
28 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Giallonardo, E., Poggi, F., Rossi, D., Zimeo, E. (2020). Semantics-Driven Programming of Self-Adaptive
Reactive Systems. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE
ENGINEERING, 30(06), 805-834 [10.1142/S0218194020400082].

Published Version:

Semantics-Driven Programming of Self-Adaptive Reactive Systems

Published:
DOI: http://doi.org/10.1142/S0218194020400082

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/767707 since: 2020-08-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1142/S0218194020400082
https://hdl.handle.net/11585/767707

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Giallonardo, Ester, Francesco Poggi, Davide Rossi, e Eugenio Zimeo. «Semantics-
Driven Programming of Self-Adaptive Reactive Systems». International Journal of
Software Engineering and Knowledge Engineering 30, n. 06 (1 giugno 2020): 805–
34.

The final published version is available online at:
https://doi.org/10.1142/S0218194020400082.

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1142/S0218194020400082

Semantics-Driven Programming of Self-Adaptive

Reactive Systems

Ester Giallonardo*,§, Francesco Poggi†,¶, Davide Rossi‡,||

and Eugenio Zimeo*,**

*Department of Engineering, University of Sannio

†Department of Communication and Economics
University of Modena and Reggio Emilia

‡Department of Computer Science and Engineering

University of Bologna
§egiallonardo@unisannio.it
¶francesco.poggi@unimore.it

||daviderossi@unibo.it
**eugenio.zimeo@unisannio.it

In recent years, new classes of highly dynamic, complex systems are gaining momentum. These
classes include, but are not limited to IoT, smart cities, cyber-physical systems and sensor

networks. These systems are characterized by the need to express behaviors driven by external

and/or internal changes, i.e. they are reactive and context-aware. A desirable design feature of

these systems is the ability of adapting their behavior to environment changes. In this paper,
we propose an approach to support adaptive, reactive systems based on semantic runtime

representations of their context, enabling the selection of equivalent behaviors, i.e. behaviors

that have the same e®ect on the environment. The context representation and the related
knowledge are managed by an engine designed according to a reference architecture and

programmable through a declarative de¯nition of sensors and actuators. The knowledge base

of sensors and actuators (hosted by an RDF triplestore) is bound to the real world by

grounding semantic elements to physical devices via REST APIs. The proposed architecture
along with the de¯ned ontology tries to address the main problems of dynamically re-

con¯gurable systems by exploiting a declarative, queryable approach to enable runtime

recon¯guration with the help of (a) semantics to support discovery in heterogeneous envi-

ronment, (b) composition logic to de¯ne alternative behaviors for variation points, (c) bi-causal
connection life-cycle to avoid dangling links with the external environment. The proposal is

validated in a case study aimed at designing an edge node for smart buildings dedicated to

cultural heritage preservation.

Keywords: Context modeling; context-awareness; semantic modeling; semantic sensor networks;

ontologies; models@runtime; reactive systems; self-adaptive systems.

1. Introduction

Internet of Things (IoT), smart cities and cyber-physical systems propose several

scenarios characterized by a high level of dynamism and heterogeneity. These

systems need to make reactive control decisions responding to changes in their

environment and in themselves. Systems that perform actions based on input

changes are commonly referred to as reactive. As stated in [1], reactive systems

\repeatedly prompted by the outside world and . . . continuously respond to external

inputs". We assume that reactive systems are able to continuously react to their

environment at a speed determined by the environment [2], which entails the ability

to express high levels of responsiveness but also maintainability and extensibility.

For their nature, these applications must be context-aware, where context is the

state that a system is able to access to or modify, possibly shared with other systems

and exposed to devices or applications other than the one the state is referred to [3].

In spite of the proliferation of frameworks and tools for programming IoT systems,

design and implementation of reactive, context-aware systems pose additional

challenges: (a) to infer high-level context properties from directly measurable ones to

properly handle context changes, (b) to ensure system resilience to better support

reactiveness, especially when the number of connected devices increases. Moreover,

as for IoT systems, it is very important to manage the heterogeneity of the physical

devices they consist of.

The following example illustrates a possible scenario that could bene¯t of the

adoption of novel paradigms and runtime supports for addressing the problems in-

troduced before. Let us suppose that in a museum a new temporary exhibition is

arranged. The museum is monitored by several anti-theft, infrared sensors previously

installed and managed by a dedicated software engine. In a room of this exhibition, a

multimedia content has to be played. The organizers of the exhibition express the

desire that the content starts playing when visitors enter the room, and stops when

the room is empty.

This behavior can be implemented by using an actuator that turns on the play-

back when a person is detected in a formerly empty room, and turns it o® then the

last person leaves the room. A sensor reporting observations pertaining

the presence of people in the room is used to trigger the multimedia actuator.

The museum administrators equip each room with thermal camera sensors to track

and count people moving in the room, and to update the managing software

engine. Moreover, they realize that presence can also be detected by combining the

anti-theft infrared sensors at the doors of the rooms, even if the related precision

is lower.

The engine should support administrators in easily modeling the environment and

the related detecting devices and should be able to recon¯gure the model for resil-

ience when, for example, a thermal camera sensor is no longer working, by replacing

it with another \equivalent" logical sensor. The logical sensor should perform the

same task (i.e. observe the presence in a room) by composing the observations

produced by other sensors, for example, the ones produced by a couple of anti-theft

infrared sensors at the sides of the room door.

To satisfy these requirements, we propose an ontology and an engine for

supporting semantics-driven programming of self-adaptive reactive systems, en-

abling on the °y declarations to satisfy evolving needs. The ontology is used to

describe systems and their environments, while the engine provides the runtime

support for the application logic that drives state changes. The ontology is based on

the Semantic Sensor Network (SSN) ontology, a recent W3C recommendation [4]

that has been designed to describe systems composed of a densely interconnected

graph of sensors and actuators along with the observations and the actuations

they produce.

The semantic model is supported by a software architecture centered on a

knowledge base which is bound to real world entities by grounding (mainly via web

services) semantic elements to physical sensors and actuators. The behavior of

the system can be speci¯ed by using sensing or actuating procedures tied to

logical devices provided by the semantic model. These procedures can act upon the

knowledge base by generating new facts or by rede¯ning the structure of the model.

The overall architecture and the proposed ontology have been tested by imple-

menting a prototype based on Apache Jena, OWL, and SPARQL, for the knowledge

base, and RESTful services, for the interaction with the physical world, currently

virtualized through an emulator. We show that the proposed approach enhances

systems adaptability and maintainability. The system is able to discover alternative

con¯gurations when needed (e.g. in case of faults); moreover, its maintenance is

simpli¯ed by a declarative, query-based approach that allows developers to easily

discover and manage devices through SPARQL queries.

The remainder of this paper is organized as follows. Section 2 presents the related

work from both research and standardization points of view. Section 3 sketches our

proposed architecture for context-aware reactive applications. Section 4 introduces

the SSN ontology, with the aim of identifying its limitations with reference to

modeling runnable sensors/actuators behaviors, and proposes an extension called

LSA. Section 5 explains the proposed approach and the ontology extension by

modeling and developing a system for smart buildings in eCulture domain. Section 6

shows the results of a performance evaluation that exhibits reasonable

response times for a wide class of reactive systems. Section 7 discusses the pros and

cons of the proposed approach. Finally, Section 8 concludes the paper and highlights

future work.

2. Related Work

Reactive systems engage in stimulus-response behavior in order to produce desirable

e®ects in their environment [5]. They should meet the demands for responsiveness,

maintenance and extensibility [6], supporting the continuous changing of systems

designs. In particular, for a system to be responsive, we assume that its responses to

external stimuli must take place in negligible time with respect to the response delays

of its environment.

