8 243 0.6
14 1866 620 0.7 319 0.5 206 0.7
15 1903 640 0.5 319 0.7 236 0.6
16 1885 609 0.8 293 0.5 257 0.8
17 1893 599 0.6 306 0.5 241 0.7
18 1842 584 0.8 309 0.5 196 0.5
19 1938 630 0.6 301 0.5 247 0.7
20 1823 543 0.7 285 0.4 181 0.6

Sum 18818 6151 3092 2260
Avg 1881.8 615.1 309.2 226

Table 11: Comparison of the nominal and robust solutions for TCRM-un10.

Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust TCRM-rand Robust TCRM-rand10
UC CPU time UC CPU time UC CPU time

11 1875 652 0.6 348 0.4 314 0.6
12 1921 677 0.6 330 1.1 302 0.7
13 1872 688 0.6 382 0.5 318 0.7
14 1866 652 0.7 378 0.5 326 0.6
15 1903 666 0.6 335 0.7 296 0.6
16 1885 617 0.6 356 0.5 316 0.6
17 1893 623 0.6 378 0.5 295 0.6
18 1842 618 0.6 349 0.5 281 0.6
19 1938 654 0.6 378 0.5 309 0.6
20 1823 576 0.8 324 0.7 266 0.6

Sum 18818 6423 3558 3023
Avg 1881.8 642.3 355.8 302.3

Table 12: Comparison of the nominal and robust solutions for TCRM-rand10.

5.3. Sensitivity Analysis

In this section, we perform an analysis of the impact of the variation of the parameters, consid-
ered in the proposed robust models, on the obtained robust solutions. In particular, we show the
results obtained by testing the PDRM model, as it embeds effectively the features of NPRM and
TCRM.

5.3.1. Trade-off between efficiency and robustness

We consider the variation of α, i.e., the parameter used in constraint (25) to limit the travel
time increase in the robust solution. In particular, we want to determine how different values of α,
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Robust PDRM Robust PDRM10
UC CPU time UC CPU time UC CPU time

11 1875 554 0.8 159 0.7 159 0.7
12 1921 582 0.8 140 0.7 140 0.7
13 1872 586 0.8 174 0.7 174 0.7
14 1866 549 0.7 132 0.7 130 0.7
15 1903 566 0.7 144 0.6 144 0.8
16 1885 534 1.0 198 0.6 198 0.7
17 1893 513 0.8 192 0.7 192 0.8
18 1842 531 0.8 131 0.7 112 0.8
19 1938 559 0.7 188 0.7 188 0.9
20 1823 476 0.9 144 0.7 113 0.7

Sum 18818 5450 1602 1550
Avg 1881.8 545 160.2 155

Table 13: Comparison of the nominal and robust solutions for PDRM10.

leading to different travel times, affect the unavailable capacity of the robust solution. To this aim,
we fix β =∞, i.e., we allow any variation of the number of stops in the stop plan. Table 14 reports
the results obtained by varying α from 1% up to the case of α = 20%. In particular, we display
the average unavailable capacity (Avg. UC) over the 20 uncertain demand scenarios, computed,
for each α value, by solving the validation model for PDRM, as in Section 5.2. In addition, we
show the total travel time, the number of stops, the objective value UC of the robust model, the
optimality gap and the computing time.

Value Avg. UC Travel time # Stops UC Gap% CPU time

α = 1% 164.3 7370 172 268 0.0 447
α = 5% 164.3 7662 178 268 0.0 131
α = 10% 164.3 8027 162 268 0.0 88
α = 20% 164.3 8368 174 268 0.0 85

Table 14: Trade-off between efficiency and robustness for PDRM.

We can see that the model is solved to optimality for all the considered values of α in rather
short computing times, and the largest time is reached when α is 1%, which is the most restrictive
condition. The travel time increases, as expected, when α becomes larger, since, as soon as con-
straint (25) is respected, the solver can stop the solution process. The robust objective value UC
and the average unavailable capacity, computed over the 20 scenarios, are the same for all cases:
therefore, for this instance, robustness cannot be increased by allowing longer travel times. This
happens because trains are almost full to satisfy the nominal passenger demand, and the lowest
possible unavailable capacity achievable with the available number of trains is 164.3. It is interest-
ing to see that it is possible to achieve the same robustness quality even with only 1% increase of
the total travel time: therefore, it is very important to impose constraint (25) in order to limit the
total travel time of the robust solution. Finally, we can observe that the number of stops varies
without following a specific relation with the value of α, because no limit is imposed on the number
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of additional stops in these experiments.

