
22 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

P. L. Dovesi, M.P. (2020). Real-Time Semantic Stereo Matching. IEEE [10.1109/ICRA40945.2020.9196784].
Published Version:

Real-Time Semantic Stereo Matching

Published:
DOI: http://doi.org/10.1109/ICRA40945.2020.9196784

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/764255 since: 2020-07-05

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICRA40945.2020.9196784
https://hdl.handle.net/11585/764255

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. L. Dovesi et al., "Real-Time Semantic Stereo Matching," 2020 IEEE International

Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 10780-

10787

The final published version is available online at

https://doi.org/10.1109/ICRA40945.2020.9196784

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/ICRA40945.2020.9196784

Real-Time Semantic Stereo Matching

Pier Luigi Dovesi1,2, Matteo Poggi3, Lorenzo Andraghetti1, Miquel Martı́1,2,

Hedvig Kjellström2, Alessandro Pieropan1, Stefano Mattoccia3

Abstract— Scene understanding is paramount in robotics,
self-navigation, augmented reality, and many other fields. To
fully accomplish this task, an autonomous agent has to infer
the 3D structure of the sensed scene (to know where it looks at)
and its content (to know what it sees). To tackle the two tasks,
deep neural networks trained to infer semantic segmentation
and depth from stereo images are often the preferred choices.
Specifically, Semantic Stereo Matching can be tackled by either
standalone models trained for the two tasks independently or
joint end-to-end architectures. Nonetheless, as proposed so far,
both solutions are inefficient because requiring two forward
passes in the former case or due to the complexity of a
single network in the latter, although jointly tackling both
tasks is usually beneficial in terms of accuracy. In this paper,
we propose a single compact and lightweight architecture for
real-time semantic stereo matching. Our framework relies on
coarse-to-fine estimations in a multi-stage fashion, allowing: i)
very fast inference even on embedded devices, with marginal
drops in accuracy, compared to state-of-the-art networks, ii)
trade accuracy for speed, according to the specific application
requirements. Experimental results on high-end GPUs as well as
on an embedded Jetson TX2 confirm the superiority of semantic
stereo matching compared to standalone tasks and highlight
the versatility of our framework on any hardware and for any
application.

I. INTRODUCTION

In order to develop a fully autonomous system able to

navigate in an unknown environment independently, scene

understanding is essential. In particular, an intelligent agent

needs to recognize objects in its surroundings and determine

their 3D location before performing high-level reasoning

concerning path planning, collision avoidance and other

tasks. This requires addressing two problems: depth estima-

tion and semantic segmentation. Among the techniques to

infer depth, stereo vision has been around for a long time

[1] since it is potentially accurate and efficient. In the few

past years it has been heavily influenced by machine learning

techniques. In contrast, semantic segmentation only recently

emerged as an effectively addressable problem thanks to

machine learning and the recent spread of deep learning.

In this paper, we refer to Semantic Stereo Matching as

the combination of the two tasks aimed at understanding

the surrounding environment sensed by a stereo camera.

Nowadays, standalone networks trained for each of the two

specific tasks represent the state-of-the-art. However, al-

though modern deep architectures allow for easy integration

of multiple tasks [2], top performing frameworks rarely

exploit the possible synergies between the tasks. Indeed,

1Univrses AB
2KTH Royal Institute of Technology, Sweden.
3University of Bologna, Italy.

Fig. 1: RTS2Net allows for fast and accurate semantic seg-

mentation and disparity estimation, both on high-end GPUs

and low power systems.

casting semantic stereo matching as a joint optimization of

segmentation and disparity estimation yields mutual benefit

to both tasks. For instance, depth estimation in challenging

portions of the image corresponding to reflective surfaces

can be improved by knowing that they belong to a car and

thus to an object with defined 3D properties. On the other

hand, depth awareness can help to reduce ambiguity when

dealing, for instance, with the segmentation of vegetation

and terrain. Several works in the literature support the

synergy between semantic and depth inference [3]–[8] and

more recently the first semantic stereo matching frameworks

appeared [9], [10]. However, even if these first attempts

confirm the effectiveness of such a paradigm, they are far

from real-time performance even on power hungry high-end

GPUs. In particular, they barely break the 1 FPS barrier, thus

are not ready for deployment in real-world applications.

