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but increased over the years from 2010 to 2018. The
local differences might thus arise through gradual
change of the morph composition of the founder
invasive, non-native population. However, the varia-
tion in non-melanic morph frequency was not corre-
lated with climatic characteristics that might affect
coccinellid polymorphism. The observed rate of
change in morph proportions in our data was too
small to explain the diversification of what was
supposedly a uniform invasive, non-native population
at the point of introduction.

Keywords Polymorphism - Alien species -
Distribution - Variation - Climate - Selection

Introduction

The Harlequin ladybird Harmonia axyridis Pallas
(Coleoptera: Coccinellidae) is native to the east
Palearctic and Oriental regions (Kovar 2007; Orlova-
Bienkowskaja et al. 2015). Its recent spread into
several continents where it is non-native has been well
studied (Roy et al. 2016). In its native range, H.
axyridis is an abundant and efficient predator of aphids
(Kuznetsov 1975). Due to its qualities as a biological
control agent, many attempts were made to introduce
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H. axyridis in intensive agriculture areas outside of its
native range. Several early introduction attempts of H.
axyridis in Europe (Kuznetsov 1987; Coutanceau
2006) and North America (McClure 1987) were
unsuccessful. In contrast, later unintended introduc-
tions resulted in the spread of the species in North
America from the late 1980s (Chapin and Brou 1991;
Tedders and Schaefer 1994; LaMana and Miller 1996)
and subsequently in South America (Martins et al.
2009; Grez et al. 2010), Europe (Adriaens et al. 2003;
Cuppen et al. 2004; Brown et al. 2008), Africa (Stals
2010; Nedvéd and Hava 2016), western Asia (Biran-
vand et al. 2019) and New Zealand (https://www.mpi.
govt.nz/document-vault/12261). Thus, H. axyridis has
now spread to all continents except Antarctica (Ca-
macho-Cervantes et al. 2017). The invasion into Eur-
ope was evidently derived from biological control
introductions mixing with an invasive population from
eastern North America (Lombaert et al. 2010).

In recently colonized areas, H. axyridis is regarded
as an efficient aphid natural enemy (Riddick 2017),
but also an unwelcome competitor and predator of
other members of the aphidophagous guild (Brown
et al. 2015; Kenis et al. 2017; Masetti et al. 2018;
Zaviezo et al. 2019). The abundance and distribution
of H. axyridis has increased dramatically whilst the
numbers of several native species have decreased,
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Factors determining variation in colour morph frequencies

with H. axyridis implicated in the declines. This has
helped increase interest in this species, with more than
1300 references since 1990 published on Web of
Science concerning the life cycle, predation beha-
viour, distribution, and other elements of the ecology
and genetics of H. axyridis (Roy et al. 2016).

Among the most intensively studied aspects of H.
axyridis” biology is its conspicuous colour polymor-
phism, and the genetics, distribution, ecological and
evolutionary factors influencing it. Interest in this
issue has a long history. Patterns of variation of H.
axyridis, its genetic determination and factors that
determine morph distribution have been studied since
the 1920s (Dobzhansky 1924; Komai 1956; Timofe-
eff-Ressovsky and Svirezhev 1967; Komai and Chino
1969) and continue today (Seo et al. 2007; Wang et al.
2009, 2011).

In its native area the species has over 200 described
colour morphs, grouped into 15 classes (Tan and Li
1934; Hosino 1940; Tan 1946). The individuals are
classified according to the colour pattern of their
elytra. Four major morph groups, light-coloured non-
melanic succinea and dark-coloured melanic axyridis,
spectabilis and conspicua (Fig. 1) are among the most
frequent in the species’ native area, where there is
extensive variation in morph proportions among local