Data-°ow composition is a common paradigm adopted to program reactive sys-

tems. An example of this approach is Node-RED,a a framework that enables static

visual wiring of services, smart objects and custom nodes. However, this framework

does not support the de¯nition of resilient models able to adapt themselves in order

to satisfy desirable properties.

A more °exible approach based on a queryable model introduces signi¯cant

advantages in terms of resilience due to the ability of selecting alternative execution

paths after each micro-operation. This °exibility is paid in terms of higher response

times that in many application classes does not violate the responsiveness require-

ment. Moreover, if queryable models are enhanced with semantics, the recall of each

query improves, by providing additional alternatives to satisfy system properties.

Semantics helps also reducing the e®ort needed to maintain the system.

2.1. Models@runtime in IoT architectures

Various recent research works take the idea of using models as central artifacts

to cope with dynamic aspects of ever-changing software and its environment at

runtime. Szvetits et al. [7] comprehensively survey these kind of approaches for

adaptive context-aware systems, highlighting the common idea of establishing se-

mantic relationships between executed applications and runtime models based on

monitoring events. We restrict our analysis to models@runtime for IoT architectures.

ContQuest [8] is an approach to dynamically integrate devices into a context-

aware IoT environment. The proposed IoT architecture is not self-adaptive, since the

integration of new devices must be programmed through speci¯c resource drivers;

moreover only sensors can be programmed to respond to events, while actuators need

requests to act. A re°exive model is exploited to discover available resources.

DYNAMICO [9] introduces an infrastructure for self-adaptive systems with

context-awareness requirements. Monitoring strategies can be speci¯ed at runtime

through the COb (Control Objectives) model, determining the planning of the ad-

aptation to perform. However, the overall behavior is not purely reactive, i.e. it does

not only exploit sensed knowledge available in memory but it also generates strat-

egies proactively.

In [10], the authors use a graph model for de¯ning a smart home context and

capabilities. They apply the MAPE-K feedback loop for increasing work°ow resil-

ience according to various context factors, e.g. battery levels, local engine state and

sub-processes states. The resilience is ensured by de¯ning compensations actions for

the required goals. Compensations refer to faulty executions that require new

plannings. The approach does not work on open component systems, but only on

business processes executable by a work°ow engine.

ahttps://nodered.org/docs/.

The works discussed above do not provide access to the maintenance of IoT

systems behaviors at model level. ContQuest [8] exploits models@runtime only for

discovering, while Dynamico [9, 10] for discovering and monitoring. In ContQuest

[8], system behavior changes require programming of resource drivers, while Dyna-

mico [9, 10] assume highly available resources. Related e®orts based on semantics

and models@runtime for MAPE-K architectures can be found in [11–14].

In this paper, we propose an approach to context-based self-composition,

self-healing and meta-adaptation according to behaviors de¯ned at model level of

open component systems. Some recent work proposes approaches for context-aware

systems based on runtime models able of supporting behavior de¯nition. Angelo-

poulos et al. in [15] propose a methodology based on three variability models: goal

models (to represent system requirements), behavioral models (by modeling possible

sequences for goal ful¯llment and task execution), and system architecture models

(de¯ned in terms of connectors and components). The behavior of the system is

represented through °ow expressions [16] describing the °ow of system behaviors in

terms of extended regular expressions able to de¯ne sequential, alternative or op-

tional °ows, and their cardinality. Behaviors are connected to system goals,

and Behavioral Control Parameters (BCP) de¯ne multiple alternative behaviors for

ful¯lling a goal (i.e. the possible values are all the allowed sequences).

Another notable approach is RELAX [17], a declarative requirements language

for self-adaptive systems supporting the explicit expression of uncertainty in

requirements. The main challenge faced by this work is the di±culty to anticipate all

the explicit states in which an adaptive system will be during its lifetime.

2.2. Semantic models

Most of the papers introduced before recognize the need for a runtime model of both

system and context, enriched with a variability model for supporting adaptations.

These two kinds of models should be semantically related since a change in the

context model should be associated to variability alternatives to introduce into the

current con¯guration of the system. According to these requirements, several e®orts

have tried to propose semantics to easily model and handle dynamic context-aware

applications.

The sensing level is considered in [18, 19] as level 0 of a possible semantic stack

and contributes to create the context-awareness of an application or a computing

system. At this level, context parameters are the ones directly measurable by sensors.

They could regard: the physical environment, such as air temperature, humidity or

pressure; the human body, such as blood pressure, heart frequency or body tem-

perature; an entity, such as location, acceleration, direction; the execution envi-

ronment of a computer system, such as number of available CPUs, available memory

or disk space. Atop sensing, context models are de¯ned by enriching the limited

semantics of the measured physical parameters with additional knowledge that

models the world [20] or the speci¯c situations that in°uence an application or a

computing system. Therefore, context modeling requires speci¯c languages that

software engineers could use to improve the °exibility of software systems with the

ability of adapting themselves to external changes.

Several papers have tried to propose approaches and technologies to easily model

and handle dynamic context-aware applications especially for ubiquitous and per-

vasive computing. One of the ¯rst ontology-based approaches is SOUPA [21]. It is

expressed in OWL and includes modular component vocabularies to represent in-

telligent agents, time, space, events, user pro¯les, actions, and policies for security

and privacy. However, it does not focus on sensors/actuators and reactive systems

but on smart meeting places. In [19], the authors discuss the requirements that

context modeling and reasoning should meet, including the modeling of a variety of

context information types and their relationships, of high-level context abstractions

describing real world situations, and of uncertainty of context information, without

de¯ning an ontology.

Paper [22] surveys context awareness from an IoT perspective. IoT researchers

are taking into consideration Web technologies (WoTs) to support context-driven

system engineering. The goal of the WoT is to extend Web services to devices,

allowing a Web client to access devices properties, to request the execution of

actions or to subscribe to events representing state changes [23]. The related on-

tology describes how to model sensors and actuators with the main objective

of easing the binding with devices reachable through web protocols (REST,

CoAP, etc.).

A di®erent objective is pursued by the SSN ontology [4], an Open Geospatial

Consortium (OGC)/World Wide Web Consortium (W3C) standard. It is mainly

focused on the Sensor, Observation, Sample, Actuator (SOSA) pattern [24] to model

reactive systems. It aims at supporting the de¯nition of simple reactive behaviors

that link observations, coming from modeled sensors, with the related reactions,

performed by actuators. In order to link observations to physical or virtual proper-

ties, the SOSA pattern is extended with some system-oriented features. However,

SSN does not directly support complex processing inside the knowledge base than

asserting facts due to external sensing activities.

The Semantic Smart Sensor Network (S3N) ontology [25] is an e®ort that tries to

specialize SSN for supporting the modeling of smart sensors. To this end, a new

class, s3n:SmartSensor, has been introduced as a specialization of ssn:System.

A smart sensor is composed of embedded sensors, microcontrollers and communi-

cating systems. The behavior is expressed by the execution of an algorithm (selected

among the existing ones on context basis) by the microcontroller, which can be

thought as a specialization of the ssn:Actuator, being able to select algorithms

from the current context and to change the state of the whole smart sensor.

Therefore, the main purpose of S3N is to support smart sensors modeling and not to

close the logical gap between sensors and actuators for fully programming reactive

systems.

3. An Architecture for Semantic Context-Aware Reactive Systems

Based on recent W3C standards, we propose an architecture and a modeling ap-

proach for de¯ning context-aware reactive systems as graph-based resilient compo-

sitions of semantically equivalent logical devices.