Purposely, in this paper, we propose a novel Real-Time

Semantic Stereo Network (RTS2Net) for jointly solving the

two aforementioned tasks. It is designed to leverage the

synergies between the two: it learns a common feature

representation for both domains and employs separate de-

coders for estimating accurate semantic segmentation and

disparity maps. Moreover, by designing a stack of multi-stage

decoders, RTS2Net produces coarse-to-fine estimations for

the two tasks, enabling to i) keep low memory and runtime

requirements for full inference and ii) further increasing

the speed by early-stopping the model at coarse resolution

[11], [12] according to the time/resource budget available

at deployment. Figure 1 sketches the RTS2Net architec-

ture, highlighting how from a shared representation (blue)

our network can reason about both semantics (green) and

disparity (yellow) and finally post-process early estimates

together (purple) to improve depth accuracy. Thanks to its

lightweight design, RTS2Net can run at several FPS on an

NVIDIA Jetson TX2 module with a power budget smaller

than 15W, yet providing accurate results competitive with

much more complex state-of-the-art networks. Moreover, by

early-stopping the network, for instance, before the post-

processing phase, we can increase speed with an acceptable

decrease of accuracy. To the best of our knowledge, RTS2Net

represents the first real-time solution for joint semantic

segmentation and stereo matching running seamlessly on

high-end GPUs and low-power devices.

II. RELATED WORK

In this section, we review the literature concerning stereo

matching, semantic segmentation and multi-task approaches

combining depth and semantic.

Stereo matching. Before the deep learning era, stereo

algorithms consisted of four well-defined steps [1]: i) cost

computation, ii) cost aggregation, iii) disparity optimiza-

tion/computation and iv) disparity refinement. Eventually, the

very first attempts to leverage machine learning for stereo

concerned confidence measures [13] or replacing some of

the aforementioned steps in stereo with deep learning, for

example learning a matching function by means of CNNs

[14]–[16], improving optimization [17], [18] or refining

disparity maps [19], [20].

End-to-end networks for stereo matching appeared si-

multaneously to the availability of synthetic data [21] and

DispNetC was the first network introducing a custom corre-

lation layer to encode similarities between pixels as features.

Kendall et al. [22] designed GC-Net, a 3D network pro-

cessing a cost volume built through features concatenation.

Starting from these seminal works, two families of archi-

tectures were developed, respectively 2D and 3D networks.

Frameworks belonging to the first class traditionally use

one or multiple correlation layers [9], [23]–[28], while 3D

networks build 4D volumes by means of concatenation [12],

[29]–[31], features difference [32] or group-wise correlations

[33]. Although most works focus on accuracy, some deployed

compact architectures [12], [27], [32], [34] aimed at real-

time performance. Finally, the guided stereo paradigm [35]

combines end-to-end models with external depth cues to

improve accuracy and generalization of both 2D and 3D

architectures.

Semantic segmentation. The advent of deep learning

moved semantic segmentation from hand-crafted features

and classifiers, like Random Forests [36] or Support Vector

Machines [37], to fully convolutional neural networks [38].

Architectures for semantic segmentation typically exploit

contextual information according to five main strategies. The

first consists of using multi-scale prediction models [39]–

[42], making the same architecture process inputs at different

scales so to extract features at different contextual levels.

The second deploys traditional, encoder-decoder architec-

tures [38], [43]–[45]. The third encodes long-range context

information exploiting Conditional Random Fields either as

a post-processing module [41] or as an integral part of the

network [46]. The fourth uses spatial pyramid pooling to

extract context information at different levels [41], [41],

[47]. Finally, the fifth deploys atrous-convolutions to extract

higher resolution features while keeping a large receptive

field to capture long-range information [48], [49]. As for

stereo, some recent works [50]–[54] focused on efficiency

rather than on accuracy for semantic segmentation. Zhu et

al. [55] recently proposed video prediction-based method to

synthesize new training samples.

