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ABSTRACT 

An increasingly large body of converging evidence supports the idea that the semantic system is distributed across 

brain areas and that the information encoded therein is multimodal. Within this framework, feature norms are typically 

used to operationalize the various parts of meaning that contribute to define the distributed nature of conceptual 

representations. However, such features are typically collected as verbal strings, elicited from participants in 

experimental settings. If the semantic system is not only distributed (across features) but also multimodal, a cognitively 

sound theory of semantic representations should take into account different modalities in which feature-based 

representations are generated, because not all the relevant semantic information may be easily verbalized into classic 

feature norms, and different types of concepts (e.g., abstract vs. concrete concepts) may consist of different 

configurations of non-verbal features.  

In this paper we acknowledge the multimodal nature of conceptual representations and we propose a novel way of 

collecting non-verbal semantic features. In a crowdsourcing task we asked participants to use emoji to provide 

semantic representations for a sample of 300 English nouns referring to abstract and concrete concepts, which account 

for (machine readable) visual features. In a formal content analysis with multiple annotators we then classified the 

cognitive strategies used by the participants to represent conceptual content through emoji. 

The main results of our analyses show that abstract (vs. concrete) concepts are characterized by representations that: 

1. consist of a larger number of emoji; 2. include more face emoji (expressing emotions); 3. are less stable and less 

shared among users; 4. use representation strategies based on figurative operations (e.g., metaphors) and strategies 

that exploit linguistic information (e.g. rebus); 5. correlate less well with the semantic representations emerging from 

classic features listed through verbal strings. 
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1. Introduction  

Featural views of cognition rely on the idea that some brain regions are specialized for the processing of information 

encoded in different modalities (Barsalou et al. 2003; Barsalou 2008; Lynott and Connell, 2013). According to this 

paradigm, when we process a concept like CAR, we think about how cars look like as well as how they sound, move, 

and smell; when we process a concept like CAKE we think about how cakes look like, how they taste and so on. These 

different types of information are distributed across brain areas. This view of cognition is typically referred to as 

multimodal view of cognition, and it is often operationalized by means of semantic feature norms (Wu and Barsalou 

2009). Semantic feature norms are therefore used as a proxy for conceptual representations, under the assumption that 

a concept can be represented by a set of different types of features that express information about its perceptual, 

functional, associative, encyclopaedic and other type of content. Such a way to operationalize conceptual content is 

supported by several studies showing that feature-based representations predict various psychological behaviors, well-

known in cognitive psychology (see McRae and Jones 2013 and section below for a brief literature review).  

Semantic feature norms are typically elicited in experimental setting or in online crowdsourcing tasks by asking 

participants to list the most salient descriptors that come to their mind when they think of given concepts. The raw 

data are then normalized by the analysts and various measures are collected, together with the features’ production 

frequency. For example, given the concept designated by the word car, typically participants mention <has four 

wheels>, <it’s a transportation> and so on. 

Although the semantic feature norms paradigm is extensively used in cognitive science and cognitive psychology, two 

caveats at least might be identified.  

First, this type of research is typically performed on concrete concepts, for which the majority of semantic feature 

tasks are conducted (McRae et al. 2005; Vinson and Vigliocco 2008). However, as Recchia and Jones (2012) point 

out, words denoting abstract concepts are more frequent than words denoting concrete concepts. Moreover, a large 

body of scientific literature suggests that abstract and concrete concepts differ in the information that they may contain 

(with abstract concepts being richer in linguistic information and concrete concepts richer in perceptual information, 

e.g., (Recchia and Jones 2012; Lenci 2018). This difference is supported by empirical studies showing that abstract 

and concrete concepts differ in the way they are learned, remembered, and processed (Binder et al. 2005; Bolognesi 

and Steen 2018). It therefore remains controversial to claim that the semantic feature norms paradigm can be reliably 

used to operationalize conceptual content, given the fact that empirical evidence is for the majority collected on 

concrete concepts only. 

Secondly, and most importantly, the semantic feature paradigm is grounded in the idea that cognition is not only 

distributed (across features), but also multimodal (across modalities). Several scholars agree that knowledge in the 

semantic memory is subdivided by modality into, for example, visual components in one cortical area and functional 

components in another (Farah and McClelland 1991). Switching from one modality-specific representation to another 

involves important cognitive costs (Pecher et al. 2004). Within the semantic feature norms paradigm, however, 

semantic features in property generation tasks are always elicited as lists of linguistic strings. In other words, semantic 

features expressing, for instance, perceptual properties or taxonomic properties, are both elicited from participants by 

means of words. Arguably, not all conceptual content is equally easy to verbalize into words: some types of features 

may be better expressed by means of visual clues, for instance, rather than by linguistic strings. For example, 

Bolognesi (2017) has shown that different types of features are exploited to construct and express metaphors in images 

vs. in language: while metaphors in images typically exploit perceptual similarities based on shapes and colors 

between two entities, which are easily conveyed within the pictorial mode of communication, perceptual similarity 

does not usually play a role in metaphors used in language. The latter types of metaphors, instead, tend to be 

constructed on shared taxonomic features associated to the compared entities. Taxonomic features are easy to express 

within the verbal system by using words denoting the two different levels of the taxonomy, e.g., monkey and mammal, 

but less so within the pictorial one: how can one discriminate the pictorial representations of a monkey from that of a 

mammal?.   
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On a different note, the Dual Coding Theory (Paivio 1971; 1986; 2010), suggests that there are two functionally 

independent but interconnected systems in memory, one specialized for the representation of nonverbal information 

and the other specialized for the representation of verbal information. At least two types of representations, therefore, 

may co-exist in the semantic memory, one based on visual clues (called imagens) and one based on linguistic clues 

(called logogens). A number of functional imaging studies have tackled this distinction, mainly by analyzing the 

processing of abstract vs concrete concepts (Binder et al. 2005), supporting the claim that there is a distinction between 

perceptually encoded knowledge and verbally encoded knowledge.  

The combination of these two points (neglecting abstract concepts, and neglecting other modes in which features can 

be expressed) in combination with theoretical insights such as those proposed by the Dual Coding Theory suggests 

that the reliability of the semantic feature norms paradigm may be restricted to some types of concepts only.  

Following these observations, we hereby propose, describe, and analyze a dataset of semantic representations of 

concrete and abstract concepts, which have been represented by means of visual components of meaning. Such visual 

representations are operationalized through pictograms that are commonly used in instant messaging and online apps: 

emoji. We claim that our visual set of representations can complement the classic verbally-conveyed features, to give 

a fuller and richer view of conceptual representations, within a truly multimodal view of cognition. 

The specific research questions that lead the analyses can be summarised as follows: 

RQ1: what are the strategies used to represent the content of concrete vs abstract concepts through emoji? 

RQ2: are abstract concepts richer in emotional content (face emoji) than concrete concepts? 

RQ3: do abstract concepts need on average more emoji than concrete concepts to be expressed? 

RQ4: to what extent do the emoji-based semantic representations correlate with the linguistic features semantic 

representations? 

Based on these questions, the paper is structured as follows: in Section 2 we provide a brief literature review on the 

semantic feature norm paradigm, we explain how this approach falls short in accounting for the multimodal nature of 

conceptual representations and we introduce our dataset of visually expressed features, followed by a short 

introduction on emoji. Section 3 explains the methods and experimental setup of the crowdsourcing task, used for 

implementing the algorithm that automatically generated averaged representations of each concept, and for the content 

analysis through which we annotated the crowdsourced visual features. In Section 4, we provide the data analysis, 

then discussed in Section 5. Finally, Section 6 provides a conclusion that links our findings to the general aims of the 

special issue in which the current study is embedded: “Eliciting Semantic Properties: Methods and Applications”. 

 

2. Theoretical Background  

Several models of conceptual representation based on different theoretical backgrounds make use of semantic features, 

thus assuming that semantic representations can be formalized as sets of distributed features (Baroni et al. 2010; 

Bolognesi 2017; Cree et al. 2006; Sartori et al. 2005; Taylor et al, 2007; Vigliocco et al. 2009; Vigliocco et al. 2004). 

These models include classical and prototype-based models of semantic memory (Medin and Schaffer 1978; Minda 

and Smith 2002; Smith and Medin 1981) as well as network-based models (Collins and Loftus 1975).  