3.1. Architecture

The main component of the architecture is the Semantic Engine (see Fig. 1). It

extends a knowledge base with the machinery needed to interact with sensors and

actuators and execute their software procedures. The knowledge base contains a

model of the physical world it interacts with, which is enriched and modi¯ed with the

data coming from the sensors, assuring consistency with the physical elements it

represents. This alignment is usually referred to as causal connection. When a

modi¯cation of the model causes the enactment of an actuator to materialize this

modi¯cation in the physical world we say that the model is bi-causally connected [26],

a feature that is supported by our architecture.

To exemplify these concepts just think about a simple reactive system immersed

in an environment composed by a room with a light bulb, a bulb actuator and a light

sensor. All these elements are represented in a virtualized form within the system. In

a causally connected system, the change of the state of the real-world light bulb

(turned on/turned o®) is re°ected in the model element that represents the bulb

within the system. In a bi-causally connected system, the modi¯cation of the state of

a model element is re°ected as a change of state of its real-world counterpart. Thus, if

we set the state of the model element representing the light bulb to o® while the real-

world light bulb is turned on, this triggers an actuator to turn o® the bulb.

The key ingredients to actualize a system of this type are: one or more models that

describe real-world conceptual classes, a binding mechanism that maps sensor

observations to knowledge base updates, logical causal connections that propagate

updates throughout the knowledge base, and a binding mechanism that maps

updates to actuators activation for preserving the model alignment with real-world

situations. It is worth noting that causal connections need some kind of

Fig. 1. Architecture outline.

computational support. According to the organization above, our architecture

presents the following:

(i) a semantic model built using the ontology presented in Sec. 4.2, hosted by a

knowledge base platform (i.e. a triplestore in our case);

(ii) a linking mechanism to report sensor readings to the system, implemented using

web services exposed by the system, which is responsible for converting readings

into appropriate system modi¯cations (i.e. new statements to insert into the

knowledge base);

(iii) a programmed logic that changes the semantic model generating new facts (i.e.

observations and actuations statements) triggered by observations;

(iv) an actuation mechanism exploiting Web services exposed by the system

actuators, in a way that is consistent with the WoT approach.

Causal connections are supported by rules that correlate real-world changes ob-

served by sensors with knowledge base updates. We consistently represent these rules

in the knowledge base itself: the activation part is modeled as software procedures

associated to semantic sensors and actuators, whereas the triggering logic is imple-

mented by monitoring changes to the properties that are declared as inputs for these

semantic sensors and actuators.

The engine connects to the physical world by exposing a service API used to

receive observations from external sensors (see Fig. 1 on the left side) that can be real

or simulated ones, and by invoking web service endpoints for activating external

actuators (see Fig. 1 on the right side).

Whenever an external sensor noti¯es an observation invoking the engine's API

(represented by the black circle with a \1" inside in Fig. 1), that observation is trans-

formed ina semantic format andadded to the knowledgebase (Fig. 2). If a logical sensor/

actuator is interested in that observation (which means that it is modeled in such a way

that its software procedure uses as one of its inputs the property reported by the ob-

servation), then its related softwareprocedure is executed (Fig. 3) by running the actions

(Figs. 3(a) and 3(b)) that de¯ne the speci¯c Actionable Behavior, producing new facts

(observations or actuations, Fig. 4).The actionable behavior can be composedof various

Action elements, such as SPARQL queries, Java code and external services (depicted in

orange) to increment the capabilities of the logical sensors and actuators (LSA).The two

actions depicted in the ¯gure are just a possible example. If newactuations are produced,

they trigger external actuators through REST API invocations.

3.2. Prototype

We realized a working prototype,b that we call semantic engine, on the basis of

the architecture presented above. The triplestore hosting the knowledge base is

bThe prototype is available at https://github.com/cars-team/semanticengine.

Fig. 4. State transitions of two sensors (s1 and s2) during the reactive recon¯guration.

Fig. 2. (Color online) Core classes of the LSA ontology. Classes belonging to di®erent ontologies are
identi¯ed by di®erent background colors: yellow for LSA, gray for SSN and green for SOSA (i.e. the SSN

core module).

Apache Jena.c The external contact points of the engine are a REST API that is

mainly used to submit observations and a SPARQL endpoint implemented using

Apache Jena Fuseki. We assume that all sensors connect via the REST API so, if

they cannot directly do that, wrappers (or polling components) have to be provided.

We successfully used Freedomoticd as a gateway and emulator for a large number of

existing IoT devices supporting various network protocols. To implement context

detection, we augmented Jena with a transaction monitor that intercepts all write

transactions performed on the triplestore.

The activation mechanism works as follows: whenever a new observation (or

actuation) related to an observable property, declared as an input for a procedure

associated with a logical sensor (or logical actuator), appears in the knowledge base,

this ¯res the execution of the related logical element. This execution can be carried

out by di®erent executors. Current implemented executors are: (1) local Java code

(a) JAR ¯le containing the code to be executed can be posted via the REST API); (2)

SPARQL queries (this includes SPARQL update queries so creation/modi¯cation of

elements is possible); (3) invocation of external REST API (that can access the

knowledge base via the SPARQL endpoint whose URL can be passed to the REST

API). At the present time only REST services encoding messages with JSON are

supported.

4. Semantic Modeling of Context and Behavior

In this section, we illustrate the SSN ontology and describe our extension of SSN to

support modeling and execution of reactive systems.

4.1. Semantic sensor network ontology

The SSN ontology was speci¯cally designed for supporting interoperability between

WoT entities taking into account performance and composition requirements. Web

developers, in fact, have their concerns about semantic approaches that do not assure

near real-time data processing. For this reason, its core module is constituted by the

lightweight SOSA ontology that de¯nes the main concepts and properties of WoT

systems through schema.org annotations.

The SSN main perspective is the system one. \System" is indeed the main on-

tological concept of the SSN ontology: it is a unit of abstraction for pieces of infra-

structure that implement procedures for performing observations on the state of the

world, or actuations to make a change to the state of the world. Systems can be

decomposed into their constituent subsystems and deployed on speci¯c platforms

(as vehicles, aircrafts, etc.) for particular purposes. Sensors are triggered by stimuli

that originate observations, i.e. events that assign results to observable properties.

chttps://jena.apache.org/.
dhttps://www.freedomotic-iot.com.

Stimuli can be proxies for observations of properties (i.e. observable qualities, e.g. the

temperature) related to features of interest (e.g. a room). For example, infrared

sensors respond to thermal stimuli detected from the environment. The thermal

stimulus is a proxy for a live presence in the sensor zone, which represents the

observable property related to a feature of interest, for example a room. Actuators

determine changes to the state of the world through the execution of procedures

triggered by the observations of properties.

SSN only allows to describe the information that is provided to a procedure for its

use (ssn:Input), and the information that is reported by a procedure (ssn:Output),

but it does not provide a mechanism to support the execution of such procedures. In

order to implement self-adaptive reactive systems (which is the topic of this paper), it

is necessary to provide a mechanism to describe the logic governing these procedures,

that is how procedure inputs (e.g. observations by sensors) are combined to produce

procedure outputs (e.g. a change in the state of a system element performed by an

actuator). In other words, SSN does not provide a way to de¯ne machine actionable

system behaviors.

To overcome this limitation, we extended the SSN concept of procedure by

introducing the concept of software procedure, which we mainly exploit with LSA,

as described in Sec. 4.2.

4.2. Logical sensors and actuators ontology

Figure 2 shows a Gra®oo [27] diagram of the core elements of the LSA ontology,e our

extension of the SSN ontology that allows describing LSA by specifying their

interactions, behaviors, and state evolution.