Multi-task frameworks. There exist approaches aimed at

joint depth and semantic estimation, either from monocular

images [3]–[8] or stereo images [9], [10]. In both cases,

jointly learning depth and semantic segmentation enabled the

improvement of each task. Nonetheless, stereo approaches

are lagging far behind the real-time performance required

by most practical applications.

III. REAL-TIME SEMANTIC STEREO NETWORK

In this section, we introduce our framework for semantic

stereo matching. We start with a general overview of the

proposed RTS2Net, then focus on describing each component

and their interactions.

A. Architecture Overview

In order to achieve high accuracy with limited execution

time, the network design consists of a fully residual and

pyramidal architecture [11], [12], [27]. As depicted in Figure

2, the network is divided into four distinct modules: shared

encoder in blue, stereo disparity decoder in yellow, semantic

decoder in green and synergy disparity refinement module

in purple. For each block, we report the number of con-

volutional layers composing it and the number of features

they output as multiple of a factor c, hyper-parameter of the

network described in detail next. The network is designed

to keep a symmetrical architecture between disparity regres-

sion and semantic segmentation in order to facilitate the

exploitation of the shared parameters. Both segmentation and

disparity are fully computed only at the lowest resolution and

progressively refined through the higher resolution residual

stages. The same design occurs for the final refinement

module, processing the two outputs to improve the disparity

estimation significantly. Indeed, even in this final stage, the

full refined disparity is only computed at the lowest level and

progressively upsampled together with the coarse disparity

and semantic segmentation. This fully residual setup provides

consistent advantages both at training-time, since early losses

stabilize and accelerate this phase, and at testing-time since

we can dynamically adjust the speed/accuracy trade-off, as

discussed next.

B. Joint features extractor

As in most architectures, the earliest stage performs fea-

ture extraction from the input images. The shared encoder,

WARP

WARP

2

2 2 2

2

2

2

1

1

2 1

2 1

2 1

COST
VOLUME

+
3D

CONVs

COST
VOLUME

+
3D

CONVs

COST
VOLUME

+
3D

CONVs

3 3 3

2

2

2

R feat

R feat

R feat

stage 1

stage 1

stage 2

stage 3

stage 2

stage 3

REF. stage 1

REF. stage 2

REF. stage 3
right input image

left input image

output map and loss

encoder

data flow

disparity
semantic
refinement
addition

2

2c

4c

8c

16c

4c

2c

8c

8c

4c

2c

4c

2c

#classes

#classes

#classes

4c

8c

8c

1c

12

5

5

L feat

L feat

L feat

Fig. 2: RTS2Net architecture overview. Features extracted from the input stereo pair (blue) are the common ground for stereo

(yellow) and semantic (green) inference. Finally, the two outputs are combined (purple) for improved synergic disparity

estimation. For each block, we report the number of convolutional layers composing it and the number of features they

output, multiples of a factor c hyper-parameter of the network.

depicted in blue in Figure 2, is made of two initial 3 × 3
convolutions extracting c features and bringing the resolution

to half, then followed by four blocks each one containing

a 2 × 2 max-pooling operation and two 3 × 3 layers.

The four respectively extract 2c, 4c, 8c, 16c features while

progressively halving the resolution, i.e. 1
4 , 1

8 , 1
16 and 1

32 re-

spectively. Batch normalization and ReLU operations follow

all convolutional layers. Features extracted by this module

are processed by two subnetworks, in charge respectively of

semantic segmentation and disparity estimation. This forces

RTS2Net to learn a general and enriched representation

meaningful for both tasks. This design allows us for a dra-

matic reduction of the computational cost compared to much

more complex encoders such as VGG [56], yet enabling

accurate results. In particular, previous works [12] proved

that a tiny amount of features, i.e. c=1, already enables for

decent disparity estimation while significantly increasing the

framerate. However, it is insufficient to learn a representation

good enough for semantic segmentation too.