11 ;populations (Gautier et al. 2019). Succinea morphs

113
114
115
116
117
118
119
120
121
122
123
124
125

ATl
A72
A73

A74
AT5
A7T6
AT7

have elytra with yellow to red ground colour and on
each elytron up to nine black spots organised in four
transversal rows. Pale coloration of the dorsal side
leads these morphs to be referred to as the “non-
melanic morphs”. The ground colour of the three other
morphs mentioned is black. These morphs are distin-
guished by the number of red spots, i.e. one (conspicua
morph), two (spectabilis morph) or six (axyridis
morph) on each elytron (see Gautier et al. 2019).
The mostly black dorsal side leads these morphs to be
classified and further referred to as “melanic morphs”.
Elytral colour pattern in H. axyridis is determined by a
multiple-allelic  series, with melanic morphs
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dominating non-melanic morphs in the order of
dominance conspicua > spectabilis > axyridis > suc
cinea (Tan and Li 1934; Tan 1946). In the native (and
to an extent, introduced) ranges, there are a number of
other morphs found in low proportions, the genetics of
which have not been well studied (e.g. Hosino 1940;
Komai 1956; for a review see Sloggett and Honek
2012). Morph identity is determined by genetic
factors. Specifically the morph is determined by
mosaic dominance, which itself is shaped by both
the dominance relationships between colour morph
alleles and the expression of a transcription factor
(pannier); this determines the formation of melanic
elements on the elytra (Gautier et al. 2019). A large
inversion in the cis-regulatory regions of this tran-
scription factor exists between colour morphsand is
thought to underly the maintenance of so much
variation within populations (Gautier et al. 2019).
An additional factor of phenotypic variation within a
morph is temperature during pre-imaginal develop-
ment, which modifies the degree of melanisation. In
the non-melanic morphs low temperature increases the
size and number of black spots, while its effect on the
size of red spots in melanic morphs is below the limit
of resolution (Michie et al. 2010).

The morph frequencies in the native area of H.
axyridis differ among three geographic regions: the
insular region (Japan) is characterized by a mixture of
non-melanic and melanic morphs (Komai et al. 1950;
Komai 1956; Noriyuki and Osawa 2015), the east
continental region (China, Korea and the Russian Far
East) is characterized by a high frequency of the non-
melanic morphs, while the central Siberian region is
dominated by the axyridis morph (Dobzhansky 1924;
Komai et al. 1950; Komai and Chino 1969; Kholin
1988, 1990; Vorontsov and Blehman 2001; Zakharov
and Blekhman 2001; Korsun 2004; Blehman 2009).
This coarse pattern of morph distribution slightly
varies among localities and in time. Likely causes of
this variation are differences in local climate (Purse
et al. 2015) and a complex of biotic factors that
manifest in variation of morph frequencies among host
plants (Komai and Chino 1969). Temporal variation in
morph frequency was observed several times (Komai
et al. 1950; Komai and Chino 1969). Seasonal trends
include an increase in the proportion of non-melanic
morphs in the growing season, and vice versa during
the winter (Osawa and Nishida 1992; Wang et al.
2009). While in the short term (a few years) the
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difference was not significant (Kholin 1990), after
many years there were significant changes in morph
frequency (Komai et al. 1950; Komai and Chino 1969;
Bogdanov and Gagalchij 1986).

Polymorphism in native populations is balanced by
seasonal variation in mating preferences (Osawa and
Nishida 1992; Ueno et al. 1998): in populations in
Japan (Kyoto), females breeding in the spring pre-
ferred mating with non-melanic males and this pref-
erence led to a c. 4% increase in the proportion of the
non-melanic morphs in the summer generation
(Osawa and Nishida 1992). In summer, females
showed no preference for males of a particular morph
and consequently the frequency of melanic morph
progeny in the autumn generation was relatively
higher (Osawa and Nishida 1992). Seasonal changes
in mating preferences also influenced morph frequen-
cies in east continental Asia (Beijing, China) where
the percentage of non-melanic morphs increased over
the growing season to c. 85% because of high mating
activity of the non-melanic morphs. This decreased
during the winter to c¢. 50% (Wang et al. 2009).

In contrast to the well studied variation of H.
axyridis colour polymorphism in its native range, the
pattern of variation in morph frequency in recently
colonized areas has been studied only to a limited

extent (Adriaens et al. 2008; Burgio et al. 2008; Pons
et al. 2015; Jovicic et al. 2016). Thus here colour
polymorphism in H. axyridis populations of recently
invaded areas is investigated. Increased melanisation
may confer fitness advantages in particular climatic
conditions and/or at some times of year, potentially
leading to differences in the relative survival of H.
axyridis morphs. For example, heavily melanised
morphs may have a thermal advantage in cooler
conditions, since they are more able to absorb thermal
radiation (Brakefield and Willmer 1985). The differ-
ing phenology of host plants may have an affect on
phenotypic variation in H. axyridis morphs. For
example, a 2 weeks difference was observed in leafing
between Acer and Tilia in the Czech Republic (Honek
et al. 2019). This differing host plant phenology,
causing variation in micro-habitats, could potentially
lead to the differential success of H. axyridis morphs
between two host plants. Overall, the study of
variation in frequency of colour morphs in invasive,
non-native populations is important since (pheno-
typic) plasticity is a factor that may confer an
advantage to an invasive species (Briolat et al. 2019).

