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Multi-Objective Computation Sharing in
Energy and Delay Constrained Mobile Edge

Computing Environments
Arash Bozorgchenani, Student Member, IEEE, Farshad Mashhadi, Student Member, IEEE,

Daniele Tarchi, Senior Member, IEEE, and Sergio Salinas, Member, IEEE

Abstract—In a mobile edge computing (MEC) network, mobile devices, also called edge clients, offload their computations to multiple
edge servers that provide additional computing resources. Since the edge servers are placed at the network edge, e.g., cell-phone
towers, transmission delays between edge servers and edge clients are shorter compared to those of cloud computing. In addition,
edge clients can offload their tasks to other nearby edge clients with available computing resources by exploiting the Fog Computing
(FC) paradigm. A major challenge in MEC and FC networks is to assign the tasks from edge clients to edge servers, as well as to other
edge clients, in such a way that their tasks are completed with minimum energy consumption and minimum processing delay. In this
paper, we model task offloading in MEC as a constrained multi-objective optimization problem (CMOP) that minimizes both the energy
consumption and task processing delay of the mobile devices. To solve the CMOP, we design an evolutionary algorithm that can
efficiently find a representative sample of the best trade-offs between energy consumption and task processing delay, i.e., the
Pareto-optimal front. Compared to existing approaches for task offloading in MEC, we see that our approach finds offloading decisions
with lower energy consumption and task processing delay.

Index Terms—Mobile Edge Computing, Fog Computing, Computation sharing, NSGA2, Multi-Objective Optimization, Evolutionary
Algorithms, Energy Consumption, Delay.

F

1 INTRODUCTION

MOBILE Edge Computing (MEC) is a promising com-
puting platform that places computing resources near

to the end-users, e.g., MEC servers can be co-located with
cellular base stations. Compared to the existing Mobile
Cloud Computing (MCC) infrastructure [1], [2], where com-
puting resources are centralized in data centers far away
from end-users, MEC offers a comparable amount of com-
puting resources but with lower communication delays.
To further increase the amount of computing resources
available to end-users, it is possible to compliment MEC’s
edge resources with the computing capabilities of other
end-users’ devices, also known as fog computing [3], [4].
Due to their high potential, both MEC and Fog computing
have been used to handle applications with low-latency and
high-throughput requirements. For example, in Industry 4.0,
manufacturers equip their workers with augmented reality
headsets that require significant computing resources to
render three-dimensional images [5], [6]. In smart health-
care, physiological data collected by Internet of Things (IoT)
devices needs to be quickly analyzed to provide timely
diagnoses [7], [8].

In MEC networks, resource-poor end-user devices,
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called Edge Clients (ECs), can reduce their computing time
by offloading their computing tasks to nearby resource-rich
edge servers, called Edge Nodes (ENs), that are able to
complete the computing tasks faster than the ECs. Besides
offloading computing tasks to ENs, ECs can also outsource
their computations to other ECs that are willing to share
their idle resources with them.

Although ENs can complete computing tasks faster than
the ECs, offloading tasks to a remote device comes with
additional energy consumption and time delays, which can,
in some cases, exceed those of computing the task locally.
In particular, when ECs offload their tasks, they must first
spend energy to transmit their data to the remote device,
then wait for the data to be uploaded, and, finally, spend
energy for receiving the task results. Thus, the ECs face a
trade-off between the overall task completion time and their
energy consumption when deciding whether to offload their
tasks to other devices.

To find optimal offloading decisions in MEC, we model
the task offloading problem as a constrained multi-objective
optimization problem (CMOP) that jointly minimizes the
task processing delay and the energy consumption of the
ECs. The solution to the CMOP is characterized by a
Pareto front formed by a set of possible solutions where
each solution represents a different trade-off between task
processing delay and energy consumption of the ECs. To
solve the CMOP, we propose an evolutionary algorithm
(EA) that can efficiently find a high-quality approxima-
tion of the Pareto-optimal front. Specifically, we use the
Non-dominated Sorting Genetic Algorithm 2 (NSGA2) [9],
which has been shown to be fast and effective at solv-
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ing constrained multi-objective problems such as the one
considered in this paper. Different to existing EAs, which
use a set of random solutions for initialization, our EA
leverages knowledge about the ECs energy resources and
location to generate an initial set of solutions that is closer
to the Pareto-optimal front compared to a randomly gen-
erated one. Our extensive simulations show that using the
proposed initialization technique allows our EA to find a
high-quality approximation of the Pareto-optimal in fewer
iterations than existing EAs. Moreover, we also analyze the
results obtained by our algorithm when we set a maximum
number of iterations, and under varying weights for the
energy consumption and task processing delay.

The rest of the paper is organized in the following way.
In Section 2, we review the literature. In Section 3, we
describe the system. Section 4 describes the proposed EA
to solve the MEC CMOP, and, in Section 5, we present our
numerical results. Finally, in Section 6, we give concluding
remarks.

2 RELATED WORKS

Task offloading has been widely investigated in cloud com-
puting, MEC and fog computing. In this section, we briefly
summarize the existing approaches for task offloading.

Devices that offload computing tasks to remote servers
have two objectives. First, they aim to minimize the time
it takes them to complete the computing task. Second,
they aim to employ a minimum amount of energy to pre-
serve their scarce energy resources. Some existing works
exclusively focus on minimizing the task completion time.
In [10], Yang et al. propose to minimize the task completion
delay of a set of mobile devices that offload their tasks to
the cloud. They also propose an offline heuristic to solve
their optimization problem. Jia et al. [11] minimize the task
completion delay in cloud computing while considering the
finite energy resources at the mobile devices as optimization
constraints. Ning et al. [12] minimize the task completion
delay in a MEC network while ignoring task queues at the
edge servers. Liu et al. [13] consider a MEC network and
propose a task scheduling policy that minimizes the task
computing delays of the users’ devices. Chen et al. [14]
minimize the task computing time by modeling the problem
as a semi-Markovian decision process. Li et al. [15] propose
an online mechanism where a base station selects the task
executors of devices’ requests by jointly optimizing resource
allocation and time scheduling.