C. Disparity Network

Following the design of pyramidal networks [11], [12],

[27], a stack of decoders is deployed to estimate coarse-

to-fine disparity maps. This strategy allows us to keep

computational efforts low as well as to manage the speed-

accuracy trade-off dynamically, by performing three stages

respectively at 1
16 , 1

8 and 1
4 resolution. These stages have

been selected because the coarser resolution, e.g. at 1
32 , did

not improve the results while running decoders at lower-

res would significantly increase the runtime with negligible

improvements on the final accuracy. Deploying the shared

features computed by the feature extractor, task-specific

embeddings are extracted at the three resolutions mentioned

above, as shown by the yellow blocks in Figure 2.

At first, the disparity network takes the disparity features

extracted at 1
16 resolution and builds a distance-based cost

volume by progressively shifting right features up to a

maximum dmax range and subtracting them from left ones to

directly obtain an approximation of matching costs. By build-

ing the volume at low resolution, a small dmax is enough to

look for the entire disparity range at the original resolution.

In particular, we choose dmax = 12, corresponding to 192

maximum disparity at full resolution. Then, the volume is

regularized through three 3D conv blocks followed by batch

normalization and ReLU, extracting respectively 16, 16 and

1 features. Finally the disparity map is obtained by means

of a soft-argmin [22] operator. We kept the same amount of

channels as in [12]. This first, coarse estimation is upsampled

to 1
16 and used to warp right disparity features towards left

ones. At this stage, a new cost volume is built in order to

find residual disparities and thus to obtain a more accurate

disparity map. This time we assume dmax = ±2, i.e. ±16
at full resolution (we look for both positive and negative

residuals, since coarse disparities may be higher or lower

than real values). Then we deploy a decoder with three 3D

convolutions extracting 4, 4 and 1 features and a final soft-

argmin layer as well. The residual disparity is summed to the

upsampled estimation from 1
16 resolution, and the resulting

map is further upsampled to 1
4 resolution for the final stage,

identical to the previous, to improve further the disparity

estimation. Finally, the result of the third stage is bilinearly

upsampled from 1
4 to full resolution.

D. Semantic Segmentation Network

The second subnetwork in charge of semantic segmen-

tation follows the same coarse-to-fine design strategy for

the reasons previously outlined as well as to balance the

two branches (i.e. depth and segmentation) of the whole

RTS2Net network. Again, the shared features computed by

the encoder are processed by additional 2D convolutions as

in the disparity branch. Besides, 1
32 features are also used

to exploit a broader image context, crucial for semantic

segmentation. The semantic segmentation branch is made of

three stages as well, as shown by the green blocks in Figure

2. Each stage produces per-pixel probability scores for each

semantic class, defined according to the KITTI benchmark,

at 1
16 , 1

8 and 1
4 as the disparity network does. As depicted in

the figure, estimated probabilities are upsampled across the

stages and summed using residual connections to the outputs

of the same stage. These final probabilities allow to infer the

semantic map at each stage through a argmax over the class

scores.

E. Synergy Disparity Refinement module

The network described so far outputs standalone semantic

and disparity maps, yet from a shared representation. The

final module in RTS2Net, namely Synergy Disparity Refine-

ment, reverts this path by jointly processing the two task-

specific estimates with a single module to refine the disparity

regression leveraging semantic cues. A similar method has

been successfully deployed by previous works [9], [10] with

a simple, yet effective strategy consisting of a concatenation

of the two embeddings into a hybrid volume.

We adapted this approach to the fully residual strategy

followed both in the disparity network and in the semantic

decoder. To achieve this, we perform a cascade of residual

concatenations between semantic class probabilities and dis-

parity volumes. The refinement module, in purple in Figure

2, performs three steps: 1) in order to limit computational

time and balance the contributions in the hybrid volume, we

compress the semantic embedding so to have dimensionality

similar to the disparity cost volume, 2) we concatenate

compressed semantic features with disparity volumes (re-

organized so to have disparity dimension as channels) to

form the hybrid volumes, in the second and third stage we

also concatenate the upsampled previously computed refined

disparity, 3) the hybrid volume is then processed through

three 2D convolutional layers, producing disparity residuals

summed up to the original, reorganized volumes on which

the soft-argmin operator is applied.