The LSA ontology introduces two main concepts: (software) logical sensors and

logical actuators. A logical sensor is a sensor that generates observations by exe-

cuting a software procedure that uses as inputs the observations produced by other

(one or more) sensors. A logical actuator is an actuator that generates actuations by

executing a software procedure that uses as inputs actuations or observations pro-

duced by (one or more) other actuators or sensors. LSA live only in the virtual space

(e.g. a knowledge base), and may be connected to the external world through SSN

simple sensors and actuators, as shown in Sec. 5.

LSA are modeled through the lsa:LogicalSensor and lsa:LogicalActuator

classes, which are subclasses of sosa:Sensor and sosa:Actuator, respectively. The

behaviors associated to logical sensors/actuators are represented by the lsa:

SoftwareProcedure class, and the property ssn:implementedBy is used to connect

software procedures to sensors/actuators and consequently to the logical ones.

A sosa:Procedure is de¯ned in SSN as \a work°ow, protocol, plan, algorithm, or

computational method specifying how sensors make observations, or actuators make

eThe Logical Sensor and Actuator ontology is available at https://sites.google.com/site/

logicalsensorsactuators.

changes to the state of the world". A lsa:SoftwareProcedure is a speci¯c kind of

sosa:Procedure with an actionable behavior (i.e. a behavior that can be oper-

ationalized ��� i.e. executed ��� by a software agent executed by the semantic engine

or by external engines). Software Procedures are mainly implemented by LSA, that

produce new observations or actuations as result of the software procedure execu-

tion. The behavior associated to a software procedures can be implemented, for

instance, by executable code, which is connected to the procedure by the lsa:

hasBehavior property.

It is important to note that the LSA ontology does not impose constraints on how

such behaviors should be represented. For example, they can be modeled as OWL-S

[28] processes, BPMN processes described using the BPMN Ontology [29], etc. The

LSA ontology di®erentiates procedures as follows:

. Procedures speci¯cations: The algorithm, work°ow, protocol, etc. used by a

sensor (actuator) to perform observations (actuations), along with a declaration of

its inputs and outputs. e.g. the algorithm used by a logical sensor that measures

the perceived humidity in a room (output) by aggregating a temperature obser-

vation and a humidity observation (input);

. Procedures executions: The description of a speci¯c execution of a procedure

made by a sensor (actuator), which is carried out using a speci¯c set of input values

to produce a speci¯c output. e.g. the perceived temperature X (output) of a room

computed by using temperature Y and humidity Z as inputs.

In our pattern (which we aim at aligning with the ontology proposed in [30]), a

procedure execution is modeled with the lsa:SoftwareProcedureExecution class.

It is related (via the lsa:usedProcedure property) to a procedure speci¯cation

(represented by the lsa:SoftwareProcedure class) and is performed (lsa:madeBy

property) by a lsa:SoftwareProcedureExecutor. The executor is a software agent

able to execute (lsa:executes) the lsa:SoftwareProcedure. The speci¯cations of

the procedure (i.e. the algorithm, work°ow, protocol, etc. to be used) are represented

by the lsa:ActionableBehavior class, connected to the procedure by the lsa:

hasBehavior property. The behavior consists of a sequence of tasks (lsa:Action-

able) organized in a lsa:ControlStructure, as described in detail in the following

of this section.

Another key point of the LSA ontology is that it allows to represent systems

continuously through their behaviors, interactions and states, enabling reactive

control and coordination features. Data °ows can be speci¯ed through the ssn:

hasInput and ssn:hasOutput properties, enabling continuous systems redesign.

The model supports data °ows by allowing software procedures execution as a re-

action to facts asserted in the knowledge base. In this way, the LSA ontology pro-

vides a mechanism for creating dynamic chains of procedures referred to di®erent

kinds of devices (sensors, actuators, logical sensors, logical actuators). According to

this model, a serie of procedures can be executed progressively with a runtime

semantics-based planning. For instance, a logical sensor LS1 may be activated by

two new observations, which are produced by physical sensors, and are used as

inputs for LS1's software procedure. This procedure is executed by the engine, and

uses these observations to produce a new observation as output. The new observa-

tion may be in turn one of the inputs of another software procedure de¯ned for logical

actuator LA1. The engine will then executed LA1's software procedure, and possibly

produce an actuation as output.

Software procedures allow to specify the behaviors of LSA. Such behaviors can be

represented from both a structural and an operational perspective. The lsa:has-

ControlSpecification property allows to associate the control °ow of the behav-

ior, while the lsa:hasActionSpecification allows to de¯ne the tasks that have to

be executed in order to implement the behavior of logical elements.

According to SSN, each single element (e.g. a sensor or an actuator) of the whole

system is itself a system (ssn:System). Since each reactive system should be handled

according to its state, in the LSA ontology we introduce the concept of lsa:State to

represent an observable/actuable condition of a system, in a limited contiguous

extent in time. The lsa:hasState property allows to associate states to systems,

while the lsa:consistsOf property allows to associate the constituent states. State

values are the result of actuations (see Fig. 3).

As shown in Fig. 2, lsa:State is specialized in two main subclasses: lsa:

WorkingState and lsa:BindingState. The former is related to the working con-

dition of a system (e.g. it is normally or faulty working); the latter refers to whether

physical systems and their representations in the knowledge base are (directly or

indirectly) bi-causally connected [26]. In particular, lsa:WorkingState can be

specialized in lsa:normalState and lsa:faultyState whereas lsa:BindingState

can be lsa:inactive, lsa:attached or lsa:detached. In fact, depending on the

working state, the virtual representation of a system (sensor or actuator) in the KB

can be detached from the external (e.g. physical) counterpart to avoid storing altered

observations in the knowledge base. On the other hand, a system is attached when it

is directly or indirectly bi-causally connected with a physical device and inactive if

only its passive representation is used.

4.3. Enabling resilience

The LSA model supports speci¯cation of dynamic architectures for a single coherent

system, structured as a set of subsystems characterized by objective functions de-

scribed through ssn:Property, and by behavioral aspects de¯ned through lsa:

Behavior. This runtime model can be exploited for managing the system evolution,

and the lsa:Behavior is used for implementing the system adaptive logic.

A software architect can use it for de¯ning logical elements (i.e. sensors or

actuators) able to ensure resilience. These elements live in a virtual space (i.e. the

knowledge base) and govern other system elements by inserting state transitions

(e.g. detaching from the system a faulty sensor, and attaching to the system an

equivalent sensor) according to the dynamic evolution of the system state. This way,

faulty sensors (or actuators) can be substituted by other sensors (or actuators) that

are in normal working conditions that are able to observe (or act on) the same

properties.

The element that performs this activity is a logical actuator. It implements a self-

healing strategy for coordinating the entry and exit of equivalent system elements,

based on the observation of their states and capabilities. In particular, the execution

of its procedure performs actuations that produce state transitions able to

resolve faults. Figure 4 shows the attaching actuation of sensor s2 and the detaching

actuation of sensor s1 at t ¼ tactuation1 , as an example of run-time substitution for

resilience.

5. Modeling a System

To clarify the overall approach, the ontology and how the engine works, in this

section, we model and implement the example (derived from a larger system for

Cultural Heritage preservation [31]) discussed in the introduction of this paper.

The proposed approach is model-driven. The ¯rst artifact to produce is the

model of the system. In our context this means using SSN/LSA entities and

relationships to de¯ne a graph of the system, which can be initially designed by

using a graphical tool and then transformed in RDF. To resolve the heterogeneity

of the actionable types, developers should de¯ne and share the relative types

vocabularies.