Data on H. axyridis morphs were collected from the
invaded range to: (1) investigate macro-geographic
variation and seasonal and annual trends in morph

b) c) d)

Fig. 1 The distribution of sampling localities of H. axyridis in
Europe. The points indicate centres of particular areas where
populations included in this study were collected, the areas are
labelled serial numbers in the same order is as in Table 1. 1 Spain, 2

@ Springer

Italy 1, 3 Georgia, 4 Russia 1, 5 Italy 2, 6 Italy 3, 7 Austria, 8 Ukraine,
9 Germany 1, 10 Slovakia, 11 Czech Republic, 12 Germany 2, 13
UK, 14 Russia 2, 15 Germany 3, 16 Denmark. Insert: morphs of H.
axyridis: a—succinea, b—conspicua, c—spectabilis, d—axyridis
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Factors determining variation in colour morph frequencies

Table 1 The distribution

. Hostplant Total succinea conspicua spectabilis axyridis 2 melanic
of colour morphs on main N (%) N (%) N (%) N (%) N (%)
hostplant types, from
2010-2018 Crop 82 74 (90.2) 0 (0.0) 8 (9.8) 0 (0.0) 8 (9.8)

Herb 1870 1669 (89.3) 29 (1.6) 168 (9.0) 3(0.2) 200 (10.7)
Tree 23,619 21,026 (89.0) 537 (2.3) 2031 (8.6) 25 (0.1) 2594 (11.0)
Total 25,571 22,769 (89.5) 566 (1.3) 2207 (9.1) 28 (0.1) 2802 (10.5)

variation; (2) investigate micro-geographic and tem-
poral variation in morph frequency in relation to host
plant and temperature. For the first hypothesis data
was collected from throughout the invaded range in
Europe and America, whilst for the second hypothesis
a more detailed dataset was available, collected from
one part of the European range (Czech Republic).

Materials and methods

Localities

23@ESamples of invasive populations of H. axyridis adults

237
238
239
240
241
242
243
244
245
246
247
248

were collected in 19 areas of North and South America
and Europe (Table S1 in Supplementary Material,
Fig. 2), between 2007 and 2018. The data, from
sampling of coccinellid communities including H.
axyridis, were mostly collected from small geographic
areas determined by the different research pro-
grammes of the participating authors. As a conse-
quence, the intensively searched and investigated
areas were surrounded by large unexplored areas.
Although the geographic pattern of collection sites and
ladybird data accumulated in this way is irregular, the
large total area covered by this sampling is likely to

s
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May June July August  October November

Fig. 2 Seasonal trend in percentage of succinea morph on
trees. The figure shows mean & 95% CI calculated using
angular transformed data

provide a clear insight into the general patterns of
geographic variation of colour polymorphism of H.
axyridis.

Sampling procedure

Harmonia axyridis populations were collected from
trees, low growing herbaceous vegetation and crop
stands. The sampling was performed by sweeping with
an entomology net or beating the branches above
sampling trays, during daylight hours, on dry days
with low winds. More than 20 people participated in
these sampling activities at 19 sites in 14 countries. It
was impractical to compare differences in their
sampling efficiency, but all participants were skilled
entomologists with relevant fieldwork experience.
This ensured that the composition of samples corre-
sponded to the composition of natural populations and
that colour morphs were determined correctly. Data on
populations assembled at overwintering sites (build-
ings and shelters) were also included in this study
where available (Czech Republic, Italy 2, Slovakia
and Spain).

Data analysis

Macro-geographic variation in morph frequency was
tested using the data of all sampling sites and samples
collected at particular geographic areas. The “areas”
are clusters of sampling sites situated close to each
other (within maximum tens of km apart). The
geographic areas are denoted by the political name
of the country and a serial number where more than
one cluster was sampled within a country (Table S1 in
Supplementary Material). To assess variability in the
morph frequency a logistic regression framework was
used. The prevalence of the non-melanic succinea)
morph (among all morphs present) was used as the
response variable in our models. To assess variability

of the succinea proportion among geographic
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locations, a random country effect was used and fitted
to the resulting model as a logistic generalized
additive model (GAM) (Wood 2006). The geographic
trends were further investigated in a GAM logistic
model, allowing for a spatial trend with smooth
additive latitude and longitude components.