Semantic features encode different types of information, which is often manually classified on the basis of different 

types of taxonomies. For example, Cree and McRae (2003) proposed a brain region taxonomy according to which 

different types of features are processed in different brain areas. Given for example the concept KNIFE, <has a handle> 

is a ‘visual–form and surface’ type of feature, while <is sharp> is a ‘tactile’ type of feature, and these two features are 

processed in distinct neural circuits. Wu and Barsalou (reported in McRae et al. 2005) proposed a knowledge-based 

taxonomy organized into 4 classes of features (Entity-related, Situation-related, Taxonomic and Introspective), each 
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divided into various sub-types. This taxonomy was then refined in order to account for abstract concepts (Barsalou 

and Wiemer-Hastings 2005). Vinson and Vigliocco (2008) proposed a 5-categories taxonomy that accounts for feature 

types produced for nouns and verbs. Finally, Recchia and Jones (2012) proposed a 19-categories taxonomy that 

constitutes an adapted version of existing coding schemes, applied to semantic features of both concrete and abstract 

concepts. 

Based on the manual annotation of feature types, observations have been made on the nature of the conceptual 

representations that characterize, for example, concrete and abstract concepts. For example, Barsalou and Wiemer 

Hastings (2005) showed that abstract concepts are characterized by more situation-related features than concrete 

concepts which, in turn, are characterized by more entity-related features. Moreover, it has been shown that abstract 

concepts involve subjective experiences and emotions more than concrete concepts (Vigliocco 2009).  

The relevance of a semantic feature approach to conceptual representation is empirically supported by a large body of 

literature. In particular, it has been shown that semantic features can explain the semantic priming effect (concepts 

that share semantic features prime one another, while concepts that share loose word associations do not (McRae and 

Boisvert 1998; Cree et al. 1999). McRae, Cree, Westmacott and de Sa (1999) showed that participants are faster to 

verify that a feature is part of a concept if it is strongly rather than weakly correlated with other features of that concept. 

For example, they are faster to verify that <has a long tail> is a feature of RAT than of PIG because such feature is 

highly correlated with other features of RAT, but not of PIG. Moreover, the number of features associated with given 

concepts correlates with their processing time (decision times and errors in lexical decision tasks are lower for concepts 

with many features (Pexman et al. 2002; Pexman et al. 2003). This suggests that concepts with many features, which 

tend to be recognized more quickly than concepts with a few features, have richer representations, and this peculiarity 

facilitates their access and retrieval. Finally, pairs of concepts sharing distinctive features are typically judged to be 

more similar than concepts sharing an equal number of relatively frequent features (Mirman and Magnuson 2005). In 

other words, features shared by only a few concepts (i.e., distinctive features) hold a special status, and therefore pairs 

of concepts sharing distinctive features are judged to be more similar to one another than concepts sharing an equal 

number of frequent features.  

In support of the distributed and multimodal nature of cognition, empirical evidence collected from patients with 

category-specific semantic deficits supports the multimodal nature of semantic representations in memory. For 

example, in a pioneering study Warrington and McCarthy (1987) reported category-specific impairments observed in 

brain-damaged patients, showing that the category of living things and that of artifacts depend on, respectively, visual 

and functional information. This has been supported and extended by empirical analyses conducted within the 

semantic feature norms paradigm, in which it has been shown that these two categories there are characterized by 

different types of feature configurations (Garrard et al. 2001; Cree and McRae 2003). Finally, a recent feature-based 

neurocomputational model of semantic memory showed that the role of different kinds of features in the representation 

of concepts, both in normal and neurodegenerative conditions, has important implications for the study of normal vs. 

impaired cognition: the network model proposed by the authors solved naming tasks and word recognition tasks very 

well, exploiting the different role of salient versus marginal features in concept identification, and showed that in the 

case of damage, superordinate concepts were preserved better than the subordinate ones. Interestingly, the degradation 

of salient features, but not of marginal ones, prevented object identification. (Ursino et al. 2018).  

Overall, the distributed and multimodal nature of conceptual representations is well documented in cognitive science 

and studies based on semantic features have repeatedly and consistently demonstrated that the semantic feature norms 

paradigm is a reliable way to operationalize the content of conceptual representations. Nonetheless, semantic features 

are typically collected as verbal strings elicited from participants. This could potentially limit the type of information 

that they can capture: arguably, the information that participants can easily verbalize when they perform the task is 

easily captured, while the information that cannot be easily verbalized is not. Conceptual content that cannot be easily 

verbalized may remain unexpressed and thus undocumented within the semantic feature norms paradigm. It follows 

that the multimodal nature of conceptual representations may actually be biased toward the expression of those 
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features that can easily be put into words, thus leaving aside modality-specific information that cannot be easily put 

into words.  

One of the main strategies in which humans express themselves, besides words, is through images. Research shows 

that not all the information encoded in visual representations of concepts can be encoded in language. For example, 

functional neuroimaging studies show different patterns of activation during matched word and picture recognition 

tasks (Gorno-Tempini et al. 1998; Moore and Price 1999; Chee et al. 2000; Hasson et al. 2002; Bright et al. 2004; 

Gates and Yoon 2005; Reinholz and Pollmann 2005). As indicated in Binder et al.’s (2009) meta-analysis, different 

studies argue against a complete overlap between the knowledge systems underlying word and object recognition, 

based on the existence of patients with profound visual object recognition disorders but relatively intact word 

comprehension (Warrington 1985; Farah 1990; Davidoff and De Bleser 1994). Therefore, a richer and more exhaustive 

set of semantic features that aims at providing a reliable proxy for conceptual content should in principle include both 

verbally-expressed and visually-expressed features. 

 

2.1. Emoji: a pictorial mode of communication 

 

The rise of social media and virtual communication has recently enabled new ways to encode meaning: The Unicode 

Standard emoji code, a set of now more than 3000 pictograms, which became available in most of our online 

messaging services. In their emoji Report 20151 the company Emogi stated that about 92% of internet and instant 

messaging users utilizes emoji. The word emoji is derived from the Japanese e for "picture" and moji for "word" and 

the resemblance to the English word "emotional" is coincidental (Taggart 2015). Nonetheless, many emoji are being 

used to express emotions and therefore all major social media platforms use sentiment analysis to understand the 

content of the users. This creates a great interest in research on semantic evaluation and analysis of emoji (Barbieri et 

al. 2018; Barbieri et al. 2016;  Barbieri et al. 2016). 

Compared to words, emoji are characterized by a stronger iconic relationship with the referents that they designate. 

While the relationship between a word and its referent is mostly arbitrary, symbolic, and based on social conventions, 

the relationship between an emoji and the designated referent is less arbitrary, because it is based on iconicity. For 

example, the iconic nature of the relationship between an actual dog and 🐶 is not preserved in the sign dog.   

In this regard, the reader may think that emoji are comparable to Egyptian hieroglyphs. However, the pictograms that 

constitute the Egyptian ancient language, unlike emoji, are a sound-based phonetic system (Jespersen and Reintges 

2008). For example, a sequence of hieroglyphs can be composed of the pictorams that provide the phonetics of the 

word BELIEF. The first hieroglyph would be a foot, the Egyptian pronunciation of the word foot would sound like 

"B", the next hieroglyph would depict a reed, which would be pronounced with an "E". This is followed by the lion 

hieroglyph, which in Egyptian is Leo and provides the "L". This can be called a  rebus principle, which in principle 

can also be applied to emoji use, but we believe (and test in Section 4.4) that this might be a quite uncommon 

communicative strategy among emoji users. See Figure 1 for an example of the rebus principle in both hieroglyphs 

and emoji.  

                                                           
1 Emogi.com’s Emoji Report 2015, retrieved 2018-11-02 from www.emogi.com 

http://www.emogi.com/
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Figure 1: Rebus translation of the word BELIEF in both Egyptian hieroglyph and emoji. Left: 

Sequence of hieroglyphs providing the phonetics. The first hieroglyph is a foot, the Egyptian 

pronunciation of the word foot would sound like "B", the next hieroglyph would depict a reed, which 

would be pronounced with an "E". This is followed by the lion hieroglyph, which in Egyptian is Leo 

and provides the "L". Right: Two emoji that can be read as "Bee" and "Leaf" and compose the word 

"Belief" if the rebus principle is applied. 

Another interesting difference between the verbal system and the emoji system is that while the first developed, 

changed, and adapted through the centuries, the latter evolves in a radically different and significantly faster way. The 

drafts of emoji sets are based on proposals received by the Unicode Consortium, reviewed by the Unicode Emoji 

Subcommittee, and selected on the basis of the Emoji Selection Factors2. The selection factors for inclusion of a new 

emoji are: Compatibility, expected usage level, image distinctiveness, completeness (does the emoji fill a gap in the 

set of existing emoji) and frequently requested emoji. Thanks to these adaptations, the original set of  176 12-by-12-

pixel characters created by Shigetaka Kurita for the telecommunication company DOCOMO in 1998/99, has now 

extended to a set of more than 2800 pictograms. The latest Unicode draft proposal3, for example, includes wheelchairs 

(manual, motorized, with a woman or a man), guide dogs, prosthetics but also rather arbitrarily specialized new emoji 

such as a falafel and a skunk.  