There are some works that focus on minimizing the en-
ergy consumption of the mobile devices. Specifically, Chen
et al. [16] use an online peer offloading framework based on
Lyapunov optimization to maximize the long-term network
performance while keeping low the energy consumption
of small-cell base stations in a MEC network. Zhang et
al. [17] develop a scheme that optimally chooses between
local computation or offloading to the cloud to minimize
the energy consumption. In [18], You et al. propose optimal
cloud outsourcing mechanisms for mobile devices capable
of transferring and harvesting power. The authors in [19]
formulate the problem of minimizing energy consumption
for a collaborative task execution between one mobile de-
vice and one cloud infrastructure as a constrained shortest

path problem. In [20], Mahmoodi et al. propose an optimal
computation offloading schedule of a mobile application to
the cloud subject to the saved energy at the mobile users.
Cao et al. [21] present a computation and communication
cooperation scheme for MEC systems. The authors consid-
ered multi-hop task offloading where intermediate devices
between the offloading devices and the edge servers can
participate in task execution. Song et al. [22] propose a
pricing mechanism and a Lyapunov optimization scheme
that can guarantees fair energy consumption between mo-
bile devices. The authors in [23] aim at minimizing the
energy consumption for mobile devices in MEC respect-
ing the power and latency constraints. After decomposing
the problem, they propose an iterative solution to solve
transmission power allocation and computation offloading.
However, we see that the above works only minimize the
energy consumption while ignoring the the task completion
delay.

As introduced in Section 1, there is a trade-off between
task completion delay and energy consumption of the
mobile devices. Some existing works have proposed task
offloading schemes that aim to simultaneously optimize
both objectives. Specifically, in [24], Kao et al. propose a
task offloading algorithm that balances energy consumption
costs and latency in latency-sensitive applications. Wang et
al. [25] consider mobile device energy consumption, and
application execution latency but formulate separate min-
imization problems. They first obtain an optimal solution
for the energy consumption minimization problem and
then a locally optimal solution for the latency minimization
problem. Hong et al. [26] consider both energy consumption
and latency by formulating an aggregate objective function.
Jiang et al. [27] propose a Lyapunov optimization approach
for cloud offloading scheduling, where multiple applica-
tions are running on multi-core CPU mobile devices. Dinh
et al. [28] jointly minimize task execution latency and energy
consumption of mobile devices by optimally choosing task
offloading decisions and the CPU-cycle frequency of the
mobile devices. In [29], Wang et al. propose a framework
that optimally offloads computation offloading and assigns
wireless resources. The MEC server first makes the offload-
ing decision based on the estimated overhead for mobile
devices and itself. Then, by solving a graph coloring prob-
lem, the framework assigns wireless channels. The authors
in [30] propose an energy-aware offloading approach that
minimizes the weighted sum of energy consumption and
latency by optimally choosing the computation offloading
decision, local computation frequency scheduling, and al-
location of power and wireless channels. In [31], Cao et
al. consider a simple three-nodes MEC architecture formed
by a user node, a helper node, and an access point. They
propose to divide the task into three parts and assign each
part to one of the nodes. The objective is to jointly Chen
et al. in [32], propose a gradient-based method for energy
minimization while meeting certain values of delay and
energy consumption. Lu et al. [33] address an edge-enabled
IoT scenario and study computation offloading by consider-
ing task latency, energy consumption, and task success rate
through the use of a deep reinforcement algorithm. The
work in [34] studies a fog-based mobile cloud computing,
where mobile devices are modeled with queues, fog nodes



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2994232, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. MM, NO. NN, MONTH YYYY 3

act as access points, and a central cloud is available for
computations. The authors model the energy consumption
and task delay offloading model as a multi-objective op-
timization that minimizes energy consumption, latency and
cloud payments. To solve this problem, the authors relax the
multi-objective optimization into a single-objective problem
and solve it using the interior point method. Although these
works aim to simultaneously optimize task completion de-
lay and mobile device energy consumption, their proposed
solution methods form a single objective, e.g., [34], or finally
consider the objectives separately, which yields only one
trade-off between the two objectives and ignores a large part
of the trade-off space.

To better explore the trade-off space in multi-objective
optimization problems, researchers have considered meta-
heuristic solution approaches. In [35], Midya et al. propose
an algorithm that combines a genetic algorithm (GA) with
adaptive particle swarm optimization to offload tasks in a
vehicular cloud. Cui et al. [36] employ an evolutionary algo-
rithm to minimize energy consumption and task completion
delay in a MEC network where mobile devices offload their
tasks to the edge servers. Unfortunately, these works only
consider mobile devices that offload their tasks to either the
cloud or edge servers while ignoring the possibility of of-
floading tasks to other mobile devices with idle computing
and energy resources.

In this paper, we propose an evolutionary algorithm that
can simultaneously minimize task completion delays and
energy consumption while considering task offloading to
both edge servers, i.e., ENs, and to other mobile devices,
i.e., ECs. Compared to previous works, our approach ef-
ficiently explores the trade-off space and yields a set of
different solutions with different trade-offs between the two
objectives. Besides, our approach scales well in the number
of devices in the MEC network and can handle partial
task offloading, which results in fine-grained control of the
offloading process and lower completion delays and energy
consumption.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-tier MEC architecture formed by a
set U = {u1, . . . , ui, . . . , uN} of heterogeneous ECs, with
limited computational capabilities and acting as sources
of the computation requests, and a set of ENs F =
{f1, . . . , fm, . . . , fM}, characterized by a higher computa-
tion capability. The heterogeneous ECs have different com-
putational capabilities and energy requirements. ECs are
battery powered, and, thus, have limited energy resources,
while ENs are connected to the electrical network, and
have access to virtually unlimited energy. A system operator
located nearby to the operational scenario manages the MEC
network by collecting information about the ECs and ENs
and estimating the offloading amounts that minimize the
energy consumption and task processing delay of the ECs.

To reduce both task completion delay and energy
consumption, ECs can offload their computational tasks
through wireless links to other nearby ECs or ENs. Allowing
task offloading between ECs is particularly important to
meet the task completion delay requirements of low latency
communications in battery operated edge environments.

Fig. 1. An Architecture for Task Offloading in Mobile Edge Computing
(MEC)

Thus, we assume that each EC can split its tasks into
multiple unique portions and simultaneously offload each
portion to different ECs or ENs. Fig. 1 shows the considered
MEC architecture. For a better clarity of the system to be
presented in the following, we list the key notations in
Table 1.