Before investigating macro-geographic variation of
morph frequency we needed to estimate the extent of
micro-geographic and temporal variation. To investi-
gate the factors of small-scale variation in morph
frequency, micro-geographic variation in morph fre-
quency and variation associated with host plants were
checked. Micro-geographic and temporal variation in
morph frequency was tested using the extensive data
of the Czech Republic. In this analysis, samples
of > 5 individuals of H. axyridis were used. Micro-
geographic variation was investigated using data
collected in stands of Tilia spp. at seven sites located
along a 5 km longitudinal transect, between 50.0813N
14.2610E and 50.0936N 14.3331E. These data were
not biased by seasonal variation in morph frequency
because coccinellids were sampled at regular bi-
weekly intervals through the growing season (May to
October) of 2011-2016. Variation in morph frequency
among host plants was established using cumulative
data from trees (Acer, Betula, Cerassus, Prunus, Salix,
Tilia), herbs (low growing herbaceous vegetation,
Artemisia, Tripleurospermum, Urtica) and crops
(Avena, Hordeum, Medicago) sampled over the period
of 2010-2018. Seasonal variation in the frequency of
morphs was analysed using data collected on trees
(Acer, Betula, Tilia) in 2011-2018. The data were
sampled in each of the years in weekly (2017-2018) or
bi-weekly (2011-2016) intervals from May to Octo-
ber. Annual variation in morph frequency was tested
using cumulative data of all sampling sessions from
May to October 2011-2018.

Differences in morph frequencies between sam-
pling sites and host plants and between seasonal and
annual trends in morph proportions were tested using
ANOVA, with the frequency of the succinea morph as
the response variable and sampling site, host plant,
month or year as factors. As the test of normality of
distribution of morph percentage failed, in all analy-
ses, the Kruskal-Wallis one-way Analysis of Variance
on ranks was used. The trends in change of percentage
of the non-melanic morphs were tested using linear

@ Springer

regression, with the percentage of the succinea morphs
as the response variable and time (month, year) as the
explanatory variable. The frequency of recessive
succinea alleles was calculated using the Hardy-
Weinberg law as the square root of frequency of the
succinea morphs. The calculations were made using
the SigmaStat 3.5 software package (Systat Software
2006). Note that at best this provides only an
approximate estimate, reliant on the invasive popula-
tions being in Hardy—Weinberg equilibrium, which in
reality they are likely not to be.

The relationship between the frequency of the non-
melanic morphs and climate at the place of origin of
European populations was established using data of
meteorology stations situated as close as possible to
the centres of the geographic areas listed (Table S1 in
Supplementary Material), using areas where N > 10.
Climate data were obtained from the University of
Indiana (https://webappl.dlib.indiana.edu). Data for
20-year averages of monthly temperatures were
available for all geographic areas. The regression of
the percentage of the non-melanic morphs (raw data
and arcsin transformed data) was based on mean
temperatures of particular months and mean temper-
atures of all combinations of two and three successive
month periods. The calculations were made using
SigmaStat 3.5 (Systat Software 2006).

Results
Micro-geographic variation

Micro-geographic variation in morph frequency
between closely positioned sampling sites of Tilia
(N =363, H=10.998, df =6, P =0.088) was not
significant (Table S2 in Supplementary Material).
There was no significant difference in the frequency of
morphs on particular hostplants, trees, herbs and crops
(N =860, H=0.676, df =2, P =0.713) (Table 1).
Also, no difference in the frequency of morphs was
found among stands of Tilia, Acer and Betula
(N =777, H= 1404, df=2, P =0.496) or when
host plants were ranked according to growth form, i.e.
low growing crop and herb vegetation vs. trees
(N =860, H=0.665, df =2, P=0.415) (data not
shown).
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Factors determining variation in colour morph frequencies

Temporal variation

Seasonal variation, i.e. in the percentage of the non-
melanic morphs, in particular months from May to
October in the Czech Republic (Table 2), significantly
differed (N = 761, H = 20.584, df = 5, P < 0.001) and
decreased from 90.9 + 1.45% and 92.9 + 0.89% in May
and June to 88.8 £ 0.75% and 88.9 % 0.74% in Septem-
ber and October. On trees, the frequency of light colour
morph decreased significantly (a = 2.831,b = — 0.0347,
R? = .0205, F, 76 = 15.961, P < 0.001) (Fig. 2) over
time.