The rising demand in emoji can therefore lead to the addition of more and more specific emoji, to foster inclusion and 

political correctness. An example is the collaboration between Apple and the Unicode Consortium to implement a 

new technical solution that would include a skin tone modifier, which has been introduced to Unicode 8.0 (Stark and 

Crawford 2015). The political and societal principles that drive the inclusion of new emoji, lead to a peculiarity of the 

emoji vocabulary: some domains display a wide variety of options to differentiate between concepts at a very specific 

level, such as the difference between a red-hair and a blond-hair woman, while in other domains the availability of 

emoji is quite limited, for example there is a very limited variety of emoji describing clothing, and virtually no emoji 

representing the variety of musical instruments, or furniture. Because these domains, even though populated by 

concrete instances, do not have a variety of emoji from which users can draw to express meaning, are also subject to 

creative uses of existing emoji. 

Another peculiar example is the lack of graphic and sexual content in the set of available emoji. This gap gave rise to 

a series of creative uses of existing emoji, to express sexual content. For example, characteristic use of the 🐶 emoji. 

The 🐶 is widely known to be understood as a metaphor for male genitalia (Highfield 2018). This connotation was so 

strong that Instagram temporarily banned its hashtag use #🐶.  

The variety of methods that users can resort to, in order to express a concept through an emoji, vary, and arguably not 

all of these methods hold the same status, are used with the same frequency, and are equally appreciated by emoji 

users. With our research questions we aim to explore the degree by which various communicative strategies (e.g., 

based on metaphors, based on rebus, etc.) are used by emoji users to represent abstract and concrete concepts. 

                                                           
2 Unicode-Consortium. Draft Emoji Candidates: http://www.unicode.org/emoji/future/emoji-candidates.html 
3 Unicode-Consortium. Submitting Emoji Proposals: https://www.unicode.org/emoji/proposals.html 

http://www.unicode.org/emoji/future/emoji-candidates.html
https://www.unicode.org/emoji/proposals.html
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We hypothesize that mechanisms based on figurative operations known in the scientific literature as metaphors, 

idioms, and metonymies, are preferred, compared to artificially created methods that use lots of emojis, portray 

pictures or short stories. Our hypothesis builds upon a preliminary study conducted by (Wicke 2017). Wicke proposes 

to investigate emoji as semantic primitive building blocks (Wierzbicka 1996) and analyses methods preferred by users 

to translate action verbs into emoji sequences. The results show that the most effective methods are the Rebus, Literal 

and Metaphor methods. Moreover, the results suggest that the shorter the sequence, the better is the interpretability. 

The rendering of those actions found its application in a computational storytelling system (Veale 2017).  

 

3. Methods 

 

3.1. Stimuli and Materials 

A sample of 300 nouns was extracted from the tails of the distribution of concreteness ratings reported by Brysbaert 

et al. (2014). The entire Brysbaert dataset is composed of 40,000 generally known English word lemmas with 

concreteness ratings obtained from 4,000 participants using crowdsourcing for data collection. In this large dataset the 

words were presented in isolation and participants were asked to rate the degree of concreteness of the related concept, 

on a scale from 1 to 5. The individual ratings were then averaged. For instance, a word like dandelion is associated to 

an average score of 5 (extremely concrete), while a word like belief is associated with an average score of 1.19 

(extremely abstract). In order to select the 300 words we took into account a few factors. First of all, we considered 

only nouns, and therefore dropped other words that were present in Brysbaert’s et al. database (e.g., eh). Secondly, we 

took into account the word frequency, and dropped those words that displayed very low frequency values according 

to the “Word Frequencies in Written and Spoken English: based on the British National Corpus” (WFWSE) (Leech 

2014). We used nouns with a frequency of at least 10 in a million of words. Thirdly, we took into account the fact that 

the distribution of concreteness ratings in Brysbaert’s database is normal but slightly skewed toward the extremely 

concrete pole: the average concreteness of the 14,593 nouns reported in the database is 3.53 on a 5-point scale. We 

therefore selected concrete nouns with concreteness score above 4.0 and abstract nouns with concreteness score below 

2.0. The final factor that we took into account is the fact that many words in Brysbaert’s database are associated with 

average concreteness measures that involve high standard deviation scores. This phenomenon may be problematic 

because it suggests that given the same word, some participants rated the concept as very abstract, some rated it as 

very concrete, because they may have had different senses in mind, associated to the same polysemous word. In fact, 

as Reijnierse, Burgers, Bolognesi and Krennmayr (2019) suggest, when words that have a literal a metaphorical 

meaning are disambiguated by the context, the two senses (e.g., support: 1. a board or scaffolding that holds something 

up; 2. psychological help) tend to be rated respectively as very concrete and very abstract.   

To summarize, the 300 concepts in our dataset have the following properties: 

● They were extracted from the Brysbaert dataset 

● They had  a frequency of at least 10 times per million words, according to the “WFWSE” 

● They were either very concrete  with a concreteness score above 4.0 or very abstract with a concreteness 

score below 2.0.  

● They had an average standard deviation of >0.6, whereas the average standard deviation of all nouns in 

Brysbaert’s database is >1. 

The set of emoji used for this task has been taken from the official Unicode version 11 (for an overview, see 

https://unicode.org/emoji/charts/emoji-versions.html). This version is the latest version published in 2018, when the 

data collection was conducted. The Unicode Consortium updates the set of emoji each year with several version 

releases. However, we believe that the slight changes introduced in the new releases do not affect the overall findings 

https://unicode.org/emoji/charts/emoji-versions.html
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of our study, for various reasons. First, newly proposed emoji take several months (and sometimes years) before they 

are included in a new version of the dataset. Second, whenever new emoji enter the Unicode it is the responsibility of 

each platform provider to implement a specific rendering and therefore the pace with which the new emoji become 

available on various platforms is slow and irregular. Users sometimes are not even aware of about the latest emoji 

accepted by Unicode, because their device does not support them yet.  

The challenge of an ever-increasing set of emoji poses questions for a scientific study: How can we offer all emoji to 

users without overwhelming them with the more than 2,800 emoji to choose from? How do we account for different 

renderings of the same emoji, on different devices (Android, Windows, etc)? And finally, how can we present the 

emoji set in a clear and easily browsable way? To answer these questions, we decided to use www.emojicopy.com 

(see Figure 2). This web application provides a very simple copy and paste interface, which clusters the emoji 

according to categories common on most service providers, hence answering all of our demands. A possible drawback 

of this solution is that the clustering of emoji imposes a certain order that may affect the choice and hence our results. 

Nonetheless, as mentioned above, the clustering is the one common to most service providers, whilst not depicting 

emoji rendered for a specific provider. 

 

Figure 2: Edited screenshot of the online platform emojicopy.com, providing the latest set of emoji for 

an easy copy-paste access system. 

 

3.2. Data collection: setting up the crowdsourcing task  

The data collection has been designed as a crowdsourcing task, conducted on the platform Figure Eight (www.figure-

eight.com, formerly Crowdflower), which provides a reliable interface for human micro-tasking, used by a variety of 

companies and researchers. Workers were asked to use a computer rather than their phone, and were asked to declare 

that they were older than 18 years old and English native speakers.  

 

Crowdsourcing is a useful and efficient tool to obtain large amounts of human annotated data with little effort and has 

shown to be comparable to university participant samples (Behrend et al. 2011). However, the monetary compensation 

is often the only motivation for participating in the task (Brabham 2010). Therefore we must take into account that 

participants will be prone to abuse the setup to maximize their rewards whilst minimizing their efforts. Fortunately,  

Figure Eight provides methods to detect cheaters and irregular behaviors. On submission of the task, the analyst can 

http://www.emojicopy.com/
http://www.figure-eight.com/
http://www.figure-eight.com/
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provide a gold standard of questions with a given answer, and crowdworkers who fail too many of the gold standard 

questions will be marked as cheaters. Besides these potential drawbacks involved in using a crowdsourcing task to 

collect our data, we strongly believe that presenting the emoji task on the web is a more natural way to investigate the 

use of emoji than in an offline experimental design, because emoji are used solely online.  

 

Before we conducted the actual study, we ran a pilot study with 20 words. Each word was represented by emoji by 

nine participants. At this stage we asked participants for feedback about the experimental design and the use of the 

online keyboard to select the emoji. The data collected in this pilot study was not included in the final dataset of 

experimental data.  

 

The experimental study featured a list of 300 words (150 concrete, 150 abstract). Each word was represented by emoji 

by 11 participants for a total of 3300 unique responses, which were then manually annotated by two independent 

annotators in order to investigate the different methods that participants used to perform the task (see Section 3.3).  