During the modeling phase, developers describe the system in terms of properties,

sensors, actuators and identify the software procedures and the related actionable

items that allow to de¯ne devices' behaviors, states and executors.

For each actionable item, the developer must provide speci¯c artifacts that

depend on the type of the actionable item: SPARQL operations, Java code, REST

interactions, and so on.

The overall system model (composed of the main RDF graph and actionable items

artifacts) is then deployed and loaded in the knowledge base. Possible changes to

the initial model can be introduced into the system by issuing speci¯c queries at

any time.

According to the presented methodology, the initial phase is the one related to the

modeling of the system and its environment. Therefore, after a brief description of a

dynamic scenario in the context example, in the following, a detailed model is

reported and discussed.

5.1. Multimedia playback scenario and graphical modeling

In this section, we discuss how a system composed of physical and logical sensors/

actuators can be modeled with the LSA ontology. Following the example

presented in the introduction, we focus on the de¯nition of a model for the

following scenario:

(1) a tourist crosses the door of the museum, and the two physical infrared sensors

on the door sides produce two observations about the presence of a person in

their detection areas;

(2) a logical sensor aggregating such observations produces another observation

updating the number of persons present in the rooms;

(3) if the tourist enters an empty room, an actuator starts to play a multimedia °ow

on the room monitor; if the tourist is the last person that leaves a room before the

end of the playback, an actuator will stop the multimedia °ow. In both cases,

the information about the new actuation is inserted into the triplestore.

In order to cover the main features introduced by the LSA ontology, we focus on

modeling a logical sensor (functionally equivalent to the physical thermal camera

sensor used for observing people presence in a room) and a logical actuator.

A graphical notation named Gra®oo [27] is used in this section to help the reader.

A complete example with code excerpts of the model is discussed in the next sub-

section, which covers both physical and logical elements.

1. Observations made by physical sensors: Figure 5 shows the RDF state-

ments that are added to the triplestore by the semantic engine when a person crosses

a door. Whenever this occurs, the infrared sensors placed on the two sides of the door

detects the presence of a person and invokes the engine REST API in sequence

(providing their ids and the instants of time when the observations occurred as

request parameters).

Fig. 5. (Color online) Observations made by two infrared sensors. Classes belonging to di®erent ontologies
are identi¯ed by di®erent background colors: yellow for LSA, gray for SSN and green for SOSA (i.e. the

SSN core module).

Twoobservations (i.e. gmus:observation/ir1/1 and gmus:observation/ir2/1)

made by sensors gmus:ir1 and gmus:ir2 are produced, which relate to the same

feature of interest (i.e. gmus:door1). Each observation concerns a distinct observable

property (i.e. the presence in the detection area of each sensor: gmus:presence/

room1/ir1/zoneDoorInside and gmus:presence/room2/ir2/zoneDoorOutside),

and keeps track of the time in which the observations were performed.

In these examples, we make use of punning,f an OWL metamodeling capability

that allows to treat model elements as classes and individual at the same time.

Elements with this double nature are represented as light blue squares in the dia-

gram. This has been used in Fig. 5, for instance, to model the concept of infrared

sensor (gmus:IRSensor), which is at the same time a class (i.e. a speci¯c subclass of

sensors representing infrared sensors) and an individual (since it is connected with

gmus:ThermalStimulus by the ssn:detects property). In the same way, gmus:

PresenceInSensorZoneProperty is a type of observable property (i.e. subclass of

sosa:ObservableProperty) and an individual (connected to gmus:Thermal-

Stimulus by the ssn:isProxyFor property). This approach is also useful to model

logical sensors behaviors, as described in the rest of this section.

2. Observations made by logical sensors: whenever a modi¯cation occurs in

the triplestore (e.g. the insertion of a new observation), the semantic engine checks if

one or more procedures specifying the behaviors of logical components (i.e. LSA) should

be executed. To do so, the engine checks if the properties related to the new observations

(e.g. gmus:presence/room1/ir1/zoneDoorInside and gmus:presence/room2/ir2/

zoneDoorOutside in the previous example) are speci¯ed as inputs of one or more

software procedures. Since these properties (see Fig. 6) are inputs of the gmus:

entrance/door1/room1 procedure (as speci¯ed by ssn:hasInput), the semantic

engine identi¯es the procedure, which is tied to the logical sensor gmus:ls1, a speci¯c

instance of gmus:infraredPresenceSensor (the class representing logical presence

sensors) hosted by the triplestore (gmus:triplestore), and executes it by observing

the presence of people in the speci¯c room (gmus:people/room1).

A mechanism is adopted by the semantic engine to retrieve behavioral informa-

tion (e.g. a sequence of activities to perform) pertaining logical sensors. Since be-

havioral information is shared by all logical sensors of a type, the engine identi¯es

the related software procedure (gmus:DoorRoomEntrance in our case) and retrieves

the behavioral speci¯cation (gmus:doorRoomEntrance/behavior) by navigating the

lsa:hasBehavior property.

Such behavioral speci¯cation in this case is composed of two actions, i.e. two

SPARQL CONSTRUCT/INSERT queries checking the entrance/exit in/from the

room, respectively. Each of these queries retrieve the new observations made by the

two infrared sensors, and if they have been performed in a short time interval ��� e.g.

one second ��� produce:

fSee https://www.w3.org/TR/owl2-new-features/#F12: Punning.

(1) a new software procedure execution (gmus:entrance/door1/room1/exe/5),

connected to the software procedure (gmus:entrance/door1/room1/) by the

lsa:usedProcedure property, and to the observations used as input (those

made by the two infrared sensors and those pertaining the number of persons in

the rooms connected by the doorg) and the software procedure executor (gmus:

sparqlQueryEngine) by the ssn:hasInput and lsa:madeBy property, re-

spectively;

(2) two observations as output of the procedure execution represented using the

ssn:hasOutput property. For instance, the number of people in the ¯rst room

has been updated from zero (in gmus:observation/ls1/1) to one (in gmus:

observation/ls1/2) since a person entered the room.

3. Actuations made by logical actuators: the newly added statements (i.e.

those about the observations produced by the logical sensor gmus:ls1 and the rel-

ative procedure executions) trigger another control performed by the semantic en-

gine to check logical sensors/actuators interested to those observations. In our

example, the logical actuators controlling the video playback on the monitor in the

gBecause of space limitations in the diagram, we depicted only the observations about a room (i.e. we

omitted the observations about the number of people in gmus:room2).

Fig. 6. (Color online) Observations made by the logical presence sensor. Square brackets are used to
specify property cardinality restrictions. Classes belonging to di®erent ontologies are identi¯ed by di®erent

background colors: yellow for LSA, gray for SSN and green for SOSA (i.e. the SSN core module).

room is activated, and the related software procedures is retrieved and executed,

triggering the ¯nal actuation (REST invocation) of the physical device that starts

the video playback on the monitor.

This example shows a way to dynamically recon¯gure the system in an unplanned

way with the creation of new logical sensors, that is by only changing the content of

the knowledge base where the de¯nitions of the logical sensors are stored.

Resilience can easily be addressed in a system of this kind by implementing a mon-

itoring infrastructure producing reports about the state of physical elements. An health

monitor for physical sensors can be implemented as a sensor producing observations

describing the working state of these sensors. These observations can trigger a logical

actuator playing the role of Recon¯gurator. The Recon¯gurator can query the knowl-

edge base, looking for alternative inactive sensors (physical or logical ones) producing

the same kind of observations produced by the failing one. In our example when the

health monitor produces an observation reporting that a thermal camera sensor is

failing, the Recon¯gurator detaches the thermal camera sensors and queries the

knowledge base, looking for alternative sensors reporting the number of people in the

same room where the failing sensors is deployed. This query will return the IR-based

logical sensors that the Recon¯gurator can activate, enabling a basic resilient behavior.