Consider an EC ui having a computing task that needs
to be processed, and its set of neighboring devices, which is
given by

N (i) = NEC(i) ∪NEN (i)

= {uj |d(ui, uj) ≤ RU ,∀j} ∪ {fm|d(ui, fm) ≤ RF ,∀m}
=
{
νi1, . . . , ν

i
k, . . . , ν

i
Ni

}
(1)

where d(·, ·) denotes the Euclidean distance operator be-
tween devices, RU is the coverage range of ECs, RF is the
coverage range of ENs, νik identifies the generic kth device
belonging to the neighborhood of ui, and Ni is the total
number of neighbors of EC ui. Note that the neighbor set
cardinality is variable across the devices, and that a device
can belong to different neighbor sets if it can be served by
more than one device.

The task offloading operation can be performed in two
ways. The first way is to offload the computing task from
an EC as a whole to a single device. The second way is to
first partition the EC’s computing task into several segments
that can be computed in parallel, and then offload each task
to a different device. We call the second approach task par-
titioning. Since task partitioning offers more opportunities
to utilize the idle computing resources in the network, we
adopt this approach in our system model.

Each EC can offload a set of portions of a single task
to another EC or EN. We assume that each set of offloaded
portions can be individually outsourced and computed in
parallel. For instance, in Fig. 2, EC ui has one task with ten
portions, and three available devices to offload, out of which
two are other ECs and one is an EN. In this example, five
fixed-size portions are offloaded to u1, two are offloaded to
u2 and three are offloaded to f1. The set of portions to be
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TABLE 1
Nomenclature (in order of appearance)

Notation Description
NEC(i) Set of ECs within ui’s range.
NEN (i) Set of ENs within ui’s range.
RU Coverage range of ECs
RF Coverage range of ENs
νik kth device belonging to the neighborhood of ui
δtx, δrx Minimum transmitted and received task portion size
α Ratio of δtx to δrx
γi The number of portions in ui’s task
ηcj computational capability of device uj
ηcm computational capability of device fm
Oil number of processing operations for lth task of ui
φ
uj
ui

Amount of task portions of ui shared with uj
φ
uj
fm

Amount of task portions of ui shared with fm

E
i,νik
off

Task portion offloading energy consumption by ui to
νik

Ēioff Partial offloading energy consumption by ui

T
i,νik
off

Task portion offloading delay by the ui
T̄ ioff Overall offloading delay by the ui
n̄ Number of ECs in the REC subset.
n̂ number of CECs within reach of ui.
f̂ Number of ENs within range of ui.
Eir Remaining energy of EC ui.
FEr (i) Distribution of the remaining energy of all ECs.

Ki
Maximum number of devices that can accept of-
floaded tasks.

w̃
νik
ui

Sum of energy and delay for possible offloading
decision of device ui.

Ẽ
i,νik
off Normalized value of Ei,ν

i
k

off in range of [0,1].

T̃
i,νik
off Normalized value of T i,ν

i
k

off in range of [0,1].

φ
νik
ui

Initial offloading decision for device ui.
Φ0 The initial solution population.
Φz Solution matrix, where Φz ∈ Φ0.
EΦz Overall energy consumption of solution Φz .
TΦz Overall processing delay of solution Φz .

Iz
Proximity of solution z with other solutions in the
objective space.

W Maximum number of crossover operations.
PC Probability of performing crossover operation.
PM Probability of performing mutation operation.
Qt Generated offspring set.

Fig. 2. Task portion distribution

estimated and shared from EC ui to EC uj and from EC ui
to EN fm, is denoted as φujui and φfmui , respectively.1

To partition the tasks into meaningful portions, the por-
tion sizes are set equal to a multiple of a minimum size. The

1. Since some of the neighbors of EC may offer a long task processing
delay, or result in high energy consumption, the EC may decide to not
outsource any task portion to some of its neighbors.

minimum portion size is given by the smallest number of
bytes that are needed to convey an instruction of the task’s
application, e.g., a given number of floating point operations
(FLOPS). Moreover, we assume the task result size is smaller
than size of the offloaded task. Let δtx be the minimum task
portion size which can be transmitted, and δrx the minimum
task portion size which can be received. Thus, the ratio
between one offloaded portion and one downloaded portion
is defined as α = δtx/δrx, where α > 1, and depends on the
application type. Now, let Di

s be the size of ui’s task to be
offloaded, and Di

r be the size of ui’s task to be downloaded.
Then, the total number of portions in ui’s task is given by:

γi =
Di
s

δtx
=
Di
r

δrx
(2)

where we assume that we can pad the task size to make Di
s

a multiple of δtx and, similarly, Di
r a multiple of δrx. Let

φ
uj
ui ’s and φfmui ’s be positive integers less than γi. For all the

offloaded portions we have the following:
N∑
j=1

φujui +
M∑
m=1

φfmui = γi (3)

To offload tasks, the ECs collaborate with other ECs
and ENs in three phases. First, the originating EC trans-
mits the task’s data to a neighboring EC or EN. Second,
the neighboring device completes the computational task.
Third, the originating EC downloads the task result from
the neighboring device. Thus, the originating EC’s energy
consumption for offloading a single task portion2 of size δtx
to a single neighboring device is:

E
i,νik
off = E

i,νik
tx + Ei,ν

i
k

rx , ∀νik ∈ N (i) (4)

where Ei,ν
i
k

tx and Ei,ν
i
k

rx are the energy spent for transmitting
a single task portion and for receiving the results from
remote device νik ∈ N (i), respectively3.

Now, the total energy consumption of the EC is given by

Ēitot =
∑

uj ,fm∈N (i)

(
φujui

(
E
i,uj
tx + Ei,ujrx

)
+ φuiuj · E

i
com+

φfmui

(
Ei,fmtx + Ei,fmrx

))
+ Eiid (5)

where Eicom represents the energy spent by the EC ui to
compute a single portion of a task, while Eiid denotes the
energy consumption of EC ui when it is idle, i.e., neither
transmitting, receiving or computing. We have considered
φuiui as a special case when uj = ui, corresponding to the
case in which the EC is offloading to itself i.e., processing
locally its own task. In this case, Ei,uitx = 0 and Ei,uirx = 0.

Similarly, we model the offloading delay for a single
portion as:

T
i,νik
off = T

i,νik
tx + T i,ν

i
k

rx + T i,ν
i
k

com , ∀νik ∈ N (i) (6)

where T i,ν
i
k

tx and T i,ν
i
k

rx are the time needed to transmit a sin-
gle task portion to a remote device and the time needed to

2. For a single portion, φ
uj
ui or φfmui equals to one. Note that the sum

of these two parameters, which represent the total number of offloading
portions, should be equal to γi as defined in (3).