In the instructions we explained the nature of the task and provided examples of possible representations, indicating 

to the participants that the optimal sequence would consist of a number between 1 and 4 emoji, that would describe 

the concept in the most precise, yet non-redundant, way. Additionally, we provided a step-by-step guide with 

screenshots on how the participants are supposed to use the emojicopy website to create their responses. 

 

The full instructions are reported in the appendix to this paper.  

 

Crowdsourcing settings were configured so that only the online workers with highest reliability history could take part 

in our data collection. In Figure Eight these are participants who received the best feedback for accuracy in performing 

previous tasks. Moreover, participants were selected from 6 English speaking countries (USA, New Zealand, Ireland, 

UK, Canada and Australia). Furthermore, we tracked the subject ID in order to evaluate cheating behavior. For each 

item participants were rewarded with 4 cents, which adds up to 4 euros to complete a list of 100 items.  

 

Participants were then presented with the first word, and asked to follow the link to emojicopy.com in order to create 

a sequence of emoji that best describes the concept. The chosen sequence had then to be pasted into the task form. 

Finally, participants were asked to provide optional written feedback for each word, as well as for the task in general. 

This optional written feedback was useful to give the participants the chance to explain any irregularities, problems 

or difficulties with the task or word. Figure 3 displays a screenshot of the task, for the concept TIME BOMB. 

 
Figure 3: This image shows one of the 300 tasks that have been posted to the online workers. In this 

example, the worker needs to describe the concept TIME BOMB (red box, indicated by 1), using emoji. 

The worker can do so by following the provided link (indicated by 2) to the emoji keyboard. 

 

 

3.3. Content analysis: Coding scheme for the manual annotation 
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The investigation of representational strategies is the main tool that can leverage insight into the question of how 

abstract versus concrete concepts are represented by means of visual features We therefore focused on an accurate, 

manual classification of the representational strategies used by online workers to describe the stimuli. The 

classification system was initially proposed in Wicke (2017), and later refined and further described by the authors of 

the present paper.  

Table 1 reports the final version of the coding scheme used to annotate the representational strategy types. 

Strategy type  

Literal Literal representation of the referent as a strategy that is based on using the emoji which represents 

the actual referent. An example for a concrete concept representation would be: BIKE = 🐶 and 

an example for an abstract concept representation would be: GENERATION = 🐶🐶🐶🐶🐶🐶. 

Notably, the former usually is depicted with one emoji alone, whereas the example of an abstract 

concept representation is depicted by the sequence of emoji: from baby to grandfather is one 

generation. 

Rebus Rebus is a linguistic strategy based on word form: the form of the word (typically its phonetic 

pronunciation) is constructed via emojis denoting words that read aloud compose the sound of the 

target word. An example for a concrete concept representation would be: CARPET = 🐶🐶 (read: 

car + pet) and an example for an abstract concept representation would be: CAREER =🐶🐶 (read: 

car + ear). 

Phonetic 

similarity 

Phonetic similarity is a linguistic strategy based on which they use an emoji that displays an emoji 

with a phonetically similar name. SHELF 🐶 (uses 'shell' which is phonetically similar), or CHEST 

♟ (chess) and an example for an abstract concept representation would be: PATIENCE 🐶 (shows 

a patient). 

Figurative 

Construction 

Figurative Constructions, including symbols, idioms, metaphors and metonymies. An example 

for a concrete concept representation would be: CAGE 🐶 (cages usually have lockers, it is a 

component) or FLOUR 🐶 (cakes contain flour) STAIRS 🐶 (a graph with bars that go up, like 

stairs do) and an example for an abstract concept representation would be: LUCK 🐶 (there is no 

contiguity, nor similarity relation between these two, it is conventionalized and arbitrary that luck 

is this plant); COMPARISON 🐶🐶 (based on the idiom comparing apples to oranges); VALUE 🐶 

(dollar bill is a type of value, which is monetary value); COURAGE🐶 (psychological courage is 

physical strength) or OBJECTIVE 🐶 (the abstract objective becomes the concrete target). 

Table 1: Coding scheme of strategy types. 

On a second level of analysis, we investigated the structure and relations between individual emojis used in sequences 

of more than one emoji. On a preliminary inspection of the data, the two analysts agreed on the data-driven coding 

scheme of sequence types reported in Table 2: 

Sequence type  

OP  

(OR and 

POLYSEMY) 

The sequence consists of emoji in which each emoji contributes a separate representation and 

therefore the emoji can be read as connected through an OR relation (e.g. this or this or this). If 

those representations also denote different meanings, this signals polysemy and therefore this label 

is denoted OP. An example would be TOAST = 🐶🐶, where each emoji represents one of the 
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meanings of toast (bread sandwich OR cheers). Contrary, TOAST = 🐶🐶 would only represent 

one meaning with (bread AND sandwich). 

 

OS 

(OR and 

SIMILAR)  

 

The sequence consists of emoji in which each emoji contributes a separate representation with a 

similar meaning. An example would be FLOWER = 🐶🐶🐶, where we see sunflower OR rose, OR 

tulip etc. 

AT  

(AND and 

TEMPORAL) 

The sequence shows a sequence of emojis that has to be taken all together to construct the meaning 

of the concept. You need the first AND the second AND the third emoji to construct the meaning 

of the concept. If this relationship relies on a time-relatedness or cause-effect relation, this will be 

annotated with AT. An example would be: 🐶🐶✈ PASSPORT (little book AND you first show to 

the border police AND then you can fly). Here, neither of the emoji works by itself: 🐶 book; 🐶 

control; ✈ plane; the cause of the first emoji is explained by the order of the following emoji.  

 

AS 

(AND and 

SPATIAL) 

Similar to the AT method, but here it denotes a spatial-relation of the emoji in the sequence. An 

example would be: 🐶🐶 GARAGE, because it requires a car AND a house, none of these two 

symbols alone is sufficient to represent garage, but the combination of them. 

Table 2: Coding scheme for annotating the emoji sequence types. 

 

3.4. Procedure for the manual annotation of the raw responses   

The 3300 responses collected with the crowdsourcing task were manually annotated by two independent raters in six 

incremental batches of data. After each round of annotations the two analysts met and discussed the agreements and 

disagreements. Inter-annotator agreement scores were calculated on the independent analyses, but the discussions that 

followed each round of analysis helped improve the annotation scheme and also the interrater reliability scores (as 

reported in Section 4). The first batch included 55 items, which were annotated according to the strategy (Literal, 

Rebus, Phonetic Similarity or Figurative Construction) and the sequence type (OP, OS, AT and AS). The six batch 

sizes included an increasing number of concepts, resulting in batches of, respectively, 55, 253, 363, 825, 913 and 891 

individual responses. Interrater reliability was calculated according to standard procedures used in formal content 

analyses (Bolognesi et al. 2017), using the Krippendorff α (1970; 2004) metrics, which corrects the raw percentage 

of agreement by the probability of chance agreement, and takes into account potential missing values. In particular, 

after each annotating session (performed by the two independent coders on a batch of data), we calculated the 

interrater reliability scores. Then, we discussed the disagreements and solved them in a discussion. Simultaneously 

we refined the coding scheme, adding examples and clarifying the description of the categories. At the end of the 

annotation process, when all the batches of data were annotated and the reliability was calculated on each batch, one 

of the annotators revised the annotations of the whole dataset, in accordance with the latest version of the coding 

scheme. Therefore, the very final annotations of all the 3300 items result from the final version of the coding scheme 

and the final and agreed revision of the individual annotations. 

 

3.5. Measures to evaluate homogeneity among participants’ responses  

Evaluating the homogeneity of participants’ responses toward the same stimuli presented various technical 

difficulties. First, different responses displayed different sequence lengths (different numbers of emoji). Second, on 

a semantic level we have to take into account that 🐶 is similar to 🐶, even though these are two different emoji. 

Whereas, 🐶 is somewhat similar to 🐶, but not as much similar as the two apples variants. The two standard distance 
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measures we have preliminarily explored to operationalize the similarity between participants’ responses are the Dice 

coefficient and the Jaccard Coefficient. However, both measures neglect the internal semantic similarity, e.g. 🐶 being 

similar to 🐶. We therefore opted for cosine similarity, and used the word embedding emoji2vec (Eisner et al. 20164). 

A similar discussion of emoji similarity measures can be found in (Pohl et al. 2017). The word embedding is able to 

operate with the internal semantic similarity. For example, emoji2vec is capable of producing the same simple 

algebraic operations on word vectors as demonstrated in word2vec (Mikolov et al. 2013): vector(”King”) - 

vector(”Man”) + vector(”Woman”) = vector(“Queen”) in emoji2vec: 🐶 - 🐶 + 🐶 = 🐶. 