F. Objective function

Summarizing the network outputs, we have 3 coarse

disparities dst, 3 semantic segmentation sst and 3 refined

disparities drst, with stages st ∈ [1, 2, 3] corresponding to the

3 different resolutions. Regarding the disparity regression, we

employ smooth L1 losses Ldst
and Ldr

st
defined as

L1smooth =

{

0.5(di − d̂i)
2, if |di − d̂i| < 1

|di − d̂i| − 0.5, otherwise
(1)

with d and d̂ respectively the estimated and ground truth

disparities, while Lsst for semantic segmentation multi class

cross entropy. All losses are averaged over the total amount

of pixels. Since the outputs belong to different decoders and

thus computed at different resolutions, we propose a double

hierarchical loss weighing scheme:

L =

3
∑

st=1

Wst · (Wd · Ldst
+Ws · Lsst +Wdr · Ldr

st
) (2)

Disparity

Main dataset epochs KITTI epochs EPE D1-all%

Sceneflow 10 300 1.24 6.47
Sceneflow 40 800 1.18 6.28

CS (coarse−→fine) 60−→75 800 1.14 5.75

TABLE I: Different training schedules / train sets tested on

KITTI 2015 validation split, with c=1 (AnyNet [12]).

where L is the overall objective function score, Wst are

stage weights and Wd,Ws,Wdr are task specific weights

respectively for disparity, semantic and refined disparity. In

our case Wst are respectively 1
4 , 1

2 and 1 for first, second

and final stages, while Wd, Ws, Wdr are 1, 2 and 2. The

segmentation cross-entropy is also weighted according to

the class probability to alleviate the effect of unbalanced

datasets [57]. Moreover, since we are working under a multi-

task setup, we want to keep the impact of the segmentation

independent to the choice of internal weighing schedule

or class distribution. Therefore, we design the following

weighing scheme:

Wj =
N

log (Pj + k)
∑N

i=1
1

log(Pi+k)

(3)

with Wj the weight of the j class, N the total number of

classes, P a class probability and k a parameter that controls

the variance of the class weights, set differently according

to the dataset (i.e. , 1.12 for CityScapes [54] and 2 for

KITTI 2015). Finally, in case of coarse semantic annotations

[58], we re-weight the segmentation loss according to the

percentage of unlabelled area left in the ground truth to

obtain Ls∗

Ls∗ = Ls(1 + γ ·
Aunlab

Atot −Aunlab

) (4)

with γ set to 0.1, to achieve the best results, and Aunlab,

Atot respectively the unlabelled and total amounts of pixels.

IV. EXPERIMENTAL RESULTS

In this section, we extensively evaluate the performance of

RTS2Net in terms of both accuracy and runtime. To compare

different variants of our model and measure the impact of

each of the design choices, we report quantitative results on a

validation split sampled from the KITTI 2015 training split

made of 40 images, using the remaining 160 for training.

We report the End-Point-Error (EPE) and percentage of

pixels with disparity error larger than 3 pixels and 5%

of the ground truth (D1-all%) to evaluate the accuracy of

estimated disparity maps. For both metrics: the lower, the

better. For semantic segmentation, we compute the class

mean Intersection Over Union (mIOU%) and the per-pixel

accuracy (pAcc%). For both metrics: the higher, the better.

A. Training Schedule

Traditionally, end-to-end stereo networks are trained from

scratch on the Freiburg SceneFlow dataset [21], an extensive

collection of synthetic stereo images with dense ground

truth disparities, before finetuning on the real, yet smaller

Disparity Semantic Frame rate (FPS)

Model c EPE D1-all% mIOU% pAcc% TX2 2080ti

AnyNet [12] 1 1.14 5.75 ✗ ✗ 10.4 96.8

RTS2Net 1 1.12 5.57 58.86 80.86 8.3 60.5

AnyNet [12] 4 0.96 4.22 ✗ ✗ 9.3 96.2

RTS2Net 4 0.90 3.80 60.93 89.77 7.4 60.5

AnyNet [12] 8 0.91 3.98 ✗ ✗ 8.1 96.2

RTS2Net 8 0.84 3.33 62.22 90.64 6.3 60.4

AnyNet [12] 16 0.87 3.52 ✗ ✗ 6.2 95.8

RTS2Net 16 0.78 2.90 67.41 92.92 4.5 60.4

AnyNet [12] 32 0.82 3.12 ✗ ✗ 3.5 64.1

RTS2Net 32 0.74 2.62 69.62 93.57 2.3 42.2

TABLE II: Impact of c on KITTI 2015 validation split.