3. Note that the reception energy is smaller than the transmission
energy since δtx > δrx.
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receive the results, respectively, and T i,ν
i
k

com is the computation
time of the task portion at the remote device νik. The time
period T i,ν

i
k

com is also the time that the EC ui waits to, between
uploading the task portion and receiving the result.

Given a task portion with size δtx, the transmission time
is defined as:

T
i,νik
tx =

δtx
ri,νik

(7)

and the corresponding receiving time as:

T i,ν
i
k

rx =
δrx
ri,νik

(8)

where ri,νik is the data rate of the link between the EC ui
and the remote device νik in the set of neighboring devices
N (i).

In this work, we consider that ECs generate tasks with
variable size. We define the index of a single task as l. Hence,
the time spent by device νik to compute one portion of the
lth task produced by the EC ui corresponds to:

T i,ν
i
k

com =


Oil/γi
ηcj

, if νik ∈ NEC
Oil/γi
ηcm

, if νik ∈ NEN
(9)

where Oil represents the number of processing operations
related to the lth task produced by the EC ui, and ηcj and
ηcm are the Floating-point Operations Per Second (FLOPS)
depending on the CPU of the EC uj or the EN fm, re-
spectively. Thus, Oil/γi represents the number of processing
operations for a single portion.

A remote device νik may receive multiple task portions
from other ECs or ENs. Therefore, the arriving task portion
of EC ui at the remote device νik may experience a waiting
time before it is processed. Thus, we can write the overall
offloading time as follows:

T̄ ioff = max
uj ,fm∈N (i)

(
φujui · T

i,uj
off + T i,ujw , φfmui · T

i,fm
off + T i,fmw

)
(10)

where T i,ujw is the task portion waiting time at the remote
device due to other processes.

Our goal is to efficiently find the number of task portions
that ECs should offload to their neighboring ECs, and to
their neighboring ENs, i.e., φujui ’s and φfmui ’s, respectively,
that simultaneously minimize the EC’s overall energy con-
sumption and task processing delay.

3.1 A Constrained Multi-objective Optimization Prob-
lem for Task Offloading in Edge Computing
To define the task offloading problem, we observe that an
EC aiming to minimize its task processing delay would
attempt to offload task portions to as many neighboring
devices as possible. The reason is that this would allow it
to exploit the neighbors’ computing resources in parallel.
However, increasing the number of devices for offloading
incurs in an increased energy consumption due to the ad-
ditional energy needed for transmission and reception to
devices that are further away. Indeed, in the considered task
offloading operation, delay is minimized when

max

|N (i)|∑
k=1

1{φν
i
k
ui > 0}

for every single task of ui that we have. This drives to
the observation that the EC’s energy consumption and task
processing delays are competing objectives.

To efficiently handle these two competing objectives, we
formulate the task offloading problem in edge computing
as a Constrained Multi-Objective Optimization Problem
(CMOP) in (11), subject to the constraints:

Eq. (3), (12a)
φujui = 0, if uj /∈ N (i), (12b)

φfmui = 0, if fm /∈ N (i), (12c)
φujui ≥ 0, if uj ∈ N (i), (12d)

φfmui ≥ 0, if fm ∈ N (i), (12e)

where Φ is the variable vector denoting the task offloading
decisions for the ECs, i.e.,

Φ =



φu1u1 ··· φ
uj
u1
··· φuNu1 φf1u1 ··· φ

fm
u1
··· φfMu1

...
...

...
...

...
...

...
...

...
...

φu1ui
··· φ

uj
ui
··· φuNui φf1ui

··· φfmui ··· φ
fM
ui

...
...

...
...

...
...

...
...

...
...

φu1uN
··· φ

uj
uN
··· φuNuN φf1uN

··· φfmuN ··· φ
fM
uN

.

 (13)

In (11), the first objective minimizes the EC’s energy
consumption, and the second objective minimizes the task
processing delay for all ECs. Constraint (12a) guarantees
that all task portions are computed either locally or at a
remote device, as already defined in (3). Constraints (12b),
and (12c) prevent the ECs from offloading tasks to non-
neighboring devices, and (12d) and (12e) constraints the
offloading decisions to non-negative values.

3.2 Characterization of the Pareto-optimal Front for
Task Offloading CMOP in Edge Computing
Unlike single-objective optimization problems where there
is a unique solution, the task offloading CMOP in edge
computing is characterized by a Pareto front of solutions.

In the presence of multiple conflicting objectives, any
solution point has to be gauged along multiple dimensions.
Hence, the quality of a solution is determined by its Pareto-
dominance with respect to other solutions. In particular, let
Φ = {Φ1,Φ2, ...,ΦZ} be the set of solutions, where Φz is the
zth solution as represented in (13), and Z is the total number
of generated solutions. Considering two solutions, say Φ1

and Φ2, for a given problem with C conflicting objectives,
say ωc (for all c ∈ [1, C]), we define Pareto-dominance as
follows:
Definition 1. Let ωc(Φ) be the value of the objective function for

the cth objective evaluated at some solution Φ. Then Φ1 is said
to Pareto-dominate Φ2 (i.e., Φ1 � Φ2) if ωc(Φ1) ≤ ωc(Φ2)
for all c ∈ [1, C], and there exists some p ∈ [1, C] such that
ωp(Φ1) < ωp(Φ2).

Although the above Pareto-dominance definition allows
to classify solutions based on their quality, it treats feasible
and unfeasible solutions equally. To favor feasible solutions
and penalize those that violate the constraints, we adopt the
constraint-dominance definition proposed in [9], i.e.,
Definition 2. A solution vector Φ1 is said to constraint-dominate

another solution vector Φ2 if any of the following conditions
is true:
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min
Φ

{
N∑
i=1

( ∑
uj ,fm∈N (i)

(
φujui

(
E
i,uj
tx + Ei,ujrx

)
+ φuiuj · E

i
com + φfmui

(
Ei,fmtx + Ei,fmrx

)))
,

N∑
i=1

(
max

uj ,fm∈N (i)

{
φujui

(
δtx
ri,uj

+
δrx
ri,uj

+
Oil/γi
ηcj

)
+ T i,ujw , φfmui

(
δtx
ri,fm

+
δrx
ri,fm

+
Oil/γi
ηcm

)
+ T i,fmw

})}
(11)

1) Φ1 is feasible, i.e., it satisfies all constraints, but Φ2 is not.
2) Both Φ1 and Φ2 are feasible and Φ1 Pareto-dominates Φ2.
3) Both Φ1 and Φ2 are infeasible, but Φ1 has lower overall

constraint violation.