There are a few issues with this embedding. First, not all current emoji have been used to train this model. Nonetheless, 

only a few emoji are not included and this should therefore not strongly impact the similarity measure. Second, the 

embedding might not capture fine-grained semantic distinctions, such as the fact that 🐶 is similar to 🐶, but not 

completely. The word embedding recognizes that these are similar as “faces”, but does not distinguish the similarity 

in the shape of the eyes. Furthermore, we can only evaluate the similarity between two emoji at the time. Therefore, 

for comparing sequences we need to compare all combinations of individual emoji and then calculate an average 

similarity.  

 

For example, in a pilot study we observed that the nine individual responses provided for the concept WATER 

(🐶🐶🐶,🐶🐶🐶,🐶🐶☔,🐶,🐶,🐶🐶,🐶,🐶🐶,🐶🐶) were more homogeneous (i.e., more similar to one another) than the nine 

responses provided for the concept STORY (🐶🐶🐶🐶🐶, 🐶🐶, 🐶, 🐶🐶🐶🐶, 🐶🐶🐶🐶🐶🐶🐶, 🐶🐶🐶🐶🐶🐶🐶, 🐶🐶🐶, 🐶🐶🐶, 

🐶🐶♀️🐶🐶♀️).  

 

Based on the participants’ responses, we constructed a homogeneity matrix for each concept, as those displayed in 

Figure 4, which show all cosines similarities between each pair of participants’ responses collected in the pilot study, 

for the concepts STORY and WATER. The average cosine of these values, calculated on the whole concept matrix, 

gives us the overall homogeneity among participants’ responses, for that given concept. As this figure shows, the 

shades in the matrix of the concept WATER are brighter than those in me matrix of the concept STORY, suggesting 

that the emoji-based representations provided by participants are more similar to one another in the case of WATER,  

than in the case of STORY. 

 

 
Figure 4: Cosine matrices showing the similarities between the representation provided by each pair of 

participants (numbered with a number from 0 to 8) The brighter (yellow) the color, the higher the averaged 

                                                           
4 The pre-trained emoji-embedding is provided at: github.com/uclmr/emoji2vec  
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cosine similarity between the representations provided by two participants, for the same concept. As each 

participant has 100% similarity to his/her own response, the diagonal is filled with the highest similarity 

value, which is 1. If the sequences are completely different and the respective emojis are not similar with 

respect to the cosine similarity, the value approaches 0 (dark blue). 

 

As a matter of fact, the resulting average homogeneity obtained for WATER is 0.570 while the resulting average 

homogeneity obtained for STORY is 0.307.  

 

3.6. Automatic generation of average representations  

We hereby explain how we pursued one possible way of automatic generation for an average, standardized emoji-

based representation for all the 300 concepts in our sample. Our approach creates high quality data that can be used 

for related and further studies. The provided dataset of standardized visual representations can be used to support 

machine translation systems (mostly using word embeddings to translate words into emoji) with complex, sequential 

representations of both concrete and abstract concepts.  It should be noted that the presented approach is by far not the 

only solution to generate an average representation, e.g. one could combine the vector representations to obtain 

complex average representations. For example, one could experiment with vector addition or multiplication, which 

are common strategies in these vector spaces (Lenci 2018). Our dataset encourages us or other researchers to 

investigate different strategies for such automatic generation.  

We first explain the algorithm, then provide pseudo-code, which is followed by an explanation of an example. The 

algorithm iterates through all concepts and their replies by the contributors. Each reply is a sequence of at least one 

emoji and is hereafter referred to as sequence. The algorithm orders the sequences for each concept by length, i.e. the 

number of emoji from each individual contributor. From the list of ordered sequence lengths, the median (Md) is 

determined. We decided to use the median as opposed to the mean, because it is less skewed by small proportions of 

extreme values, which we could observe in our data. From the most common emoji, the Md number of emoji are 

chosen as average representation. A few exceptions have been implemented to account for edge-cases: (I) if the 

selected emoji occurs only once, the algorithm does not select this emoji. (II) if the selected emoji only occurs within 

context of other emoji, which do not occur more often, the algorithm does not select this emoji. (III) if multiple emoji 

occur the same amount of times, the algorithm chooses those which rely on the annotated technique, which has been 

used most often for representing the concept. This can exceed the median length. The exceptions for (II) and (III) did 

occur less than 10 times and have been corrected manually. The pseudo-code of the algorithm is displayed below: 

 

 for each concept in all_concepts 

  define all_response_lengths = 0 

  define emoji_count = dict #dictionary key: emoji/value: occurrence 

   

for each response in participant_responses 

   all_response_lengths add length(response) 

   for each emoji in response 

    if emoji_count[emoji] > 0   (I) 

     emoji_count[emoji] add 1 

 

  md = median(all_response_lengths) 

  sort(emoji_count) by value: occurrence 

  representation = emoji_count[0 to md] select emoji by key index 

 

A practical example of the algorithm at work for the concept GLASS can be seen in Table 3. 
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Concept Glass 

Answers (Sequence length) 🐶🐶 (2), 🐶 (1), 🐶🐶 (2), 🐶(1), 🐶🐶 (2), 🐶🐶 (2),🐶🐶(2), 🐶🐶 (2), 🐶🐶 (2), 

🐶🐶🐶(3), 🐶🐶🐶🐶(4) 

Sequence lengths (ordered) 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4 

Median - Md 2 

Most common emoji 🐶 (8x), 🐶 (5x), 🐶 (4x), 🐶 (2x), 🐶 (2x), 🐶 (1x), 🐶 (1x) 

Average representation 
(#Md most common emoji) 

🐶🐶 

 

Table 3: Average representation obtained automatically for the concept GLASS.  

 

In the example in Table 3, the algorithm is depicted for the concept GLASS. Here, the algorithm first lists the 

sequences (answers) with their lengths. That is, 🐶🐶 was one of 11 replies and has the sequence length: 2. All 

sequence lengths are being ordered and the median of 2 is determined. After ordering the occurrences of emoji 

in all sequences, the top 2 (median) most common emoji are being chosen as average representation. 

 

 

3.7. Comparing and correlating the vector representations of concrete and abstract concepts 

obtained with verbal and visual features.  

In order to better understand to what extent the semantic representations based on visual features (emoji) compare to 

the classic semantic representations, based on linguistically expressed semantic features, we compared and contrasted 

the semantic representations emerging from the emoji dataset with those emerging from traditional datasets of 

semantic features, for both abstract and concrete concepts. 

While most of the literature provides datasets of features elicited on lists of concrete concepts (e.g., McRae et al. 

2005), Recchia and Jones (2012) collected semantic features for a sample of concrete and abstract concepts. After a 

quick comparison to measure the number of overlapping concepts between our dataset and existing datasets of 

linguistically encoded semantic features, we opted for comparing our data to the semantic features collected by McRae 

and colleagues (2005) (hereinafter MR-Set), often used as a benchmark to evaluate new datasets, as well as Recchia 

and Jones (2012) (hereinafter RJ-Set), because they include abstract concepts as well. 

Table 4 provides an overview of the specifications of both datasets. 

Dataset RJ Set  MR Set 

Type abstract / concrete concrete 

Number of concepts 551 541 

Total number of features 2098 2526 

Overlapping concepts with our dataset 70 59 

Number of features related to the overlapping concepts 528 573 
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Table 4: Specifications of Recchia and Jones (2012) dataset on the left and McRae and colleagues (2005) 

dataset on the right, in relation to the dataset of emoji. 

 

In order to compare the featural representations obtained from the verbally expressed semantic features in the RJ and 

MR sets with the representations obtained from the emoji-based semantic features we proceeded as follows. For each 

comparison (i.e., RJ compared with the emoji set and MR compared with the emoji set) first we vectorized each 

overlapping concept using all the features as vector coordinates. This operation allowed us to compile two concept-

by-feature contingency matrices that included all the overlapping concepts between RJ and our dataset and MR and 

our dataset, respectively. In the intersecting cells of each matrix we reported the production frequency for each 

concept/feature combination, based on the RJ and on the MR sets respectively. Consequently, the tables of cosine 

similarities between concept pairs were created. We therefore obtained a 70 by 70 table of cosine measures displaying 

the proximities between the 70 concepts shared by the RJ set and our emoji dataset, and a 59 by 59 table of cosine 

measures displaying the proximities between the 59 concepts shared by the MR set and our emoji dataset. The cosine 

similarities in these tables were calculated on the basis of feature production frequencies observed in the RJ and in the 

MR sets. 