Annual variation in the percentage of the non-melanic
morphs increased significantly (N = 784, H = 31.650,
df =8, P < 0.001) from 2011 to 2018 (a = — 58.675,
b = 0.0304, R* = 0.0348, F, 745 = 26.834, P < 0.001)
(Table 3). Calculated from these data, the frequency of
the recessive succinea allele (mean = 95.8 £ 0.36%)
varied between 94.5% (in 2013) and 97.4% (2017)
(Fig. 3). The mean absolute difference in frequency of
the succinea allele between successive years was
0.6 & 0.22% (c.i. 0.84%). The mean annual difference

96
95 | b
94
93

92 AF
91
90
89
88 I
87
86

Percentage of succinea allele

2010 2011 2012 2013 2014 2015 2016 2017 2018

Fig. 3 Annual variation in frequency (%) of succinea allele in
total annual samples of 2010-2018. Mean + 5% CI calculated
using angular transformed data

calculated from the difference between minimum and
maximum frequency of the succinea allele was 0.72%.

Macro-geographic variation
At a macro-geographical scale, the largest difference

in colour polymorphism distribution of invasive, non-
native H. axyridis populations is between America,

Table 2 The distribution

Month Total succinea conspicua  spectabilis  axyridis % melanic
of colour morphs of H. N (%) N (%) N (%) N (%) N (%)
axyridis through the season,
from 2010 to 2018 May 774 695 (89.8) 15 (1.9) 62 (8.0) 2(0.3) 79 (10.2)

June 2687 2450 (91.2) 58 (2.2) 175 (6.5) 3(0.1) 236 (8.8)

July 7142 6347 (88.9) 152 (2.1) 637 (8.9) 6 (0.1) 795 (11.1)

August 6124 5475 (89.4) 138 (2.3) 507 (83)  4(0.1) 649 (10.6)

September 5740 5050 (88.0) 138 (2.4) 543 (9.5) 10 (0.2) 691 (12.0)

October 2813 2498 (88.8) 57 (2.0) 255 (9.1) 3 (0.1) 315 (11.2)

Total 25,280 22,515 (89.3) 558 (2.2) 2179 (8.4) 28 (0.1) 2765 (10.7)
Table 3 Annual variation Year Total succinea conspicua spectabilis axyridis ¥ melanic
in distribution of colour N N (%) N (%) N (%) N (%) N (%)
morphs of H. axyridis in
central Czech Republic, 2010 897 796 (88.7) 15 (1.7) 86 (9.6) 0 (0.0 101 (11.3)
from 2010-2018 011 3930 3449 (87.8) 102 (2.6) 373 (9.5) 6(02) 481 (12.2)

2012 2551 2241 (87.8) 75 (2.9) 233 (9.1) 2 (0.1) 310 (12.2)

2013 1744 1532 (87.8) 33 (1.9) 176 (10.1) 3(0.2) 212 (12.2)

2014 3832 3391 (88.5) 99 (2.6) 339 (8.3) 3 (0.1) 441 (11.5)

2015 5008 4451 (88.9) 107 (2.1) 443 (8.8) 7 (0.1) 557 (11.1)

2016 4189 3767 (89.9) 89 (2.1) 327 (7.8) 5(0.1) 422 (10.1)

2017 1301 1194 (91.8) 21 (1.6) 85 (6.5) 1(0.1) 107 (8.2)

2018 2119 1948 (91.9) 25 (1.2) 145 (6.8) 1 (0.0) 171 8.1)

Total 25,571 22,769 (89.2) 566 (2.1) 2207 (3.6) 28 (0.1) 2802 (10.8)
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Table 4 Frequency of

Total succinea conspicua spectabilis axyridis
colour morphs in macro- N N (%) N (%) N (%) N (%)
geographic areas of
America and Europe America

Chile 780 780 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
USA 86 86 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Canada 1812 1812 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Total 2678 2678 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Europe
Spain 1618 1256 (77.6) 125 (7.7) 237 (14.6) 0 (0.0)
Ttaly 1 4 2 (50.0) 1(25.0) 1(25.0) 0 (0.0)
Georgia 4 4 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)
Russia 1 544 497 91.4) 0 (0.0) 47 (8.6) 0 (0.0)
Italy 2 1152 1139 (98.9) 4 (0.3) 9 (0.8) 0 (0.0)
Italy 3 327 256 (78.3) 13 (4.0) 58 (17.7) 0 (0.0)
Austria 51 48 (94.1) 1(2.0) 2(3.9) 0 (0.0)
Ukraine 45 39 (86.7) 0 (0.0) 6 (13.3) 0 (0.0)
Germany 1 362 347 (95.9) 4 (1.1) 11 (3.0) 0 (0.0)
Slovakia 19,197 17,451 (90.9) 365 (1.9) 1371 (7.1) 7 (0.0)
Czech Republic 22,105 19,585 (88.6) 518 (2.3) 1974 (8.9) 25 (0.1)
Germany 2 133 125 (94.0) 0 (0.0) 8 (6.0) 0 (0.0)
United Kingdom 3904 3101 (79.4) 238 (6.1) 565 (14.5) 0 (0.0)
Russia 2 3 2 (66.7) 0 (0.0) 1(33.3) 0 (0.0)
The areas are ranked Germany 3 239 232 (97.1) 2(08) 5@2.D 0 (0.0
according to mean Denmark 100 91 (91.0) 0 (0.0) 8 (8.0) 1 (1.0)
geographic latitude, from Total 49788 44,175 (88.7) 1271 (2.6) 4303 (8.6) 33 (0.1)