5.2. Multimedia playback RDF modeling

In this section, we extend the example of the previous subsection presenting both a

physical presence sensor and a logical (and equivalent) one by using RDF. First of all,

we model a museum room where multimedia content has to be played. The following

Turtle [32] codeh is an excerpt of the model describing the room and the thermal

camera sensor that is used for tracking people and indirectly counting the number of

persons that are in the room.

hA list of the pre¯xes used in the following examples can be found at https://sites.google.com/site/

logicalsensorsactuators/.

Listing 1. A room equipped with a thermal camera sensor tracking and counting people in a room.

When the physical thermal camera sensor detects a person in the room, it reports

its observation to the engine through the dedicated REST API, producing a new

observation that is added to the system model in the knowledge base. The following

excerpt is an example of observation generated by the thermal camera sensor

reporting that the number of people in the room is ¯ve.

We can use the following SPARQL query to get the actual number of people in

the room:

By running the query, we get as result that there are ¯ve persons in the room, as

we expected.

The museum is also monitored by several anti-theft, infrared sensors previously

installed at the doors of the rooms and managed by dedicated software. The museum

administrators realize that presence can also be detected by combining these infrared

sensors, albeit with lower accuracy.

Listing 2. An example of observation created by the thermal camera sensor.

Listing 3. The SPARQL query to get the actual number of people in the room.

Listing 4. The result of the SPARQL query in Listing 3 reporting that the current number of people in the

room is ¯ve.

The following code is an excerpt of the model describing the door of the room

and the two infrared sensors that observe user presence at the two door sides. The

sensors gmus:ir1 and gmus:ir2 are hosted by the room door (gmus:door1). User

presence in the detection area of the sensors is modeled as observable properties

(sosa:ObservableProperty). These properties are observed (sosa:observes)

by the sensors. The door is modeled both as a sosa:FeatureOfInterest (since

properties pertaining it ��� i.e. the user presence near its side ��� are observed by

sensors) and a sosa:Platform (since it hosts other entities ��� i.e. the infrared

sensors).

When a person crosses the room door, each of the infrared sensors produces

observations reporting the user presence near the door sides. The following code is an

example of two observations produced by the infrared sensors. The instant of time

when the observations were completed is reported using the sosa:resultTime

property. The interval between the ¯rst observation and the next in the example is

less than one second (0.742 s).

Listing 5. An excerpt of the model de¯ning a door in the room equipped with two infrared sensors
observing people presence near the door sides.

When the physical presence sensor fails, it can be replaced by an \equivalent"

logical sensor. The following code is an excerpt of the model describing the logical

presence sensor. This sensor is associated to a software procedure that combines the

two infrared sensors to update the number of people in the room. The procedure is in

turn related to an actionable behavior specifying the action to perform.

The following SPARQL query is the action for the logical sensor and it is executed

by the engine. It is triggered when observations pertaining the inputs of the related

procedures are added to the knowledge base (e.g. when an infrared sensor detects the

presence of a user). The query is responsible of updating the actual number of people

Listing 7. An excerpt of the model with the de¯nition of the logical presence sensor that combines the two
infrared sensors, and the related software procedure.

Listing 6. Two observations produced by the infrared sensors.

in the room, and is contained in the model with other details (e.g. the agent

responsible of executing it) we omit for space limitations.

Listing 8. The SPARQL query used by the logical sensor to combine the last observations generated by
the two infrared sensors. If a person crosses the door, then a new observation updating the number of people

in the room is created.

In the outer WHERE, the query collects the timestamps of the last two obser-

vations generated by the infrared sensors and the actual number of people in the

room (see the three nested SELECT queries). The logical sensor works as follows: if

the two observations about people presence at the door sides (i.e. inside and outside

the room) occur in a short timespan (i.e. in 1.5 s), then they can be interpreted as

people entering/exiting the room; otherwise they are ignored. This is implemented

by the ¯rst FILTER clause. A new variable (?newResult) is introduced to compute

the updated number of people in the room by increasing the counter if the obser-

vation on the outside precedes the one on the inside, and decreasing it otherwise.

Another variable (?newObservation) is used to generate the URI of the new ob-

servation, obtained by concatenating a ¯xed pre¯x and a timestamp. If the result set

generated by the outer WHERE clause is not empty (i.e. a people movement through

the door has been identi¯ed), a new observation is created by the CONSTRUCT

clause. The observation contains information about the updated number of people in

the room (see sosa:hasSimpleResult), a timestamp (see sosa:resultTime), the

sensor that performed the observation (see sosa:madeBySensor) and the property

the observation refers to (see sosa:observedProperty).

As described above, the query is executed when new observations by the infrared

sensors are added into the knowledge base. For instance, if a person crosses the door

and the two infrared sensors generate the two observations reported in Listing 6, the

engine activates the logical sensor by executing the SPARQL query, that produces

the following result.

Since the observation about people movement outside the room precedes the

observation about the inside, a person entering the room is identi¯ed, and an ob-

servation incrementing the number of people in the room (from 5 to 6) is generated

and added into the knowledge base. If we run again the query in Listing 3, we get as

result that there are six persons in the room.

Listing 9. The new observation created by the logical sensor.

Listing 10. The result of the SPARQL query in Listing 3 reporting that the current number of people in

the room is six.

The last observation about the current number of people in the room created by

the logical sensor will in turn trigger the logical actuator that controls the multi-

media playback. In this case, no action is performed (since the playback was already

active).

5.3. Modeling logical sensors for resilience

The infrared sensors are combined in a logical sensor (gmus:ls1) that observes the

presence in the room (gmus:people/room1) like the thermal camera sensor. It is

composed of two subsystems (i.e. the two infrared sensors). The software procedure

related to the logical sensor (ssn:implementedBy) is gmus:entrance/door1/room1.

gmus:doorRoomEntrance/behavior is the behavior of the sensor (i.e. a detailed

description of the actions to perform to execute the procedure), and is related to it via

the lsa:hasBehavior property.

The sensors modeled above can also be used to implement a resilience mechanism:

e.g. when the thermal camera sensor fails it can be replaced by the logical sensor built

atop the anti-theft ones. The task of monitoring the state of the thermal camera

sensor, and replacing it with the logical sensor combining infrared sensors (by

changing their binding state, detaching the faulty one and attaching the equivalent

logical one) is performed by a logical actuator that acts as a recon¯gurator. Due to

space limitation we do not describe here the details of the recon¯guration mecha-

nism. The interested reader can ¯nd more information in [33, 34].

6. Performance Evaluation

This section describes a set of experiments we performed in order to evaluate the

ability of the prototype implementation to handle di®erent levels of workloads. It

should be noticed that the RDF triplestore (Apache Jena) and its SPARQL pro-

cessor (ARQ) are designed as reference implementations for most major RDF-related

standards: they focus on features rather than speed. No indexing is used to speed up

the retrieval of triples and the concurrency management operates at a full database

level. This is re°ected in our prototype that, while fully functional, has not been

designed for high performance. However, even in its current implementation, the

prototype can be adopted in several real-world scenarios.

In our experiments, we ran an instance of the semantic engine in a workstation

with an i5-8400 hexa-core CPU and 16GB of RAM. Clients simulating the workload

interact with the semantic engine using its REST API to report (synthetic) obser-

vations in the form of HTTP POST requests. These requests are parsed and trans-

formed into RDF triples representing the observations and are added to the

knowledge base. Depending on the observed properties of these observations and on

the presence of logical elements (sensors and/or actuators) represented in the

knowledge base, the appearance of the observations, triples can trigger the activation

of these logical elements and the execution of the related behaviors.