target dataset such as KITTI 2015 [59]. However, since

SceneFlow does only provide instance segmentation labels,

it is not possible to train RTS2Net for semantic segmentation

on such imagery. Thus, we initialize our network on the

CityScapes dataset [58] (CS), providing about 25K stereo

pairs with disparity maps obtained employing Semi-Global

Matching algorithm (SGM) [60] and semantic segmentation

labels, for which 5K images are densely labeled and 20K

coarsely. Although disparity ground truth maps are noisy, a

proper training schedule on CS in place of the traditional

SceneFlow dataset is more effective when moving to KITTI.

Table I reports experiments supporting this strategy. We

trained a variant of RTS2Net by setting c=1 and removing

both semantic and refinement networks, i.e. equivalent to the

AnyNet architecture [12]. This way, we aim at measuring

only the impact of the different training schedules on dispar-

ity estimation, excluding improvements introduced by model

variants or multi-task learning that will be evaluated in the

remainder. In all our experiments, we train on 256 × 512
crops with batch size 6. We use Adam as optimizer with

betas 0.9 and 0.999 and set learning rate to 5e−4, kept

constant on SceneFlow/CityScapes and halved every 200

epochs on KITTI. We can see how a more extended training

on both SceneFlow and KITTI is beneficial compared to

the scheduling proposed in [12], respectively extending from

10 to 40 and from 300 to 800 epochs. By replacing the

SceneFlow pre-train with a multi-stage schedule on CS,

60 epochs on coarse ground truth followed by 75 on fine

annotations, allows for better accuracy when followed by

the same KITTI finetuning.

B. Model variants

As described in Section III-A, we designed most layers

in RTS2Net to extract features that are multiples of a

basis factor c. For instance, by cutting off semantic and

synergy modules and setting c to 1, we obtain the AnyNet

architecture [12]. Although very fast for disparity inference

alone, extracting so few features may lack at representing

semantical information. To assess this, we train and evaluate

variants of RTS2Net by setting different c factors. Table

II collects the outcome of these experiments conducted on

both the AnyNet architecture, inferring disparity only, and

our proposal, inferring disparity and semantic segmentation.

All networks have been trained following the best schedule

discussed in the previous section, i.e. 60 epochs on coarse

CS, 75 on fine CS and 800 on KITTI.

Disparity Semantic Frame rate (FPS)

Networks EPE D1-all% mIOU% pAcc% TX2 2080ti

Disp. 0.91 3.98 ✗ ✗ 8.1 96.2
Disp. + Sem. 0.90 3.90 64.21 91.56 6.6 76.9
Disp. + Sem. + Ref. 0.91 (0.84) 3.91 (3.33) 62.22 90.64 6.3 60.4

TABLE III: Ablation study (c=8), KITTI 2015 validation

split.

Stage 1 Stage 2 Stage 3

Model FPS D1-all% FPS D1-all% FPS D1-all%

AnyNet [12] 34.6 11.60 20.5 8.40 10.4 5.75

RTS2Net (c=8) 17.2 8.00 10.9 4.70 6.3 3.33

TABLE IV: Anytime inference, KITTI 2015 validation split.

By setting c=1, we obtain the same AnyNet configuration

reported in [12]. Choosing the same c on RTS2Net allows

for a moderate improvement on disparity estimation, as

well as to obtain reasonable results in terms of semantic

segmentation, at the cost of lower frame rate. By increasing

c respectively to 4, 8, 16 and 32 we observe a consequent

increase in accuracy on both tasks. In particular, passing

from 1 to 32 allows for a significant improvement regard-

ing semantic segmentation estimates, confirming that c=1

is insufficient for this purpose. Interestingly, the margin

between RTS2Net and AnyNet on disparity metrics gets

larger by increasing the number of features. Indeed, EPE

margin is 0.02, 0.06, 0.07, 0.09 and 0.12, while D1-all%

margin is 0.18, 0.42, 0.65, 0.62 and 0.50. This highlights that

increasing the number of features is much more beneficial

when the model is trained jointly for semantic segmentation

too, confirming this latter task to benefit more from a larger

pool of features.