Consequently, we can define the set of non-dominated solu-
tions as:

SP = {Φa | @Φb � Φa, for 1 ≤ a, b ≤ Z} (14)

In the following section, we design an evolutionary
algorithm that can find high-quality approximations of the
solution to the CMOP in (11).

4 AN EVOLUTIONARY ALGORITHM FOR TASK OF-
FLOADING IN EDGE COMPUTING

To solve the task offloading CMOP described in Sec-
tion 3.1, we propose a Multi-Objective Evolutionary Algo-
rithm (MOEA). The main idea of a MOEA is to use the
evolutionary principles of crossover, mutation, and selection
of Darwinian evolution to find the Pareto front. Crossover
and mutation probabilistically combine solutions to find
possibly better new solutions, while selection deterministi-
cally discards low-quality solutions and keeps high-quality
ones. Compared to other methods for multi-objective op-
timization, MOEAs offer an efficient way to find a high-
quality approximation of the Pareto-optimal front in a single
run.

Specifically, our proposed MOEA operates in four steps:
initialization, selection, reproduction, and population up-
date. First, the proposed algorithm randomly generates
an initial solution population, and ranks these solutions
based on their quality using selection. In the reproduction
step, the proposed algorithm probabilistically combines the
high-quality solutions with each other to generate possibly
better new ones. Then, the proposed algorithm repeats the
selection and reproduction steps until it reaches a maximum
number of iterations. In the following, we explain these
steps in details.

4.1 Initialization

To reduce the number of iterations needed to find a high-
quality approximation of the Pareto-optimal front, we de-
velop a two-phase initialization procedure that leverages
the structure of the task offloading problem to find a high-
quality initial solutions set. The proposed method generates
initial solutions with better quality compared to the ones
generated by random initialization, which allows us to find
a high-quality approximation of the Pareto-optimal front in
a low number of iterations. We measure the quality of our
initial solutions in the numerical result section.

In the first phase, we discard the devices that have low
energy levels. The reason is that selecting these devices to
compute the tasks from the ECs could deplete their energy.
In addition, discarding low energy devices significantly
reduces the solution space. In the second phase, we propose
a weighted random solution generation that favors offload-
ing decisions that delegate tasks between nearby devices,
resulting in initial offloading decisions with lower energy
consumption and task processing delay.

4.1.1 Phase 1: EC Classification
We divide EC’s into two subsets depending on their energy
level. The first subset contains ECs that have enough energy
to perform the computing tasks on behalf of other ECs.
We call this subset the Computing EC’s (CEC) subset. The
second subset contains EC’s that lack enough energy to
perform their own computations, and thus offload their
tasks to other EC’s. We call this subset the Requesting EC’s
(REC) subset. In order to perform this classification there
could be several methods aiming at sorting the devices and
dividing the set into two subsets. In this paper, we classify
the ECs based on the distribution of their remaining energy
at the moment the classification is performed. This approach
allows us to take into account the actual energy level of
the ECs. In particular, the two sets are selected based on
a 3-quantile function, so that they are always balanced in
numerosity [37]. To this aim, we formally define the CEC
and REC subsets as follows:

UREC =
{
ui|Eir ≤ Er,Q2

}
(15a)

UCEC =
{
ui|Eir > Er,Q2

}
(15b)

U = UREC ∪ UCEC (15c)

where Eir is the remaining energy of the EC ui and:

Er,Q2 = inf
{
Eir, i = 1, . . . , N |p ≤ FEir

}
(16)

is the quantile function, where inf{·} is the infimum operator,
p is equal to 2/3 for the upper 3-quantile index and FEir
represents the distribution of the remaining energy of all the
ECs. Eq. (16) aims to select the remaining energy value that
divides the set of ECs in 1/3 having a remaining energy
higher than Er,Q2 and 2/3 having a remaining energy
lower than Er,Q2. Note that we have considered one of the
indexes (upper index) for the classification mainly due to
two reasons. First it allows to classify the devices into two
subsets. Moreover, the upper index allows to select higher
number of users to act as the REC, due to the fact that
each CEC can perform the computation for several RECs.
RECs can only offload tasks to CEC or EN that are within
their transmission range. Hence, EC ui’s set of CEC that are
within its reach is given by

NCEC(i) = {uj |d(ui, uj) ≤ RU ,∀uj ∈ UCEC} , (17)
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and the set of ENs that are within its reach is defined as

NEN (i) = {fm|d(ui, fm) ≤ RF ,∀fm ∈ F}

for all ui ∈ UREC .
Besides, we denote the number of ECs in the REC subset,

the number of CECs within reach of ui, and the number of
ENs within reach of ui by n̄ = |UREC |, n̂ = |NCEC(i)|, and
f̂ = |NEN (i)|, respectively.

4.1.2 Phase 2: Initial Solution Set Generation
The main idea of our initial solution generation algorithm is
to form solutions that prioritize offloading tasks to ECs, or
ENs, with low energy consumption and low task processing
delay relative to other devices.

In particular, suppose a requesting EC ui ∈ UREC is
seeking to offload one task with one portion. Then, to find
an initial offloading decision for ui, we first calculate the
sum of energy consumption and task processing delay that
ui would experience by offloading its task portion to one of
its neighboring CEC or ENs, i.e.,

w̃ν
i
k
ui = Ẽ

ui,ν
i
k

off + T̃
ui,ν

i
k

off (18)

for all k ∈ [1,Ki], where Ẽi,ν
i
k

off and T̃
i,νik
off are obtained by

normalizing E
i,νik
off and T

i,νik
off to the range [0, 1] using min-

max re-scaling [38], and Ki is the number of devices that
can accept ui’s task portions. By further normalizing w̃ν

i
k
ui to

be in the range [0, γi], we define the upper bound on the
number of the task portions for ui that should be offloaded
to device νik, by wν

i
k
ui ∈ [0, γi].