The load tests have been performed using Locusti with a swarm of containerized

clients spread across three physical machines. Simulated clients send a request each

10 s; the load is varied by changing the overall number of clients. To better respect a

typical IoT scenario where the rate of the requests does not depend on the response

time of the system, our experiments have been realized by imposing a constant rate of

requests to the systems; we then analyzed its ability to cope with this rate and the

response time perceived by the clients.

In real-world scenarios, the overall request rate is the result of two main factors:

the number of sensors composing the system and the rate with which they produce

observations. Di®erent kinds of sensors, in fact, can be characterized by large dif-

ferences with respect to this latter parameter: it can be expected that temperature

sensors for domotic applications report observations every few minutes whereas

gyroscopic sensors for °ying drones can produce observations every few milliseconds.

The results of the tests presented below should then be analyzed with respect to the

overall expected rate of observation produced for the speci¯c application scenario:

the ability to handle, for example, 100 requests per second with a delay of 5ms could

be applied to a scenario in which 100 sensors report an observation each second as

well as a scenario in which ¯ve sensors produce 20 observations per second.

In our test, in those cases in which logical elements are activated, we also cal-

culated the activation time, i.e. the time from the moment the client reports an

observation until the execution of the logical elements triggered by this observation

completes. The behavior of the prototype, with respect to when the control is

returned to the client, can be con¯gured in the following ways: clients can simply

report an observation that is put in a queue for later insertion in the triplestore or can

wait for the actual insertion. In these experiments the latter strategy is applied.

The ability of the system to deal with a number of clients is largely dependent on

whether they trigger the activation of logical elements, since this implies the exe-

cution of the related behavior (which often also includes the retrieval of data from

the knowledge base). For this reason, we created three di®erent test scenarios.

Scenario S1 sees the clients reporting observations that do not trigger any logical

element. In this scenario, we basically evaluate the baseline performance of the

system including the management of network requests and the adding of triples to

the triplestore.

In scenario S2, the clients report observations that trigger a logical element

with an elementary behavior. In our tests, we reported temperature observations in

Celsius degrees. They triggered the execution of logical sensors that produce

corresponding temperature observations in Fahrenheit degrees.

Scenario S3 uses logical elements with a more complex behavior: we set up an

environment containing the IR-based logical presence sensors described in Sec. 5.2; in

these experiments all clients simulate couples of IR observations leading to the ac-

tivation of the logical presence sensors and to the creation of the corresponding

ihttps://www.locust.io/.

observations (notice that this is di®erent from a real-world scenario in which it can be

expected that only a small subset of the passages recorded by the IR sensors are

about persons getting through the doors). Given the low level of optimization in Jena

and ARQ, the execution of the query describing the behavior of these logical sensors

(see Listing 9) results in a write transaction that executes in total isolation with no

concurrency. The inner select in Listing 9 analyzes all the triples of the triplestore

creating lists that are then sorted, which is a sort of worst-case scenario for the

current implementation.

Here is a brief report of our measurements for S1.

Request rate (req/s) Response time (avg, ms)

10 12

100 12

1000 13
2000 330

These results show that up to 1000 req/s the prototype responds

promptly with minimal delay. When surpassing this rate, the response time grows

rapidly.

This is the report for scenario S2. Here, we also include the activation time since

(as previously explained) the observations trigger a logical element.

Request rate (req/s) Response time (avg, ms) Activation time (avg, ms)

10 12 58
100 12 177

1000 63 709

1200 9138 958

With a higher number of clients, the response time surpasses the delay between

the requests limiting the overall rate. That means that the clients are not able to

increase the rate of their requests because they wait too long for each request they

post. In other words, the system has reached its upper performance limit.

The measurements for S3 are as follows:

Request rate (req/s) Response time (avg, ms) Activation time (avg, ms)

10 12 9
50 12 24

80 641 536

With a higher number of clients, the response time surpasses the delay between

the requests limiting the overall rate. Notice that, in this speci¯c scenario, the rel-

atively limited number of concurrent requests that the system is able to handle with

reasonable performances is mostly due to transactional contention over the triples-

tore, as witnessed by an average CPU load of a mere 32%.

7. Discussion

The proposed approach allows for declarative de¯nitions of reactive behaviors in a

bi-causally connected system. In fact, both the model of the context and that of the

system (in terms of logical sensors/actuators and their behaviors) are represented in

a semantic format (e.g. by RDF triples). This allows to change the overall behavior of

the system by only manipulating the knowledge base: at runtime new logical sensors/

actuators can be de¯ned, the behavior of the existing ones can be modi¯ed, existing

sensors/actuators can be deleted.

A further advantage of the approach is that self-adaptive behaviors can be easily

implemented by de¯ning speci¯c sensors and actuators, such as failure detectors and

recon¯gurators, as shown in Secs. 4.3 and 5.3.

As Sec. 6 shows, the bene¯ts above are obtained by slightly sacri¯cing

performance that could limit the applicability of the solution to applications with

strong real-time requirements. However, the observed response times under signi¯-

cant tra±c intensity are reasonable and acceptable for a wide class of applications

where reactions to external stimuli take place in negligible time with respect to the

response delays of the environment (e.g. brightness drops below a threshold and a

lamp is turned on, a person enters a room and a counter is incremented, a number of

people in a room reach a speci¯ed value and a media player is turned on, the per-

ceived temperature is high and a conditioning system is turned on, etc.).

Note also that there are scenarios where a large stream of data is produced in

which our prototype can still be applied; this includes the contexts in which a hi-

erarchical approach using instances of the prototypes as leaf nodes is possible (which

is usually the case for smart cities and similar circumstances).

It is also worth noting that the proposed approach could appear too much verbose

for modelers and developers who must de¯ne some complex artifacts with description

logic for modeling the system to manage. However, this problem can be easily

addressed in the future by providing supporting tools for graphical programming,

like recent tools for IoT programming, such as NodeRED.

8. Conclusions and Future Work

In this paper, we presented a proposal for an extension of the SSN ontology to

support modeling of LSA, and their behaviors. The extension enables reactive

behaviors of context-aware applications by de¯ning the decision logic that exploits

sensor observations to trigger actions. The ontology is accompanied by a an archi-

tecture that supports behaviors de¯nition and the interaction with the real devices in

the physical world. A prototype of the architecture has been implemented by

using Jena, SPARQL and RESTful APIs for the interaction with the external

environment.

We discussed and validated the proposed ontology extension and the supporting

architecture with the help of an application in the domain of smart buildings for

cultural heritage. The ontology extension and the related architecture represent the

¯rst step towards the de¯nition of a more complex platform for context-awareness

able to take into account failures and adaptation policies. We plan to extend our

semantic model to include the speci¯cation of system requirements and goals [35], in

order to use these elements to guide the choice of the adaptation policy for the

reactive system. We also intend to use an approach similar to the one discussed in

[36], so as to allow designers to include in the model other kinds of information (e.g.

documentation, technical comments, versioning and change tracking, etc.).

Acknowledgments

This paper has been supported by the MIUR PRIN 2015 GAUSS Project and MIUR

PON VASARI Project.

References

1. D. Harel and A. Pnueli, On the development of reactive systems, in Logics and Models of
Concurrent Systems (Springer, 1985), pp. 477–498.

2. N. Halbwachs, Synchronous programming of reactive systems, in Computer Aided
Veri¯cation, eds. A. J. Hu and M. Y. Vardi (Springer, Berlin, Heidelberg, 1998), pp. 1–16.