south to north

which consists entirely of the non-melanic morphs,
and Europe, which consists of a mixture of several

404" colour morphs (Table 4). The morph composition of

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

populations in America was the same, despite the fact
that the species’ distribution spans more than 30
degrees of latitude in the Northern (Nearctic region)
and Southern (Neotropical region) hemispheres. Con-
sequently, neither local or temporal trends were
identified, nor any macro-geographic variation in
morph distribution in American populations.
Throughout the area of Europe already invaded by
invasive, non-native H. axyridis populations, the non-
melanic morphs dominated in local populations. In
particular, in well-sampled areas (Table 4), the fre-
quency of the non-melanic morphs varied between
77.7% (Spain) and 98.7% (Italy 2). Melanic morphs
were present in all areas, including Georgia, where
they were collected after 2016 (data not shown). Of the
melanic morphs, spectabilis was the most frequent,
with proportions varying between 0.8% (Italy 2) and
17.7% (Italy 3). The conspicua morph was scarce: it

@ Springer

was absent from four areas (Russia 1, Ukraine,
Germany 2, Denmark), and in other areas represented
0.3% (Italy 2) to 7.7% (Spain) of totals. The axyridis
morph was found only in the Czech Republic,
Slovakia and Denmark and in all cases it repre-
sented < 1% of local populations. One individual of
the morph aulica was found in Czech Republic
populations.

In Europe, there were no monotonic latitudinal or
longitudinal trends in distribution of the non-melanic
morphs. The frequency of the non-melanic morphs
increased in general from north to south (Fig. 4a), with
amaximum at c. 44°N. The longitudinal trend was flat
hill-shaped (Fig. 4b), with maxima of the non-melanic
morphs between 10 and 30°E.

The distribution of morph frequencies in the
invaded area of Europe is concentric. In the central
parts of its recent (2018) distribution, the non-melanic
morphs were most frequent, representing more than
90% of the population in Slovakia, the Czech Repub-
lic, Germany, Denmark and Sweden (2018 data of
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Frequency of succinea morph
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Fig. 4 Geographic trends in frequency of succinea morphs
(logit(p) = log(p/1 — p) where p is proportion of succinea
morphs in the populations modelled via GAM logistic
regression)

Goteborg and Stockholm: N = 22 individuals, 95.5%
non-melanic morphs, not included in the analysis).
This morph was also frequent in the Po Valley of
northern Italy. In contrast, in the margins of the current
distribution (Spain and the United Kingdom in the
west, and southern Russia (Russia 1) in the east) the
percentage of the non-melanic morphs was under 80%
(Fig. 4). Populations with a low proportion of the non-
melanic morphs also occurred in Alpine regions of
northern Italy (Italy 3). Melanic morphs contributed to
the amount of melanic individuals in similar ratios
(Table 4), with the rarer conspicua morph represent-
ing about a quarter of melanic individuals (weighted
average 3.0 £ 1.47%), and the more common spect-
abilis morph representing about three quarters of
melanic individuals (weighted average 9.0 £ 2.14%)
(Table 4).

The frequency of the non-melanic morphs was not
correlated with the meteorological data from the
investigated areas. There was no significant correla-
tion between the frequency of the non-melanic morphs
and the average temperature of particular months of
the growing season (April-October) or with periods

o
o
1

o taly2

P Germany 3
o Germany 1

©
N
T

©Germany 20Austria

©
[
T

 Denmark 4, Slovakia < Russia 1

¢ Czechia

@
S
T

© Ukraine

~
©
T

o UK
oltaly3 o Spain

Percentage of succinea morph

~
N

50 60 70 80 90 100
Temperature sum (°C)

Fig. 5 The regression of the percentage of succinea morphs
(angular transformation) in the geographic areas of Europe on
sum of average May—August temperatures in these areas
(R*=0.0457, a=2858, b=—000492, Fy,=0527,
P =0.483)

combining the average temperature over two or three
months. The absence of a significant relationship is
shown in Fig. 5 using a non-significant regression of
arcsin percentage of the non-melanic morphs on sums
of average temperatures over the May—August period
in particular areas. The regressions calculated using
the data for particular months and their combinations
have nearly identical patterns of distribution of the
data (not shown). This was because seasonal variation
of temperatures at different individual localities were
correlated, i.e. monthly temperatures were consis-
tently high or low, with similar patterns of seasonal
variation at multiple locations.