In the same way, we created the 70 by 70 and 59 by 59 tables of cosine similarities using our dataset of visual features 

for the creation of the contingency matrices. Finally, we correlated the 70 by 70 cosine table based on RJ with our 

emoji set, and the 59 by 59 cosine table based on MR with our emoji set.  

 

4. Analysis  

 

4.1. Cleaning the data  

A total of 3300 responses were collected from 124 participants. During the data collection period, the crowdsourcing 

platform allows for a review of the responses. During this review we were able to monitor the incoming responses and 

reject hundreds of those that were not related to the task (scam responses) and replace them with new, legitimate 

responses. New participants were invited to replace the unreliable ones, until a total of 3300 responses was obtained. 

Nonetheless, some unrelated responses were not correctly detected until a manual classification of each of the 3300 

responses was performed by two analysts (see Section 3.4). These were classified as null responses in the manual 

classification (6.58%) and they include different types of issues. For example, Example 1 shows an example of 

unrelated response that was eventually classified as null: this participant repeatedly responded with the same sequence 

of emoji for a variety of different concepts. Example 2 shows another type of issue classified as null: this participant 

has used an emoji to depict his/her own inability to find a satisfactory representation for the concept. This answer is 

irrelevant to the task, but provides an explanation for the failed response, i.e. the concept was too difficult to represent. 

In this regard, the written feedback that some participants provided was useful to help the analysts understand and 

discriminate between types of responses. Example 3 shows a response that at first sight might be classified as null 

(scam), while the written explanation helps the analysts to understand the participant’s rationale for such choice. 

Example 1:  

Concept  → doll  
Reply   →🐶♂️🐶🐶🐶🐶🐶🐶⚫ 

Feedback →  
 

Example 2:  

Concept  → liability  
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Reply   →🐶♀️ 

Feedback → Cannot show abstract concepts except for love I guess 
 

Example 3:  

Concept  → expectation 

Reply   →🐶 

Feedback → I think most people have expectations of winning money. 
 

 

4.2 The dataset of visual features (emoji): a general overview. 

 

The dataset of emoji collected through the crowdsourcing task for the 300 abstract and concrete concepts 

encompassed a total of 9089 instances of individual emoji including modifiers5, and a total of 1012 unique emoji. Of 

these, a total of 5529 emoji (707 unique ones) were produced to represent abstract concepts, and a total of 3560 emoji 

(697 unique ones) were produced to represent concrete concepts. 

 

The data is released online in a repository, available on the Open Science Framework (OSF) platform, at the following 

url: https://osf.io/qcn6h/ 

 

The raw data was then used to construct a contingency matrix in which we collected the production frequencies of 

each concept with each individual emoji. This matrix is also available in the online repository. Finally, based on the 

vectorized representations of each of the 300 concepts we constructed the square and symmetric table of cosine 

similarities. Looking at the number of face emoji used to represent respectively the concrete and the abstract concepts, 

we observed the following frequencies of use: 

 

Number of faces used for concrete concepts: 153 / 3570 = 4.29 % 

Number of faces used for abstract concepts: 1127 / 5571 = 20.23 % 

There seems, therefore, to be a much higher use of face emoji to represent abstract concepts, compared to concrete 

ones. 

 

4.3     Content Analysis: Manual annotations 

As described in Section 3.4, the 3300 raw responses were divided into incremental batches and analyzed in a formal 

content analysis by two independent coders, based on the coding scheme described in Section 3.3. The inter-annotator 

agreement was calculated for each batch, before discussing the individual analyses, and measured by Krippendorff’s 

alpha scores, reported in Table 5 and they show overall an increase in reliability for both, the annotation of strategy 

types and the annotation of sequence types. 

Batch No. 1 2 3 4 5 6 

# items 55 253 362 825 913 891 

                                                           
5 Emoji are defined by the Unicode Standard using code-points to implement emoji as characters. There are certain 

modifiers which allow to transform the skin tone of emoji, gender or nationality of flag emoji. These modifiers are 

relevant semantic units, but cannot be displayed by themselves. 

https://osf.io/qcn6h/
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Strategy Type       

Alpha 
(Krippendorff) 

0.756 0.64 0.865 0.743 0.846 0.872 

Sequence Type       

Alpha 
(Krippendorff) 

0.535 0.346 0.619 0.476 0.671 0.865 

Table 5: Interrater reliability scores for the annotation of Strategy type and Sequence type across the 6 

annotation sessions. The alpha score ranges from 0 (no agreement) to 1 (full agreement). The range 

between 0.5 and 0.7 is interpretable as medium agreement, whereas, above 0.7 is considered to be high 

reliability. 

As described also in Bolognesi, Pilgram and van den Heerik (2017), content analyses organized with multiple 

annotating sessions have the advantage of keeping track of the improvement in reliability scores throughout the coding 

sessions, and enable the analysts to increasingly refine and clarify the coding scheme and test the improvements in the 

next annotating session.   

Overall, the most frequent strategy used to represent a concept is the Figurative Construction with 1947 occurrences 

(59% of the 3300 responses). With 1119 occurrences, the Literal was the second-most used strategy (33.91%). The 

Phonetic and Rebus are the least-common strategy methods with 31 and 42 occurrences respectively. For the sequence 

types, the most frequent sequences are And-Spatial (AS) type (710 occurrences) and Or-Similar (OS) type (537) 

occurrences. The And-Temporal (AT) type occurred 249 times and the Or-Polysemy type occurred only 17 times.  

Table 6 provides examples for each of the strategies in both categories, abstract and concrete, whereas Table 7 shows 

the occurrences of strategies adopted to represent, respectively, concrete and abstract concepts.  

Examples Literal strategy Rebus strategy Phonetic strategy Figurative strategy 

Abstract  🐶🐶🐶🐶 

(GENERATION) 

🐶🐶 

(BELIEF) 

🐶🐶🐶 

(PATIENCE) 

⛪🐶 

(FAITH) 

Concrete 🐶 

(OWL) 

🐶🐶🐶 

(CARPET) 

🐶 

(SOAP) 

🐶🐶🐶🐶 

(PASSPORT) 

Table 6: The rows define the type of concept  and the columns the type of strategy. Therefore, each cell 

contains an example of the strategy applied to the type of concept. 

The abstract concept GENERATION is being represented by the literal depiction of a generation of humans, i.e. baby 

to grandfather. Whereas the concrete concept OWL is being represented by a single emoji depicting an owl. In case 

of the rebus strategy, we can see the example of bee + leaf = BELIEF and the example of car + pet = CARPET. In the 

phonetic strategy example, we see that PATIENCE is depicted with patients and SOAP with soup. Interestingly, 

during the assessment of the experiment the soap emoji 🐶6 with Unicode U+1F9FC was already available but not used 

by one out of eleven participants. As addressed in Section 3.1, we can assume that novel emoji are too unfamiliar to 

be found as representatives. For the figurative strategy, the abstract example represents faith using the church and 

praying hands as metonymy. The concrete concept passport is being depicted using several metaphor and metonymy. 

Observed production Literal Rebus Phonetic Figurative Total 

                                                           
6 As this emoji is a recent addition to the Unicode not all systems do support the rendering of this emoji. Different 

renderings can be found at: https://emojipedia.org/bar-of-soap/  

https://emojipedia.org/bar-of-soap/
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frequencies strategy strategy strategy strategy 

# abstract concepts 23 21 16 1429 1489 

# concrete concepts 1096 21 15 518 1650 

Total 1119 42 31 1947 31397 

Table 7: Frequencies by which the different strategies were adopted to represent abstract and concrete 

concepts respectively.  

A Pearson’s Chi² test showed that  there is a significant dependence between the two variables (type of strategy and 

concreteness): Chi-square = 1450.738, df = 3, Cramer’s V = 0.680, p < 0.001. 

Figure 5 displays a mosaic plot in which the residuals are visualized. As the plot shows, there is a strong relation 

between the category of concrete concepts and the literal strategy of representation, and between the category of 

abstract concepts and the figurative strategy of representation (residuals >4). 

 

 

Figure 5. Mosaic plot displaying the analysis of the residuals for the type of strategy and the two types of 

concepts (abstract and concrete). The analysis and the plot were performed in R (version 3.5.1). The table of 

residuals is stored in the online repository on OSF. 

In relation to the average number of emoji used to represent concrete and abstract concepts, abstract concepts required 

a significantly higher number of emoji than concrete ones (t= -9.506,  p<0.001).  

Finally, in relation to the type of sequence used to represent concrete and abstract concepts, Table 8 shows the 

frequencies by which the sequence types were produced for abstract and concrete concepts. A Pearson’s Chi² test 

showed that there is a significant dependence between the two variables (type of sequence and concreteness): Chi-

square = 189.020, df = 3, Cramer’s V = 0.354, p < 0.001. Figure 6 displays the analysis of the residuals for the type 

of sequence and the type of concept. 