5.3.2. Impact of parameters α and β

Varying α without any constraint on the number of additional train stops has no impact on the
robustness of the solution. We now consider the simultaneous variation of both α and β to evaluate
how their values affect the robust solution. We report the obtained results in Table 15, where the
columns have the same meaning as in Table 14. In the last row, we also consider the special case
in which constraints (21) and (25) are neglected from the model.

Value Avg. UC Travel time # Stops UC Gap% CPU time

α = 1%, β = 5% 166.1 7370 145 268 0.0 542
α = 5%, β = 1% 178.9 7662 139 268 0.0 290
α = 5%, β = 5% 168.4 7662 145 268 0.0 231
α = 10%, β = 10% 164.3 8027 152 268 0.0 107
α =∞, β =∞ 164.3 8338 168 268 0.0 45

Table 15: Comparison of the performance of PDRM with different values of α and β.

We can see that different values of α and β, ruling constraints (21) and (25), have an impact on
the level of robustness that can be reached: in particular, when β is 1%, the average unavailable
capacity increases to 178.9, i.e., about 15 additional passengers cannot be transported with respect
to the best case that has 164.3 as unavailable capacity value. When β is 5%, the average unavailable
capacity decreases and becomes closer to the best case. We observe that neglecting constraints (21)
and (25) by letting α = β =∞ does not further improve robustness, since the train capacity limits
the amount of passengers that can be transported. Even though the optimal solution can be
obtained, for all the considered parameter values, in rather short computing times, we can see that,
when constraints (21) and (25) are not included in the model, the computing time is about one
order of magnitude smaller than when α = 1%, β = 5%. However, we notice that it is very relevant
to impose constraints (21) and (25), in order to guarantee the efficiency of the robust solution by
limiting its travel time and number of train stops.

5.3.3. Impact of parameter Hk

We report, in Table 16, the results obtained by varying parameter Hk that is used, in constraints
(34), to limit the number of additional passengers that can be distributed on each train k ∈ K.
We do not report results corresponding to values of Hk smaller than 50, since they led to infeasible
solutions: indeed, constraints (32) require to transport the entire additional passenger demand and
constraints (34) limit the number of additional passengers on each train. Therefore, parameter Hk

must be chosen so as to satisfy both requirements. In Table 16, we report the results obtained
for Hk = 50, i.e., the case considered in the previous experiments, and Hk set to 80 and 100. In
particular, we show for comparison the results reported in Table 7 and add the unavailable capacity
obtained with the larger values of Hk. In all three cases (Hk = 50, Hk = 80 and Hk = 100), the
robust solutions obtained by solving PDRM have objective value UC equal to 268, although they
are three different solutions.

As it can be seen, by increasing Hk we can slightly decrease the unavailable capacity. Indeed,
more additional passengers can be transported on each train and, consequently, the unavailable
capacity is reduced. However, we can also note that the results obtained with Hk = 80 and
Hk = 100 are the same: therefore, further increasing the number of additional passengers on each
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution Hk = 50 Hk = 80 Hk = 100
UC CPU time UC CPU time UC CPU time UC CPU time

1 1915 636 0.8 207 0.7 207 0.7 207 0.7
2 1936 594 0.8 189 0.7 189 0.9 189 1.1
3 1866 548 0.7 126 0.6 112 1.0 112 0.7
4 1895 545 0.8 186 0.7 186 0.8 186 0.9
5 1925 548 0.8 203 0.8 203 0.7 203 0.7
6 1873 573 0.7 137 0.6 137 0.8 137 0.8
7 1920 594 0.8 205 0.8 205 0.8 205 0.7
8 1865 522 0.7 170 0.7 156 0.8 156 0.8
9 1903 499 0.7 181 0.6 180 0.7 180 0.7
10 1894 534 0.8 161 0.6 161 0.7 161 0.7
11 1875 552 0.7 159 0.7 159 0.8 159 0.9
12 1921 582 0.7 140 0.7 140 0.7 140 1.1
13 1872 585 0.7 174 0.7 174 0.8 174 0.8
14 1866 549 0.7 132 0.7 130 0.6 130 0.9
15 1903 566 0.7 144 0.6 144 0.8 144 0.8
16 1885 534 0.7 198 0.6 198 0.7 198 0.9
17 1893 513 0.9 192 0.7 192 0.8 192 0.8
18 1842 528 0.7 131 0.7 112 0.8 112 0.9
19 1938 559 0.9 188 0.7 188 0.7 188 0.9
20 1823 476 0.8 144 0.7 113 0.7 113 0.7

Sum 37810 11037 3367 3286 3286
Avg 1890.5 551.85 168.4 164.3 164.3

Table 16: Comparison of the nominal and robust solutions for PDRM with different Hk values.

train does not reduce the unavailable capacity, since the train capacity Ck in constraints (33) limits
the global number of passengers that can be on each train. We observe that we have chosen Hk to
be the same for all the trains k ∈ K, but it is also possible to select different Hk values for different
trains: for example, higher values could be allowed for those trains for which a larger number of
passengers is expected.