Based on these upper bounds, the initial offloading deci-
sions is as follows:

φν
i
k
ui ∼ unif{0, wν

i
k
ui } (19)

for all k ∈ [1,Ki], and ui ∈ UREC , where unif denotes the
discrete uniform distribution between zero and wν

i
k
ui

However, since the offloading decisions in (19) may not
satisfy constraint (12a), i.e., the sum of an EC’s offloading
decisions may not be equal to the total number of task
portions

∑Ki
k=1 φ

νik
ui 6= γi, we replace the offloading decisions

in (19) as follows:

φmaxui ← φmaxui + γi −
Ki∑
k=1

φν
i
k
ui (20)

where φmaxui = max
∀k∈[1,Ki]

{φν
i
k
ui}.

The initial solution population Φ0 = {Φ1,Φ2, ...,ΦZ}
is generated by repeating the above procedure for each
offloading decision φν

i
k
ui ∈ Φz in every solution matrix Φz for

all Φz ∈ Φ0. We summarize the proposed weighted initial
solution generator in Algorithm 1.

4.2 Selection

After generating the initial population, the proposed algo-
rithm ranks the initial solutions based on their quality, and
their distance to their nearest neighbors in the objective
space. Specifically, the selection procedure first calculates

Algorithm 1 Weighted initial solution generator

Input: Ẽ
ui,ν

i
k

off , T̃
ui,ν

i
k

off

Find w̃
νik
ui

using (18) for all k ∈ [1, Ki] and ui ∈ UREC
for k = 1 to Ki do

Find w
νik
ui

by normalizing w̃
νik
ui

to the range [0, γi], and rounding to the
nearest integer.

Set φ
νik
ui

equal to a random integer drawn from the distribution

unif{0, w
νik
ui
}.

end for
Adjust the largest φ

νik
ui

to meet constraint (12a) using (20)

Output: φ
νik
ui

the overall energy consumption and processing delay of
solution Φz ∈ Φ as:

EΦz =
∑

ui∈UREC

Ēioff (21)

TΦz = max
ui∈UREC

{
T̄ ioff

}
(22)

for all z ∈ [1, Z], where Ēioff and T̄ ioff are given by (5)
and (10), respectively.

Then, using the constraint-dominance relationship ex-
plained in Definition 2, all individuals in Φ0 are compared to
each other and assigned a rank to determine the number of
times each individual is dominated by the others. For exam-
ple, an individual that is dominated by 10 other individuals
is assigned a rank of 11, and a non-dominated individual
receives a rank of 1.

An MOEA is desired to have a good diversity of non-
dominated solutions converging to the Pareto-optimal front.
To maintain this diversity, we further classify solutions
based on the crowding distance which measures the prox-
imity of an individual with others in the objective space,
and denote it using Iz [9]. Crowding-distance calculation
procedure is described in Algorithm 2.

Algorithm 2 Crowding-distance
Input: φz for z ∈ [1, Z], C

for each φz , calculate the objective values ωz,1, ..., ωz,c do
Define individual Iz and set it to 0 for each individual φz
for c=1 to C do

Sort individuals φz in Z in ascending order according to ωz,c
The crowding distance of the first and the last individual
are set to infinity
for z=2 to Z − 1 do
Iz = Iz +

ωz−1,c−ωz+1,c

maxz{ωz,c}−minz{ωz,c}
end for

end for
end for

Output: Crowding-distance of individual Iz

4.3 Reproduction
To generate a new set of possibly better solutions, the pro-
posed algorithm performs the reproduction step through the
following genetic operations: binary tournament, crossover,
and mutation.

The algorithm first applies the binary tournament op-
eration to the mating pool, which is the set of solutions
that will be combined by the crossover operation to form
new ones. We denote the mating pool by ΦM

0 . The binary
operation consists in randomly selecting two solutions, Φi
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Fig. 3. Crossover operation on parent solutions.

and Φj , from the current solution set Φ0, and then adding
the solution with the better dominance rank assigned during
the selection phase to Φ0. If both Φi and Φj have the same
rank, the solution with larger crowding distance is selected.
If both have equal crowding distance, one is chosen at
random. The algorithm repeats the binary tournament until
the maximum number m of solutions has been added to the
mating pool.

Next, the crossover operation combines the solutions in
the mating pool to generate new ones. The main idea of
crossover is to randomly choose two solutions Φi and Φj
from the mating pool ΦM

0 , and generate two child solutions
Φ′i and Φ′j formed by combining parts of the parent solu-
tions. Specifically, the crossover operation first randomly
chooses the set of crossover points D = {d1, d2, ..., dD}
from the interval [1, n̄], where di < di+1 (for all i ∈ [1, D]).
Then, children Φ′i and Φ′j are formed by alternating columns
from Φi and Φj according to the crossover points, that
is, Φ′i = [φi1, ..., φ

i
d1
, φjd1+1, ..., φ

j
d2
, ..., φidD−1

, ..., φiD], and
Φ′j = [φj1, ..., φ

j
d1
, φid1+1, ..., φ

i
d2
, ..., φjdD−1

, ..., φjD], as shown
in Fig. 3. The child solutions are added to the set of child
solutions Q0. The crossover operation selects two solutions
from the mating pool W times, where W is the maximum
number of crossovers. However, the crossover operation is
only performed with probability PC .

To apply the mutation operation, we first randomly
choose a child solution Φ′i ∈ Q0 with probability PM . If
a child solution is chosen, we replace a randomly chosen
column with randomly generated offloading decisions. To
ensure the new solution remains feasible, we apply (20). For
example, in Fig. 4, the child solution Φ′j has been chosen for
mutation, and the offloading decisions in the 4th column
have been replaced by random decisions, where γ4 = 30.

4.4 Population Update

Once the offspring population Q0 has been generated and
updated with mutations, we form the new solution pop-
ulation Φ1 by discarding the low-quality solutions in the
initial population Φ0, and in the offspring population Q0.
To this end, we first form an aggregate solution population
A0 = Φ0∪Q0, and calculate the rank and crowding distance
of the solutions in A0 as described in Section 4.2. Then, we
form the new population set Φ1 by adding solutions from
A0 in descending rank order until the maximum size of Φ1

Fig. 4. Mutation operation on the selected solution (Child 2)

has been reached. In other words, we add solutions with
rank 1 first, then, if there are unfilled positions in Φ1, we
add solutions with rank 2, and so on.