Observed 

production 

frequencies 

OP OS AT AS Total 

                                                           
7 The total number of responses does not add up to 3300, because some of the responses were annotated as null 

(scam) responses and had to be discarded. 
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# abstract concepts 1 213 189 517 920 

# concrete concepts 16 324 60 193 593 

Total 17 537 249 710 1513 

Table 8: Frequencies by which the different types of sequences were adopted to represent abstract and 

concrete concepts respectively. 

 

Figure 6. Mosaic plot displaying the analysis of the residuals for the type of sequence and the two types of 

concepts (abstract and concrete). The analysis and the plot were performed in R (version 3.5.1). The table of 

residuals is stored in the online repository on OSF. 

As Figure 6 shows, abstract concepts are positively associated with AND sequence types (i.e., all the elements of the 

sequence contribute to a comprehensive representation), whereas concrete concepts are positively associated with OR 

sequence types (i.e., each element of a sequence of emoji represents the concept by itself, and various alternative 

options are provided). 

Finally, we compared the homogeneity of the responses provided the participants, in relation to abstract and concrete 

concepts respectively, as described in Section 3.5. To do so, we  compared the average cosine similarity scores 

between representations provided in response to concrete concepts and representations provided in response to abstract 

concepts (see Section 3.5 for the methods). An unpaired t-test showed that concrete concepts have on average a 

significantly higher similarity score than abstract concepts (t = 15.619, df = 298, p = 1.361*10-40, Cohen’s D = 1.804). 

In other words, the emoji-based representations provided in response to concrete concepts are on average more 

homogeneous than those provided for abstract concepts. 

To summarize, our analyses show that: 

- The annotators achieved high agreement scores in the annotation of both representational strategies 

and sequence types; 

- Figurative and literal strategies are the most frequently used strategies; 

- And-Spatial and Or-Similar are the most frequently used sequence types; 

- Figurative constructs are the preferred strategy for abstract concepts; 

- Literal representations are the preferred strategy for concrete concepts; 

- Concrete concept representations show greater homogeneity among participants; 

- Abstract concept representations show less homogeneity among participants. 

 

4.4.  Automatic generation and analysis of averaged representations 
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Table 3 in Section 3.6 showed how our algorithm averaged the representations provided by various participants into 

a single representation for the concrete concept GLASS. Table 9, instead, shows how our algorithm averaged the 

representations provided by various participants into a single representation for the abstract concept COMPARISON. 

As this example shows, in this case the resulting averaged representation is composed by an apple and an orange, 

which stand for the idiomatic expression comparing apples to oranges. 

Concept Comparison 

Answers (Sequence length) 🐶🐶 (2), 🐶🐶 (2), 🐶🐶 (2), 🐶🐶 (2), 🐶 (1), 🐶🐶 (2), 🐶🐶 (2), 🐶🐶 (2), 

🐶↔️🐶 (3), 🐶♀️🐶 (2), 🐶🐶 (2) 

Sequence lengths (ordered) 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 

Median - Md 2 

Most common emoji 🐶 (2x),🐶 (2x), 🐶 (2x), 🐶 (1x), 🐶 (1x), 🐶 (1x), 🐶 (1x), 🐶 (1x), 🐶 (1x), 

🐶 (1x), 🐶 (1x), 🐶 (1x), 🐶 (1x), ↔️ (1x), 🐶 (1x), 🐶♀️ (1x), 🐶 (1x), 🐶 

(1x), 🐶 (1x) 

Average representation 
(#Md most common emoji) 

🐶🐶 

Table 9: Example of the averaged representations algorithm applied to the collected data.  

 

The similarity score of responses for the concept COMPARISON is rather low (0.29), whereas the average 

representation of the concept MEAT (Table 10), has a similarity score of 0.78. 

 

Concept Meat 

Answers (Sequence length) 🐶🐶🐶🐶🐶🐶 (6), 🐶 (1), 🐶🐶🐶🐶🐶🐶 (6), 🐶 (1), 🐶🐶🐶🐶 (4), 🐶🐶 (2), 🐶 

(1), 🐶🐶 (2), 🐶🐶🐶🐶🐶 (5), 🐶🐶🐶🐶 (4), 🐶🐶🐶 (3) 

Sequence lengths (ordered) 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6 

Median - Md 3 

Most common emoji 🐶 (11x),🐶 (7x), 🐶 (6x), 🐶 (5x), 🐶 (2x), 🐶 (1x), 🐶 (1x), 🐶 (1x), 🐶 (1x) 

Average representation 
(#Md most common emoji) 

🐶🐶🐶 

Table 10: Example of the averaged representations algorithm applied to the collected data. The concept 

MEAT is represented, on average, with different food/meat emoji. 

 

Further examples show that the algorithm generalizes fairly well: On the one hand, very homogeneous responses such 

as BOOT, represented by every participant with 🐶, has a similarity score of 1. On the other hand, rebus 

representations, such as ❌⛺ for EXTENT has a score of 0.15. These examples show that the algorithm is 

capable of creating average representations of the provided answers and it is capable to transfer the strategy type into 

the averaged representation. An assessment of the quantitative and qualitative strength of this transfer can be 

investigated in future work. 
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The algorithm did not generate an average representation for 14 of the 300 concepts, because the individual responses 

for these 14 concepts did not share a single emoji, even though they shared similar emoji. As an example, the responses 

for the concept IRONY, represented as follows by the participants: 🐶🐶, 🐶🐶, 🐶, 🐶🐶, 🐶🐶🐶♀️, 🐶🐶, ⛈☀, ❔, 🐶♀️🐶♀️, 

🐶. 

 

 

4.5. Comparing the semantic representations of concrete and abstract concepts emerging from classic semantic 

feature data, with those emerging from visual features (emoji).  

Table 11 shows the average correlations obtained when we compared the semantic representations of the 70 

overlapping concepts between our dataset and RJ Set, and the 59 overlapping concepts  between our dataset and MR 

Set (as described in detail in Section 3.7). 

 Correlation MR Set with emoji set 

(N=59, all concrete concepts) 

Correlation RJ Set with emoji set 

(N=70, abstract and concrete concepts) 

Average Pearson 

correlation 

coefficients 

0.808 0.769 

Table 11: The average Pearson correlation coefficients between the semantic representations of the 59 

concepts shared by our dataset and MR set, as well as the 70 concepts shared by our dataset and RJ set. 

Both sets show medium and high correlation coefficients with the emoji dataset (between 0.58 and 0.97 with MR set 

and between 0.43 and 0.99 with RJ set), and on average high correlations between the emoji dataset and the dataset 

of semantic features expressed by words. This suggests that overall, the semantic representations of these concepts, 

and the relations between these concepts, are somehow preserved in the two types of spaces, i.e., the semantic space 

constructed on the basis of visual features and the semantic space constructed on the basis of verbally-produced 

semantic features.  

However, a closer look showed that of the 70 abstract and concrete concepts overlapping with RJ set, 52 are concrete, 

and only 18 are abstract. We therefore compared the correlation coefficients between the emoji-based featural 

representations (our dataset) and the word-based featural representations (RJ dataset) for the group of concrete 

concepts and the group of abstract concepts separately. Through a t-test we observed that the average correlation 

coefficients between the emoji space and the RJ space, differs significantly for abstract vs. concrete concepts (t = -

3.723, p < 0.001): the average correlation coefficient is higher for the concrete concepts (M = 0.804, SD = 0.115) than 

for the abstract concepts (M = 0.669, SD = 0.174). In other words, the correlation between the semantic representations 

based on visual features and those based on linguistically generated features (RJ dataset) is particularly high only for 

concrete concepts, and less so for abstract ones.  

 

5. Discussion  

In this paper we present an innovative repository of semantic features, collected for a dataset of 300 abstract and 

concrete concepts. The repository hereby described and analyzed consists of visual representations of the concepts, 

operationalized by means of emoji, elicited from online workers in a large scale crowdsourcing task. Together with 

the dataset of emoji based representations produced by the online workers, we also release a dataset of machine-

generated averaged representations, based on the emoji that were produced most frequently by the online workers to 

represent the same concept. This dataset can be used for chatbots, Twitterbots, visual and/or emoji-based storytelling 

algorithms and other types of AI implementations, within the growing field of computational creativity. Furthermore, 

it can be regarded as a database of concepts grounded by human knowledge to be compared against machine learning 

attempts which aim to capture this knowledge. 
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Overall, our dataset displays various peculiarities, such as the fact that some concepts tend to be uniquely represented 

by one emoji while others tend to be represented by sequences of emoji. In this section we summarize our specific 

findings and discuss them within relevant theoretical frameworks addressing the nature of abstract and concrete 

concepts respectively. 