5.3.4. Impact of parameters α and N change

PDRM, presented in Section 4.4, contains constraint (21) to limit the number of additional
stops with respect to the nominal plan. In this section, we replace constraint (21) with constraint
(26), used in NPRM. The latter constraint requires to limit to N change the number of changes to
the nominal stop plan. Therefore, this constraint is significantly more restrictive than (21). For
this reason, in the original PDRM model, we have adopted constraint (21), in order to give more
freedom to the solver for finding a robust solution. Table 17 reports the results obtained by solving
PDRM with different values of α and N change. The columns have the same meaning as in Tables
14 and 15.

We observe that, when α is 5% and N change is at least 5, the average unavailable capacity is
very similar to that obtained with constraint (21) (which is 168.4, as shown in Table 7), and the
computing time is short. By keeping α to 5% and decreasing N change to 3, we obtain a slight increase
of the average unavailable capacity which reaches 170.5. However, when N change is decreased to 1,
the average unavailable capacity significantly worsens achieving 277.2, the computing time increases,
and the optimal solution is not found: indeed, in this case, the problem becomes harder because
we require to change only one stop with respect to the nominal stop plan. When α is 1% a similar
performance is observed, even though the computing times are larger than for α = 5%, since the
constraint limiting the total travel time increase is more restrictive. Therefore, for the considered
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Value Avg. UC Travel time # Stops UC Gap% CPU time

α = 5%, N change = 10 164.9 7662 145 268 0.0 73
α = 5%, N change = 5 164.3 7662 143 268 0.0 91
α = 5%, N change = 3 170.5 7662 141 268 0.0 234
α = 5%, N change = 1 277.2 7662 139 366 4.9 878
α = 1%, N change = 10 164.3 7370 147 268 0.0 400
α = 1%, N change = 5 164.3 7370 143 268 0.0 558
α = 1%, N change = 3 164.3 7370 141 268 0.0 330
α = 1%, N change = 1 278.1 7370 139 366 0.0 1504

Table 17: Comparison of the performance with different values of α and Nchange for PDRM.

instance, we can conclude that constraint (26) can be used in place of (21), as long as N change is
not too restrictive.

5.3.5. Impact of the protection level

We report, in Table 18, a comparison of the results obtained with different values of ∆ij for
PDRM. Up to now, ∆ij (for every pair of stations i, j ∈ S, i < j) was chosen so that ∆ij ≥ ∆ω

ij for
90% of the scenarios in the set Ω. Here, we consider ∆ij ≥ ∆ω

ij for a number of scenarios between
10% and 100%, and show the corresponding average unavailable capacity evaluated on the 20
considered scenarios, the total travel time and number of stops of the robust solution, the objective
value UC obtained by solving PDRM and the corresponding optimality gap and computing time.

Value Avg. UC Travel time # Stops UC Gap% CPU time

10% 164.3 7662 145 58 0.0 93
30% 164.3 7662 145 104 0.0 753
50% 164.3 7662 145 149 0.0 188
70% 164.3 7662 145 212 0.0 203
90% 168.4 7662 145 268 0.0 231
100% 179.5 7662 145 321 0.0 85

Table 18: Comparison of the performance with different values of ∆ij for PDRM.

As it can be seen, the average unavailable capacity does not significantly change with different
protection levels accounting for between 10% and 90% of the scenarios: even with rather small
values, the PDRM solution reaches the best average unavailable capacity. The increase from 10%
to 90% is not helpful to reduce the average unavailable capacity, which is slightly worse when ∆ij

accounts for 90% of the scenarios: indeed, even when ∆ij accounts for only 10% of the scenarios,
UC is larger than zero, i.e., not all the desired protection can be inserted between all pairs of
stations, and, thus, requiring a higher protection does not imply that this protection is reached.
When ∆ij accounts for 100% of the scenarios, the average unavailable capacity is larger than in
the other cases: with a larger protection we would expect the average unavailable capacity to be
smaller, since a larger protection corresponds to a larger number of seats reserved to the additional
passengers. However, when ∆ij accounts for 100% of the scenarios, we require to satisfy all the
scenarios, even those, with very large passenger demand, that occur very rarely. As a consequence,
some pairs of stations will get a high protection, but other ones will not get enough protection,
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thus making the overall average unavailable capacity higher. Therefore, the value of the required
protection level should be chosen so as to satisfy a high percentage of scenarios but should exclude
the most extreme cases.