In the tth iteration of the algorithm, we apply the selec-
tion, and reproduction steps to the solution population Φt,
generate the offspring set Qt, and the aggregate population
At = Φt ∪ Qt. Then, the new solution population Φt+1

is filled with the top-ranked solutions in At as described
above. The iteration continues until t = X . We summarize
the proposed NSGA2-based algorithm in Algorithm 3.

Algorithm 3 Multi-objective offloading decision algorithm
Input: REC and CEC

Execute the initialization procedure
Generate the initial population Φ0 of size Z, given the
constraints (9)
for each φz ∈ Φ0 do

for each ui ∈ UREC do
calculate EφZ using (18)
calculate TφZ using (19)

end for
E = E + EφZ
T = T + TφZ
Sorting Φ0 based on Pareto dominance relationship
Determining crowding distance to maintain the diversity
Using binary tournament to fill the mating pool
Apply crossover on Φ0 and fill Q0

Apply mutation on Q0

Forming A0 = Φ0 ∪Q0

for t = 1 to X do
Form Φt by adding sorted solutions from At−1

Generate Qt by performing selection and reproduction on Φt

Forming At = Φt ∪Qt
end for

end for
Output: Pareto Fronts to the MO computation sharing problem

5 NUMERICAL RESULTS

In this section, we present the numerical results obtained
by our computer simulations. Specifically, we compare our
NSGA2-based approach to other two benchmark algorithms.
In the first benchmark, the algorithm assigns a task portion
of equal size to each of the available devices (i.e., CECs and
ENs). We call this straightforward solution the fair allocation
algorithm. The second benchmark is a distributed approach
already present in the literature which considers both delay
and energy consumption in a similar scenario [37]. By com-
paring with the fair allocation algorithm and the distributed
approach, we can show that our proposed NSGA2-based
approach can reduce both the energy consumption and task
completion delay of the ECs
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TABLE 2
Simulation Parameters

Parameter Value
Simulation Scenario Area 200m x 200m

Channel model Outdoor RRH/Hotzone, Model
1: Pico to UE [40]

Channel Bandwidth 10 MHz
Max. number of solutions in
mating pool (m) 100

Max. number of devices com-
puting the offloaded task (Ki)

10

Crossover prob. (PC ) 0.8
Mutation prob. (PM ) 0.2
Max. number of crossovers (W ) 100

TABLE 3
Task Parameters

Task Parameter Value

Task size (Dis) [1 5] MB
δtx, δrx 100 KB, 20 KB
Offloaded to downloaded portion (α) 5
Processing Application Operations 10 G FLOP per MB
Collecting Application Operations 1 G FLOP per MB

The computer simulations are performed in Matlab,
where the considered parameters are listed in Table 2. The
simulation is performed for 100,000 runs, where the dura-
tion of each run is set to 5 s, with the aim of comparing
the performance in terms of average task delay, average
EC energy consumption over time, and network lifetime,
defined as:
• Average Task Delay: The average time spent for a task for

transmitting, waiting, computing and receiving back
the result over the number of generated tasks;

• Average EC Energy Consumption Over Time: The average
energy all ECs have consumed per second;

• Network Lifetime κ%: The time instant beyond which κ%
of the ECs deplete their battery [39].

We hypothesize an area of 200× 200 meters, with a vari-
able number of heterogeneous ECs distributed randomly,
while there are 5 ENs placed as seen in Fig. 1, in a way
that each EC can be always served by at least one EN;
ECs generate tasks according to a Bernoulli distribution
with average p = 0.1 tasks per each simulation run. We
have considered a battery capacity for all ECs equal to 5000
Joules; however, each EC has a starting random energy
level uniformly distributed between 50% and 100% of the
battery capacity. We have considered two applications: (i) a
processing application generating tasks requiring a higher
number of processing operations (e.g., image processing),
and (ii) a collecting application, requiring a lower amount of
processing operations, (e.g., sensor data analysis). In Table 3
the numerical values are reported, expressed in terms of
Floating Point Operations (FLOP) per task data size. In
order to have a realistic scenario, we have considered three
ECs types with different capabilities, defined in Table 4.

In the NSGA2-based solution, the algorithm runs for
1000 iterations to find the Pareto results (i.e., X = 1000).
In order to analyze the impact of the number of iterations
on the energy and delay, we introduced a fourth approach
in the simulation results, named Constrained NSGA2, with a

lower computational complexity, where X = 500.
We first investigate the impact of the proposed initializa-

tion on the quality of the generated final solutions. To do
so, we run the simulation for a single run for five different
sets of ECs, and two cases: once when the NSGA2-based
algorithm uses the Proposed Initialization (PI) approach, as
introduced in Section 4.1, and once when it uses the Random
Initialization (RI) approach. Then, we compare the average
energy consumption and average processing delay values
obtained from these two cases and show them in Table 5.
As shown in Table 5, the PI approach shows better results in
both energy consumption and task processing delay, when
compared to the RI approach. Increasing the number of ECs
in the network adds more complexity to the network and
creates a bigger solution space, making it more time con-
suming and harder to find good quality solutions. However,
the good quality initial solutions generated using the PI
approach, helps the NSGA2-based algorithm to find better
solutions even when the network complexity increases.

At each iteration of the simulation, the output of NSGA2-
based approaches is composed by 15 non-dominated Pareto
optimal solutions. To explore the different attributes of the
Pareto optimal solutions, we considered three scenarios
where once the best Pareto solution in terms of energy
consumption is selected (Fig. 5), once the solution with the
best delay is selected (Fig. 6), and once the trade-off solution
with both relatively good delay and energy is selected
(Fig. 7). Then, we analyze the average energy consumption
(Figs. 5(a), 6(a), 7(a)), task delay (Figs. 5(b), 6(b), 7(b)), and
the network life-time (Figs. 5(c), 6(c), 7(c)) for each of these
three scenarios.

For the first scenario in which the selected Pareto solu-
tion has the best energy consumption (Fig. 5), we observe
the lowest average energy consumption compared to the
other two scenarios. Although as a result of giving pref-
erence to energy the delay attribute should be sacrificed
(Fig. 5(b)), the NSGA2-based approaches still show better
delay compared to the Fair allocation algorithm and the
distributed approach. The same case is valid when we select
the Pareto solution with the lowest delay (Fig. 6). In this
case, the NSGA2 approach shows the lowest average task
delay comparing to the other approaches. However, we
still observe that the NSGA2 approach shows an acceptable
average energy consumption, very close to the Constrained
NSGA2 approach. It must be noted that for these scenarios,
the selected solution for the Constrained NSGA2 is the trade-
off point, where there is no preference between energy and
delay. Finally, when the trade-off solution with relatively
good delay and energy consumption is selected (Fig. 7), in
both average task delay and energy consumption, NSGA2-
based approaches perform better. However, the NSGA2
approach performs better than the Constrained NSGA2 ap-
proach, showing the impact of higher number of iterations
that leads to higher variety of solutions generated when the
number of iteration increases.