3. A. Furno and E. Zimeo, Context-aware composition of semantic web services, Mobile
Netw. Appl. 19(2) (2014) 235–248.

4. A. Haller, K. Janowicz, S. Cox, D. Le Phuoc, K. Taylor and M. Lefrançois, Semantic
sensor network ontology, W3C Recommendation W3C (2017).

5. R. J. Wieringa, Design Methods for Reactive Systems: Yourdon, Statemate, and
The UML (Elsevier, 2003).

6. R. Kuhn, B. Hanafee and J. Allen, Reactive Design Patterns (Manning Publications Co.,
2017).

7. M. Szvetits and U. Zdun, Systematic literature review of the objectives, techniques, kinds,
and architectures of models at runtime, Softw. Syst. Model. 15(1) (2016) 31–69.

8. H. B. P€otter and A. Sztajnberg, Adapting heterogeneous devices into an iot context-
aware infrastructure, in 2016 IEEE/ACM 11th Int. Symp. Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), IEEE, 2016, pp. 64–74.

9. G. Tamura, N. M. Villegas, H. A. Muller, L. Duchien and L. Seinturier, Improving
context-awareness in self-adaptation using the DYNAMICO reference model, in Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2013 ICSE Workshop
on, IEEE, 2013, pp. 153–162.

10. R. Seiger, S. Herrmann and U. Aßmann, Self-healing for distributed work°ows in the
internet of things, 2017 IEEE Int. Conf. Software Architecture Workshops (ICSAW),
2017, pp. 72–79.

11. F. Poggi, D. Rossi and P. Ciancarini, Integrating semantic run-time models for adaptive
software systems, J. Web Eng. 18(1–3) (2019) 1–42, doi: 10.13052/jwe1540-9589.18131.

12. D. Rossi, F. Poggi and P. Ciancarini, Dynamic high-level in self-adaptive systems,
2017 6th Int. Conf. Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO), IEEE, 2017, pp. 49–60, doi:10.1109/ICRITO.2017.
8342398.

13. F. Poggi, D. Rossi, P. Ciancarini and L. Bompani, Semantic run-time models for
self-adaptive systems: a case study, in 2016 IEEE 25th Int. Conf. Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), IEEE, 2016, pp. 50–55, doi:
10.1109/WETICE.2016.20.

14. F. Poggi, D. Rossi, P. Ciancarini and L. Bompani, An application of semantic technol-
ogies to self adaptations, in 2016 IEEE 2nd Int. Forum on Research and Technologies
for Society and Industry Leveraging a Better Tomorrow (RTSI), IEEE, 2016, pp. 1–6,
doi:10.1109/RTSI.2016.7740548.

15. K. Angelopoulos, V. E. S. Souza and J. Mylopoulos, Capturing variability in adaptation
spaces: A three-peaks approach, Int. Conf. Conceptual Modeling, Springer, 2015,
pp.384–398.

16. A. C. Shaw, Software descriptions with °ow expressions, IEEE Trans. Softw. Eng.
SE-4(3) (1978) 242–254.

17. J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng and J.-M. Bruel, Relax: Incorporating
uncertainty into the speci¯cation of self-adaptive systems, 2009 17th IEEE Int.
Requirements Engineering Conf., IEEE, 2009, pp. 79–88.

18. A. U. Frank, Tiers of ontology and consistency constraints in geographical information
systems, Int. J. Geograph. Inf. Sci. 15(7) (2001) 667–678.

19. C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan and
D. Riboni, A survey of context modelling and reasoning techniques, Pervasive Mobile
Comput. 6(2) (2010) 161–180.

20. T. Pederson, C. Ardito, P. Bottoni and M. F. Costabile, A general-purpose context
modeling architecture for adaptive mobile services, Int. Conf. Conceptual Modeling,
Springer, 2008, pp. 208–217.

21. H. Chen, F. Perich, T. Finin and A. Joshi, Soupa: Standard ontology for ubiquitous and
pervasive applications, The First Annual Int. Conf. Mobile and Ubiquitous Systems:
Networking and Services, IEEE, 2004, pp. 258–267.

22. C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, Context aware
computing for the internet of things: A survey, IEEE Commun. Surveys Tutorials 16(1)
(2014) 414–454.

23. S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay and M. Kovatsch, Web of things
(WoT) thing description, W3C Recommendation 9 April 2020 (Link errors corrected 23
June 2020). W3C, 2020.

24. K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc and M. Lefrançois, SOSA: A lightweight
ontology for sensors, observations, samples, and actuators, J. Web Semantics 56 (2019)
1–10.

25. S. Sagar, M. Lefrançois, I. Rebai, M. Khemaja, S. Garlatti, J. Feki and L. M�edini,
Modeling smart sensors on top of sosa/ssn and WOT TD with the semantic smart sensor
network (S3N) modular ontology, 9th Int. Semantic Sensor Network Workshop, Mon-
terey, United States, 2018.

26. M. H€olzl and T. Gabor, Reasoning and learning for awareness and adaptation, in Soft-
ware Engineering for Collective Autonomic Systems, Springer, 2015, pp. 249–290.

27. R. Falco, A. Gangemi, S. Peroni, D. Shotton and F. Vitali, Modelling owl ontologies with
gra®oo, in European Semantic Web Conference, Springer, 2014, pp. 320–325.

28. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne et al., OWL-S: Semantic markup for web services, W3C
Member Submission 2004, https://www.w3.org/Submission/OWL-S/.

29. M. Rospocher, C. Ghidini and L. Sera¯ni, An ontology for the business process modelling
notation. in Formal Ontology in Information Systems, 2014, pp. 133–146.

30. M. Lefrançois, Planned etsi saref extensions based on the w3c&ogc sosa/ssn-compatible
seas ontology paaerns, Proc. Workshop on Semantic Interoperability and Standardization
in the IoT, SIS-IoT, 2017, p. 11.

31. E. Giallonardo, C. Sorrentino and E. Zimeo, Querying a complex web-based kb for
cultural heritage preservation, 2017 2nd Int. Conf. Knowledge Engineering and Appli-
cations (ICKEA), IEEE, 2017, pp. 183–188.

32. E. Prud'hommeaux, G. Carothers, D. Beckett and T. Berners-Lee, Turtle–terse rdf triple
language, 2013, https://www.w3.org/TR/2013/CR-turtle-20130219/.

33. E. Giallonardo, F. Poggi, D. Rossi and E. Zimeo, Resilient reactive systems based on
runtime semantic models, in 2019 IEEE Int. Symp. Software Reliability Engineering
Workshops, 2019, pp. 177–184, doi: 10.1109/ISSREW.2019.00069.

34. E. Giallonardo, F. Poggi, D. Rossi and E. Zimeo, Context-aware reactive systems based
on runtime semantic models, Proc. 31st Int. Conf. Software Engineering and Knowledge
Engineering, 2019, pp. 301–306, doi: 10.18293/SEKE2019-169.

35. D. Rossi, F. Poggi and P. Ciancarini, Dynamic high-level requirements in self-adaptive
systems, Proc. 33rd Annual ACM Symp. Applied Computing, ACM, 2018, pp. 128–137,
doi: 10.1145/3167132.3167143.

36. G. Barabucci, A. Di Iorio, S. Peroni, F. Poggi and F. Vitali, Annotations with
EARMARK in practice: A fairy tale, Proc. 1st Int. Workshop on Collaborative Anno-
tations in Shared Environment: Metadata, Vocabularies and Techniques in the Digital
Humanities, ACM, 2013, pp. 11–18, doi: 10.1145/2517978.2517990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