5.3.6. Constraint (26) in TCRM and PDRM

In this section, we compare the effect of using constraint (26) instead of (21) in TCRM-rand
and PDRM. In particular, we always consider α = 5%, and then use β = 5% in (21), or N change ∈
{1, 3, 5, 10} in (26). The obtained results are reported in Table 19, where, for ease of comparison,
we also include the results of PDRM shown in Table 17.

Model Avg. UC Travel time # Stops UC Gap% CPU time

PDRM with β = 5% 168.4 7662 145 268 0.0 231
PDRM with N change = 10 164.9 7662 145 268 0.0 73
PDRM with N change = 5 164.3 7662 143 268 0.0 91
PDRM with N change = 3 170.5 7662 141 268 0.0 234
PDRM with N change = 1 277.2 7662 139 366 4.9 878

TCRM with β = 5% 366.1 7662 145 1020 4.3 434
TCRM with N change = 10 303.0 7662 148 1004 1.0 500
TCRM with N change = 5 381.5 7662 143 1051 4.8 91
TCRM with N change = 3 348.5 7662 141 1024 1.6 135
TCRM with N change = 1 453.9 7662 139 1113 1.4 56

Table 19: Impact of constraint (26) in TCRM-rand and PDRM.

As it can be seen, the impact of using constraint (26), instead of (21), on the robustness quality
is similar for both models, except for the case of N change = 5 in TCRM, in which, due to the large
optimality gap, the average unavailable capacity is larger than when using constraint (21). For
the remaining cases, when N change is at least 3, the average unavailable capacity is very similar to
the one obtained in the case of β = 5%. On the contrary, when the number of stops that can be
changed is decreased to 1, the average unavailable capacity significantly increases in both models.
Therefore, similar to what happens for PDRM, in TCRM constraint (26) can replace (21) without
significantly worsening the unavailable capacity, as long as N change is not too restrictive.

5.3.7. Larger demand scenarios between given pairs of stations and given trains

In this section, we evaluate the performance of TCRM when we increase the demand for some
specific pairs of stations and trains. In particular, we consider higher demands of, respectively, 120,
50 and 100 passengers, between stations 1 and 18 on train 4, stations 1 and 7 on train 1, and stations
7 and 18 on train 13, and modify the first five scenarios, considered in the previous experiments, by
keeping the same total demand but increasing the demand for these specific pairs of stations and
trains. The robust solutions of TCRM-un and TCRM-rand obtained with 20 scenarios (reported
in Table 3) are evaluated on these five scenarios, and the results are reported in Table 20, where we
show the comparison of the unavailable capacity obtained for the nominal and TCRM solutions.

As it can be seen, both TCRM-un and TCRM-rand solutions are capable of handling these
larger scenarios more effectively than the nominal solution: indeed, the unavailable capacity is
almost halved. As expected, due to the larger demand required for some specific pairs of stations
and trains, the unavailable capacity increases with respect to the case of the previous 20 scenarios.
However, we can see that the average unavailable capacity is not much larger than before, where it
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Scenarios
∑

i,j∈S ∆ω
ij

Nominal solution TCRM-un TCRM-rand
UC CPU time UC CPU time UC CPU time

1 1915 758 0.6 407 0.6 437 0.6
2 1936 725 0.6 389 0.6 448 0.6
3 1866 672 0.5 352 0.5 387 0.6
4 1895 663 0.5 378 0.5 444 0.6
5 1925 690 0.6 397 0.5 440 0.5

Sum 9537 3508 1923 2156
Avg 1907.4 701.6 384.6 431.2

Table 20: Comparison of the solutions obtained by the nominal model and by TCRM on the new scenarios.

was, by computing the average over the first previous five scenarios, 321.4 for TCRM-un and 371.2
for TCRM-rand (see Tables 5 and 6).