Discussion
Native and invasive populations

We found low variation in H. axyridis morph
frequency in recently colonized areas compared to
native areas (Dobzhansky 1933; Komai 1956;
Zakharov and Blekhman 2001; Noriyuki and Osawa
2015). However, whilst the populations in America

467
468
469
470
471
472
473
474
475
476
477
478
479

480

481

482
483
484
485
486

were monomorphic, this was not the case in Europe. @87

There, 11.3% of melanic morphs (Table 3) was found,
similar to that in east continental Asia, with a similar
prevalence of the non-melanic morphs, but absence of
a clear clinal trend in morph frequency (typical of
populations from Japan (Komai 1956)). Macro-geo-
graphic variation in the percentage of melanic morphs
is likely to be greater than in native populations of

Journal : Medium 10530
Article No. : 2238
MS Code : BINV-D-19-00288R2

-
-~

@ Springer
Dispatch :  6-3-2020 Pages : 14
O LE O TYPESET
v cp * DISK

488
489
490
491
492
493
494



Author Proof

495
496
497
498
499
500
501
502
503

504
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

A. Honek et al.

eastern continental Asia. Similar variation was also
observed at the micro-geographic scale: studies of
populations in the Czech Republic revealed the
absence of micro-geographic variation among sam-
pling sites spaced by tens of kilometres (Komai and
Hosino 1951). Whilst we found no variation in morph
frequency on particular host plants, our work on this
question was only from one region, so may justify
further study.

Origin of polymorphism in recently colonised
areas

The history of introduction of American H. axyridis
populations from 1916 involved several intentional
attempts and unintentional introductions, but the
species failed to establish until the late 1980s (Lom-
baert et al. 2010; Roy et al. 2016), whilst the morphs of
the introduced population(s) were not recorded. The
probability of introducing a genetically recessive pure
succinea population is greater than that of introducing
a mixed population if the source population originated
from east continental Asia (a large area including
eastern China, Korea, eastern Russia, north-eastern
Kazakhstan, Mongolia and northern Vietnam).
Despite a restrictive political situation, transport in
the late 1980s was at least possible from some open
countries, e.g. South Korea. In contrast, transport of
inoculum populations from Japan seems less probable
because of the prevalence of dominant melanic
morphs in this area (e.g. Noriyuki and Osawa 2015).
Furthermore, in the case of South America, the
presence of only the non-melanic morphs are
explained by the most probable source of populations
being eastern North America (Lombaert et al. 2010).

Presence of melanic morphs in Europe points to co-
founders, inocula of populations containing dominant
melanic allelomorphs, likely escapees of commercial
laboratory reared populations sold for biological
control in glasshouses or, less likely, accidental
introductions of native populations from Japan. By
admixture with populations from eastern North Amer-
ica, this inoculum is likely to have contributed to the
establishment of invasive, non-native European pop-
ulations. The far-reaching agreement between molec-
ular and morphological data confirms the outcrossing
event as a probable source of European populations
(Lombaert et al. 2010, 2011).

@ Springer

In determining factors and mechanisms of origin of
different morph composition in populations of partic-
ular areas, we should distinguish two processes: (1)
maintenance of colour polymorphism within a popu-
lation and (2) processes which lead to differentiation
of geographic populations (Gray and McKinnon 2006;
White and Kemp 2016).

Maintenance of morph frequency in local
populations

The mechanisms of the maintenance of colour poly-
morphism in H. axyridis are very likely similar in
native (east Asia) and invaded (Europe) areas. Sea-
sonal change in morph frequencies in populations of
H. axyridis in central Europe was smaller (fractions of
percent) and took place in the opposite direction.
Decreasing frequency of the non-melanic morphs
from late spring to early autumn appears to have been
reset by greater mortality of melanic morphs during
the winter. Overwintering experiments (Honek et al.
2018) observed greater mortality in melanic than non-
melanic morphs during the winter (Zdenka Martin-
kova and Alois Honek, unpubl.). However, this
observation was made in an artificial hibernation site
(Honek et al. 2018) and should be confirmed in
naturally assembled overwintering aggregations.
Raak-van den Berg et al. (2012) did not observe an
effect of colour morph on overwintering survival of H.
axyridis in the Netherlands.