The research questions investigated in the current paper were stated as follows: 

RQ1: what are the strategies used to represent the content of concrete vs abstract concepts through emoji? 

RQ2: are abstract concepts richer in emotional content (face emoji) than concrete concepts? 

RQ3: do abstract concepts need on average more emoji than concrete concepts to be expressed? 

RQ4: to what extent do the emoji-based semantic representations correlate with the linguistic features semantic 

representations? 

Through our analysis we demonstrate that, overall, the most common strategy used to represent a concept is the 

Figurative Construction, which covers 59% of the total responses, followed by the Literal strategy (33.91%). The 

Phonetic and Rebus are the least-common strategies. In relation to the type of concept, figurative strategies are 

particularly strongly associated to abstract concepts, while literal strategies to concrete ones. Moreover, phonetic and 

rebus strategies are positively associated to abstract concepts, but not to concrete ones. 

We interpret these results in the following way. First of all, figurative strategies, based on figurative operations such 

as metaphors and metonymies, appear to the most preferred strategy. This suggests that when we do not have at our 

disposal a visual element (an emoji) that literally represents the referent designated by the concept (e.g., an image of 

a boot to represent the concept BOOT) we resort to figurative constructions, by means of metaphorical and metonymic 

associations. We prefer this strategy over more linguistic strategies, such as the phonological strategy and the rebus 

strategy. This suggests that when asked to represent a concept by visual features (emoji) we focus on the conceptual 

content, rather than on the linguistic form (i.e., the word) that expresses such concept. The fact, however, that linguistic 

strategies (phonological and rebus) are significantly more related to the representation of abstract concepts, compared 

to concrete ones, suggests that indeed linguistic information, and the attention to the signifier rather than the signified, 

is stronger for abstract concepts, than for concrete ones. This idea is supported by various accounts of cognition (Paivio 

1971; 1986; 2010; Borghi and Binkofski 2014) suggesting that linguistic information holds a privileged status in the 

representation and in the grounding of abstract concepts, compared to concrete ones. 

Our results also show that, on average, abstract concepts require a higher number of emoji to be represented, compared 

to concrete ones. This seems to be in line with theoretical accounts suggesting that abstract concepts are grounded in 

whole situations, which constitute instances of experiential contexts in which such concepts are experiences (Barsalou 

and Wiemer-Hastings 2005). In other words, while for concrete concepts people tend (when possible) to represent the 

entity designated by the concept, and focus on that, for abstract concepts people tend to represent a whole situation in 

which the abstract concept can be experienced. This finding is also supported by our analysis of the types of emoji 

sequences that characterize the representation of concrete and abstract concepts, respectively. In particular, we 

observed that while for concrete concepts whenever participants used more than one emoji, these were typically 

alternative individual representations of the concept, such as various versions of a page to represent the concept page: 

🐶🐶 (sequence labelled as O, which stands for OR), for abstract concepts they tended to use sequences in which each 

individual emoji contributed to shape an aspect of the concept, and had to be taken together with the other emoji of 

that sequence, such as 🐶🐶🐶 to represent the concept PATIENCE: it requires time, it implies behaving well, and it is 

usually evaluated as a positive virtue. All these elements contribute to represent the concept of patience (sequence 

labelled as A, which stands for AND).  

Moreover, we showed that the representation of concrete concepts is on average more homogeneous (there is more 

agreement among online workers on using the same emoji to represent concrete concepts) compared to abstract 

concepts. This is also intriguing, because it suggests that abstract concepts are more subject to individual variation, 

due to personal experiences in which such concepts are grounded. Besides being more homogeneous among 
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participants, the semantic representations of concrete vs abstract concepts appear to be more closely related to one 

another. In other words, the neighbourhood of the concrete concepts. 

Finally, we showed that face emoji, which constitute the first type of emoji ever implemented, and from which the 

very term emoji generates, because such facial expressions symbolize the related emotions, are on average more 

frequently used to represent abstract concepts, compared to concrete concepts. This finding is in line with existing 

theories aimed at explaining the cognitive grounding of abstract concepts in affective and emotional states (Kousta et 

al. 2011; Vigliocco et al. 2014). As a matter of fact, our data shows that effective information plays a greater role in 

the representation of abstract vs concrete concepts. 

With our last research question we investigated and compared the semantic representations emerging from classic 

semantic features expressed through words, to the semantic representations emerging from visual features expressed 

through emoji. Overall, we reported averaged high degrees of correlations between the semantic representations of 

concrete and abstract concepts represented by the two types of features i.e., visually and linguistically conveyed. In 

particular, we found significantly higher correlations between the representations of concrete concepts across the two 

spaces, compared to the representations of abstract concepts. In other words, it is for abstract concepts that the two 

different types of features (expressed by words or expressed visually, by emoji) construct slightly different semantic 

representations. The type of information used to represent (visually) abstract concepts, does not fully overlap with the 

type of information that can be conveyed through words, to represent the same concepts. This point remains open to 

further investigation, for the time being. 

 

6.  Conclusions 

The current article is part of the special issue “Eliciting Semantic Properties: Methods and Applications”. The goal of 

this special issue is to investigate and extend the use of property listing tasks and semantic feature norming studies, 

by illustrating their breadth of applications, as well as highlighting the theoretical and methodological issues faced by 

this paradigm, which may limit its usefulness. 

In the current paper we questioned whether the same elicitation procedure (e.g., asking for features expressed by 

verbal strings) is equally valid for any kind of concept, specifically for concrete vs. abstract ones, and how do 

elicitation procedures in general affect results. We also questioned whether by looking at visual features 

(operationalized through emoji) we may observe differences between concrete and abstract concepts that may not be 

captured when we look at verbally-produced semantic features. 

Method-wise, we showed that the manual coding of the raw features into feature types is usually a crucial part of the 

process, that enables researchers to mine their data in a structured way, by means of content analysis (Bolognesi et al. 

2016). However, we should observe that the process of manual annotation becomes somehow ‘immoral’ when the 

amount of manually annotated data points reaches several thousands items. We therefore suggest that, depending on 

the aims of the study and on the research questions to be tackled, researchers might need to recast their priorities: in 

studies for which the manual annotation is crucial, then the number of data points may be limited. In our study, for 

example, we limited the number of participants to 11 online workers per concept. Notably, we took measures to 

carefully select the most reliable online workers (this is often crucial in crowdsourcing tasks) and filtered only those 

that matched our required demographic specifications e.g., regarding their native language. This allowed us to collect 

and manually annotate 3300 data points, compared to the 9000 data points we would have had to manually annotate, 

had we opted for 30 participants per concept. Our results show, for example, that even with a limited number of 

participants judging each concept, there is a clear and significant difference in homogeneity among the responses 

provided for concrete and abstract concepts respectively: participants tend to agree on the same types of 

representations for concrete concepts, and to disagree on the representations of abstract concepts, although for the 

latter category they tend to deploy similar representational strategies. This finding emerges from our data despites the 

limited number of participants. Conversely, in studies with different aims, where a manual annotation process is not 
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envisioned, researchers might prioritize the number of participants who are submitted to the property generation task, 

opting for a larger sample of online workers.  

To conclude, with our study we discussed theoretical and methodological issues involved in the property generation 

tasks and semantic feature norms paradigm; we investigated the differences in representing abstract and concrete 

concepts; we highlighted the need to extend this experimental paradigm beyond the current borders, and we described 

and released an innovative dataset of visual features, based on emoji, which can be used in many fields, ranging from 

classic cognitive scientific research, to the most recent developments in AI and computational creativity. 
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Appendix 
 

Instructions used for the Crowdsourcing task: 

 

In this job you are asked to provide an Emoji  selection for a given word. For this you will be directed to a 

website that allows you to select Emoji in order to copy and paste them into this job. The first question will 

ask you whether you are a native  English speaker. You only need to answer this question once and can 

skip after you have answered it once. For each task you will be presented with the word you need to 

describe. Here is an example: You have to  represent the word in the red box ("Time Bomb") with a 

sequence of  Emoji. The second step is to click on the link that directs you to the  Emoji keyboard. The  

Emoji keyboard presents you with a variety of Emojis you can pick. Scroll down to see the entire range of 

categories of Emoji. You can choose from any of the available Emoji on this website. Once you found an 

appropriate Emoji click on it. This will add it to the text box on the bottom. After you have selected the 

Emoji that you need, you click on the COPY button at the end of the page and return to this task. When you 

return back to the task paste the sequence to finish the task. 

 