5.3.8. Summary of the sensitivity analysis

We conclude this section by summarizing the results obtained with the sensitivity analysis. We
have seen that, for the considered instance, parameter α, which limits the increase of travel time,
does not have an impact on the level of robustness achieved, while β, which limits the number
of additional train stops, affects it in a slightly more evident way. In addition, constraints (21)
and (25) are very important, since, when we neglect them, the efficiency of the robust solutions
significantly decreases. Setting the limit Hk on the number of additional passengers that can be
transported on each train k is relevant for PDRM: if this parameter is set to a very small value,
then no feasible solution can be obtained, because constraints (32) require to transport the entire
additional demand. We have also evaluated the behavior of including constraint (26) in PDRM,
used in NPRM, to limit the changes with respect to the nominal train stop plan: as we have seen,
this constraint is effective and allows finding robust solutions that have shorter travel time and
smaller number of train stops than when using constraint (21). Experiments conducted on the
variation of the values of α and N change have shown that when N change is set to a very small value
(e.g., 1), the average unavailable capacity increases significantly, but if the value is slightly larger
it is beneficial to have constraint (26) in the model. We have also seen that the variation of the
protection level does not have significant impact on the quality of robustness for the considered
instance, except when it takes into account 100% of the scenarios, since, in the latter case, we
require to satisfy all the scenarios, even extreme ones that occur very rarely.

We report, in Figure 4, the best robust train stop plans and timetable obtained by solving PDRM
with α = 1%, N change = 3, and compare it with the nominal one. In the figure, different colors
correspond to different passenger flow densities on trains. In particular, a blue line corresponds
to a large number of passengers transported along that section while a yellow line corresponds to
a small number. As it can be seen, the structure of the diagrams is similar in both cases, even
though the robust timetable shows a larger number of light blue lines. Moreover, the robust PDRM
solution gives an average unavailable capacity of 164.3, total travel time 7370 and total number
of stops 141. With respect to the nominal solution, the unavailable capacity has been reduced by
more than 70%, with an increase of travel time of 1% and of the number of train stops of 1.4%.
Therefore, a much more robust timetable has been obtained with slight worsening of efficiency.

The considered instance contains 36 trains, and, as shown in Table 3, the computing time
required by PDRM is 231 seconds to compute the optimal robust solution, while NPRM needs 840
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seconds, and TCRM cannot determine the optimal solution even in two hours of computation. In
order to compute robust solutions for larger size instances, PDRM seems more appropriate, not
only because it requires shorter computing times, but also because it has the advantage of finding
a robust solution that distributes the additional passengers on all trains in a more balanced way
than NPRM. By looking at the results of the sensitivity analysis, when the parameters α and
N change are set to stricter values, the computing time required by PDRM increases. Therefore, to
solve PDRM on larger size instances, it would be better to allow larger increases of the travel time
and more changes to the nominal stop plan or to use constraint (21) instead of (26) in PDRM.
Clearly, depending on the size of the instance, metaheuristic algorithms could be developed to
determine robust solutions, starting from the solution of a relaxation of PDRM, in which some
of the constraints could be relaxed, and combined with constructive heuristic algorithms. The
development of these algorithms is left for future work.

6. Conclusions and Future Research

We have studied the problem of determining train stop plans and timetables that are robust
against uncertain passenger demand. Three Mixed Integer Linear Programming (MILP) models,
Nominal-Plan based Robust Model (NPRM), Train-Capacity based Robust Model (TCRM) and
Passenger-Distribution based Robust Model (PDRM) have been proposed, all using the Light
Robustness method. In each model, a desired protection level is inserted to manage additional
demand occurring in real-time, and the goal is to minimize the total protection that cannot be
achieved. To guarantee that the stop plan and timetables are efficient, constraints on the maximum
allowed worsening of the nominal travel time and number of stops are imposed. The three MILP
models mainly differ in the way of inserting the required protection, either by considering additional
demand or by reserving capacity. All models consider the passenger distribution on the trains and
take into account train capacity. We tested the proposed models on real-world data of the Wuhan-
Guangzhou high-speed railway line in China, and compared the obtained results with the nominal
solution in terms of robustness quality under 20 demand scenarios. The results show that the
unsatisfied demand or unavailable capacity in the robust solutions is between two and five times
smaller than in the nominal case. In addition, it turned out that NPRM has better efficiency than a
model proposed in Qi et al. (2018a), since timetables with the same robustness quality and shorter
travel times are obtained by NPRM. TCRM, which requires protection for each pair of stations and
for each train, requires longer computing times, but becomes useful when it is necessary to insert
protection for specific trains. PDRM overcomes the drawbacks of NPRM and TCRM, notably
reduces the unavailable capacity with respect to the nominal solution, and effectively combines the
best features of the other models.