Differentiation in morph frequency
among geographic populations

The origin of differences in morph frequency of H.
axyridis populations inhabiting different geographic
areas implies a mechanism overcoming the stabilising
effect of recurrent seasonal variation in morph
proportions (Wang et al. 2011). The area-specific
differences in morph frequencies may arise by (1)
long-term directed selection of particular morph
composition, or (2) short-term processes, most prob-
ably random changes in small populations, e.g.
founder effects or bottleneck effects.

Consider first the selection of particular morph
proportions in local populations which may imply
long term gradual changes in morph proportions.
Indeed, long-term variation in H. axyridis morph
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proportions was found in native populations (Komai
and Chino 1969; Bogdanov and Gagalchij 1986). The
extent of these changes, e.g. more than 25% decrease
in the percentage of phenotypic non-melanic morphs
during a 50-year period in central Japan (Komai and
Chino 1969), is greater than the differences observed
among invasive non-native populations in Europe.
This may be because the data from native populations
are available for a longer period than the data of
invaded populations in Europe. However, only c. 7%
increase in the frequency of the phenotypic non-
melanic morphs was observed over a 55-year period in
Vladivostok, Russia (Bogdanov and Gagalchij 1986),
which is similar to that observed in Europe.

A likely factor important for selection is climatic
difference between areas. Local climate, temperature
and humidity have proved the most important corre-
lates of morph frequencies in several species of
coccinellid (Dobzhansky 1933; Kryltzov 1956; Honek
1996; Sloggett and Honek 2012; Kawakami et al.
2015). Different thermoregulation capacities of colour
morphs have been advocated as a basis of the
maintenance of geographic differences in morph
frequency by climatic selection (Brakefield and Will-
mer 1985). In H. axyridis, the likely effect of climate is
different in native and invaded populations. Climate is
likely a driving factor of geographic variation in Japan
(Komai 1956). However, in Europe the effect of this
factor is unclear because of the limited variation in
morph proportions observed and the absence of a
correlation between climatic conditions and morph
frequency.

We may consider a possibility that geographic
differences originated by selection enforced through
affiliation to local complexes of Miillerian mimicry.
As with some other coccinellid species (Rothschild
1961; Frazer and Rothschild 1962; Pasteels et al.
1973), H. axyridis hemolymph contains distasteful and
poisonous alkaloids advertised by bright “warning”
coloration (aposematism) (Bezzerides et al. 2007;
Pruchova et al. 2014; Vesely et al. 2017). The species
may belong to a “Miillerian mimicry” complex of
species, with similar warning coloration and unpalata-
bility to predators. Here polymorphism presents a
problem if the species as a whole should be protected
by deceptive mimicry (Briolat et al. 2019). As in
Adalia bipunctata (L.) and Adalia decempunctata (L.),
polymorphic species composed of non-melanic and
melanic morphs may belong to different “circles” of

Miillerian mimicry (Brakefield 1985). Since warning
coloration does not confer full protection against
predation (Heikertinger 1932; Kristin 1988, 1991),
predators may exert different pressures on particular
mimicry complexes. The morph composition of a
species may thus be influenced by variation in local
pressures against particular circles of Miillerian mim-
ics. This scenario could be further investigated.

Due to the temporal stability of H. axyridis morph
frequency in local populations, it was assumed that the
populations are free of, or resistant to, selective
pressures and the differences may have originated by
founder effects, i.e. a random combination of morph
frequency in the initial populations. Spreading popu-
lations may have occasionally been reduced to small
migrant groups with randomly changed morph fre-
quencies which were subsequently maintained in local
populations. Alternatively, local populations may
have originated from several founder populations
whose morph compositions differed one from the
other. The eastern North America population, which is
likely one of the genetic sources of European popu-
lations (Lombaert et al. 2010), was certainly
monomorphic succinea. Neither origin or genetic
composition explaining colour morphs of these inoc-
ula populations are known. The explanation of macro-
geographic variation due to possible different origins
of source populations thus remains speculative.

Assembling data on world morph variation of
invasive, non-native H. axyridis populations con-
firmed a clear difference between the populations of
America and Europe. The results demonstrate insular
distribution of morph frequencies in local populations
of Europe, and pose an unsolved problem of the origin
of these differences. Further research is necessary to
elucidate (1) origin of this variation, (2) ecological
significance and (3) consequences of this variation for
applied problems of nature conservation and
agriculture.
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