Furthermore, it must be noted that as the number of ECs
increases, the number of interactions among ECs increases
which is why the energy consumption figures tend to rise.
In contrast to energy consumption, increasing the number
of ECs will decrease the average task delay. Due to the high
computational capability of the ECs and ENs for a single
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TABLE 4
Device Parameters

Parameter Coverage
Range

Battery
Capacity Initial Energy Computational

Capability
Computational
Power

Idle
Power

Transmission
Power

Reception
Power

High End EC 25 m 5000 J [50 100]% battery
capacity 25 G FLOPS 0.9 W 1.1 W 1.3 W 1.1 W

Low End EC 25 m 5000 J [50 100]% battery
capacity 15 G FLOPS 1.2 W 1.1 W 1.6 W 1.3 W

Heavy Duty EC 25 m 5000 J [50 100]% battery
capacity 20 G FLOPS 1.2 W 1.1 W 1.6 W 1.3 W

EN 100 m - - 150 G FLOPS - - - -
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Fig. 5. Energy-based Pareto selection
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Fig. 6. Delay-based Pareto selection

TABLE 5
Impact of proposed initialization approach

Number of ECs 200 400 600 800 1000
Energy-PI (J/s) 0.0204 0.0211 0.0224 0.0237 0.0245
Energy-RI (J/s) 0.0209 0.0217 0.0232 0.0249 0.0260
Improvement (%) 6.1 5.3 3.5 3.2 2.6
Delay-PI (s) 0.7719 0.6510 0.5309 0.4711 0.4515
Delay-RI (s) 0.8244 0.6959 0.5702 0.5258 0.5098
Improvement (%) 12.9 11.6 7.4 6.9 6.8

task a small delay is obtained, and therefore the ratio of
average task delay over number of generated tasks becomes
smaller by the increase in number of ECs. To overcome
the complexity of the algorithm due to higher number of

ECs, we have used the energy-based ECs classification and
weighted probabilistic solution generation, which helps the
algorithm to generate approximately high-quality solutions
faster with fewer number of solutions. Although the con-
strained NSGA2 approach has half of the time complexity of
the proposed NSGA2 approach, it fails to deeply investigate
the solution domain and this is why it shows comparably
higher values for energy and delay.

Figs. 5c, 6c and 7c show the network lifetime. The figures
are closely related with the energy consumption figures. As
shown in the figures, exploiting NSGA2 for optimization
results in less energy consumption, and therefore prolong-
ing the network lifetime. Moreover, the best performance is
gained when the Pareto solution is selected based on the
lowest energy consumption.
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Fig. 7. Energy&Delay-based Pareto selection

It is worth mentioning that number of ECs and iterations
have huge impact on the estimated portions to be offloaded
to the available devices for computation. As seen in the
previous figures, average task delay and average EC energy
consumption are largely influenced by these two important
factors. Hence, to show the trend of the changes in the
solutions obtained by NSGA2-based algorithms, we have
conducted the simulation for a single simulation run (i.e.,
5 seconds) and analyzed the impact of the number of ECs
and iterations on latency and energy consumption.

As seen in both Figs. 8a and 8b, as the number of
ECs increases, the delay decreases and energy consumption
increases. In particular, the higher number of task requests
from RECs causes more interaction between the RECs and
CECs, and subsequently, more energy consumption. In ad-
dition, the increase in the density of the RECs and CECs,
leads to lower task processing delay. Furthermore, we can
observe that increasing the number of iterations leads to
improvement on energy consumption and processing delay
of the tasks. This is due to the ability of the NSGA2-based to
discover a variety of solutions, and generate possibly better
ones using crossover and mutation operators.

However, the impact of number of iterations on the
diversity of generated solutions degrades gradually and
becomes less observable after some iterations. To analyze
this impact, we fix the number of ECs to 1000 and plot
the Pareto solutions of NSGA2-based for a single run, in
Fig. 9. We can see from the figure that Pareto fronts for
200 iterations are more diverse and cover a higher range of
values for energy consumption and task processing delay.
As the number of iterations increases, this range becomes
smaller, and reaches at its lowest for 1000 iterations.

We further analyze the generated Pareto fronts for dif-
ferent number of ECs and iterations, and show the results
in Fig. 10. We can see the values of energy consumption and
delay increase with the growth in number of ECs, while
increasing the number of iterations helps slowing down
this growth to some extent. We can see from the figure
that increasing the number of iterations has more impact
on the Pareto fronts, for the lower number of ECs in the
network. Taking the case with 200 ECs as example, we
see major improvement in energy consumption and task
processing delay by increasing the number of iterations.

With the growth in number of ECs, e.g., 1000 ECs, the
solutions space will also grow significantly and makes it
hard to find diverse solutions with better objective values.
However, for the case with 1000 ECs we still observe that the
NSGA2-based approach shows better energy consumption
and task processing delay values, when compared to the
distributed approach and the fair allocation approach.

6 CONCLUSION

In this work, we have considered a computation sharing
problem in MEC. The considered scenario is composed by
ECs and ENs, where the ECs have the ability to offload
their tasks to the nearby ECs and ENs. A computation
sharing system model has been developed where the goal
is to jointly minimize the energy consumption and the
task delay when offloading the tasks portions to different
devices. A suitable MOEA has been proposed for optimiz-
ing the computation sharing problem by considering both
average task delay and average EC energy consumption.
The numerical results shows that through the evolutionary
steps of the NSGA2 it is possible to optimize both energy
and delay and achieving better results than benchmark
solutions. Moreover, the proposed NSGA2-based approach
result in prolonging the network lifetime by optimizing the
amount to be offloaded by the ECs. Furthermore, we have
analyzed the effect of number of iterations in the genetic
algorithm and have observed the convergence of the Pareto
fronts in different scenarios with variable number of ECs.
In the end, it can be noticed that the Constrained-NSGA2
approach with a quite low time complexity can have results
close to the NSGA2 approach.
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