Future work will be dedicated to study the problem when uncertain passenger demand is split
in given time intervals of the time horizon. This is a generalization of the proposed models, since
the protection should be defined for every pair of stations and time period. We plan to extend
(some of) the robust models to deal with this more specific protection requirement, and develop
new solution methods to limit the computing times. In addition, the proposed models could be
generalized by including the extensions described in Section 4.6. Finally, metaheuristic algorithms
could be developed to determine robust solutions for large size instances.
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Figure 4: Diagrams of nominal and robust timetables with colors showing passenger density.
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Schöbel, A., 2012. Line planning in public transportation: models and methods. OR spectrum
34 (3), 491–510.

Shang, P., Li, R., Liu, Z., Yang, L., Wang, Y., 2018. Equity-oriented skip-stopping schedule opti-
mization in an oversaturated urban rail transit network. Transportation Research Part C: Emerg-
ing Technologies 89, 321–343.

44



Shi, J., Yang, L., Yang, J., Gao, Z., 2018. Service-oriented train timetabling with collaborative
passenger flow control on an oversaturated metro line: An integer linear optimization approach.
Transportation Research Part B: Methodological 110, 26–59.

Sparing, D., Goverde, R. M., 2017. A cycle time optimization model for generating stable periodic
railway timetables. Transportation Research Part B: Methodological 98, 198–223.

Sun, L., Jin, J. G., Lee, D.-H., Axhausen, K. W., Erath, A., 2014. Demand-driven timetable design
for metro services. Transportation Research Part C: Emerging Technologies 46, 284–299.

Wang, Y., Tang, T., Ning, B., van den Boom, T. J., De Schutter, B., 2015. Passenger-demands-
oriented train scheduling for an urban rail transit network. Transportation Research Part C:
Emerging Technologies 60, 1–23.

Xu, X., Liu, J., Li, H., Jiang, M., 2016. Capacity-oriented passenger flow control under uncertain
demand: Algorithm development and real-world case study. Transportation Research Part E:
Logistics and Transportation Review 87, 130–148.

Yang, L., Di, Z., Dessouky, M., Gao, Z., Shi, J., 2020. Collaborative optimization of last-train
timetables with accessibility: A space-time network design based approach. Transportation Re-
search Part C: Emerging Technologies 114, 572–597.

Yang, L., Li, K., Gao, Z., 2009. Train timetable problem on a single-line railway with fuzzy passenger
demand. IEEE Transactions on fuzzy systems 17 (3), 617–629.

Yang, L., Qi, J., Li, S., Gao, Y., 2016. Collaborative optimization for train scheduling and train
stop planning on high-speed railways. Omega 64, 57–76.

Yang, L., Zhou, X., Gao, Z., 2014. Credibility-based rescheduling model in a double-track railway
network: a fuzzy reliable optimization approach. Omega 48, 75–93.

Yin, J., Tang, T., Yang, L., Gao, Z., Ran, B., 2016. Energy-efficient metro train rescheduling with
uncertain time-variant passenger demands: An approximate dynamic programming approach.
Transportation Research Part B: Methodological 91, 178–210.

Yin, J., Yang, L., Tang, T., Gao, Z., Ran, B., 2017. Dynamic passenger demand oriented metro
train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear pro-
gramming approaches. Transportation Research Part B: Methodological 97, 182–213.

Yue, Y., Wang, S., Zhou, L., Tong, L., Saat, M. R., 2016. Optimizing train stopping patterns
and schedules for high-speed passenger rail corridors. Transportation Research Part C: Emerging
Technologies 63, 126–146.

Zhang, C., Gao, Y., Yang, L., Gao, Z., Qi, J., 2020. Joint optimization of train scheduling and
maintenance planning in a railway network: A heuristic algorithm using lagrangian relaxation.
Transportation Research Part B: Methodological 134, 64–92.

Zhang, Y., Peng, Q., Yao, Y., Zhang, X., Zhou, X., 2019. Solving cyclic train timetabling problem
through model reformulation: Extended time-space network construct and alternating direction
method of multipliers methods. Transportation Research Part B: Methodological 128, 344–379.

Zhu, Y., Mao, B., Bai, Y., Chen, S., 2017. A bi-level model for single-line rail timetable design with
consideration of demand and capacity. Transportation Research Part C: Emerging Technologies
85, 211–233.

45