For practical applications, c=8 represents a good trade-

off allowing for 6.3 FPS on Jetson TX2, i.e. about 160ms

per inference. Most of the time is taken by the disparity

subnetwork (120ms).

C. Impact of multi-task and synergy modules

We measure the contribution given by both the multi-

task learning paradigm itself and the synergy refinement

module specifically designed for RTS2Net. Table III collects

the results obtained by training ablated configuration of

our model depicted in Figure 2, setting c=8. The training

has been conducted on CS and KITTI, as described in the

previous section. On top, the variant made of the features

encoder (blue) and the disparity subnetwork (yellow). We

can notice how, by simply adding the semantic network

(green) and training for joint optimization of the two tasks,

slightly increases the disparity accuracy respectively by 0.01

and 0.08 in terms of EPE and D1-all%. As expected, the

best results are achieved by adding the synergy refinement

module (purple), shown in brackets on the last row of the

table together with EPE and D1-all% obtained from the

disparity network without applying the refinement. From

these results, as for semantic segmentation, we can notice

that depth estimation marginally loses accuracy compared

to the previous model (0.01 on both EPE and D1-all%

and 1.99, 0.92 on mIOU% and pAcc%). Nonetheless, this

Fig. 3: Qualitative results on KITTI. From left to right: reference image, semantic and coarse to fine disparity maps.

Network D1-bg% D1-fg% D1-all% Runtime (s)

GANet [62] 1.48 3.46 1.81 1.80

HD3 [28] 1.70 3.63 2.02 0.14
GWCNet [33] 1.74 3.93 2.11 0.32
SegStereo [9] 1.88 4.07 2.25 0.60
PSMNet [29] 1.86 4.62 2.32 0.41

RTS2Net (ours) 3.09 5.91 3.56 0.02
DispNetC [21] 4.32 4.41 4.34 0.06
MADNet [27] 3.75 9.20 4.66 0.02
StereoNet [32] 4.30 7.45 4.83 0.02

TABLE V: Result on KITTI 2015 online benchmark (stereo).

configuration yields a more considerable improvement after

refinement.

D. Anytime inference

RTS2Net allows for trading accuracy for speed by early-

stopping inference at an intermediate stage, a property shared

with other architectures [11], [12]. Table IV compares the

trade-off achieved respectively by AnyNet [12] and our

architecture measured on the NVIDIA Jetson TX2. We focus

on studying the impact on disparity estimation, since it

represents the bottleneck in our system. First, we can notice

how RTS2Net at any stage runs roughly at half the frames per

second, with ample margins in terms of improved accuracy.

Moreover, we highlight in red the two configurations achiev-

ing the minimum frame rate compatible with the KITTI

acquisition system (i.e. , 10 FPS [61]), respectively AnyNet

Stage 3 and RTS2Net Stage 2. In this setting, RTS2Net runs

slightly faster than AnyNet and achieves 1.05% reduction

in terms of D1-all%, yet providing the additional semantic

segmentation output making our framework the preferred

choice for practical applications. Moreover, by paying a

reasonable price in terms of speed RTS2Net can further

reduce the error rate compared to AnyNet by a total 2.42%.

E. Evaluation on KITTI online benchmark

We report the results achieved by submitting the maps

produced by RTS2Net on KITTI 2015 online benchmark.

To this aim, we trained a model having c=32 to compete

with state-of-the-art architectures, traditionally more com-

plex, achieving 0.74, 2.62 in terms of EPE and D1-all% and

69.62, 93.57 on mIOU% and pAcc% on the validation split

of Table II. We report runtimes on nVidia 2080ti.

Table V report a comparison between our model and

published state-of-the-art architectures taken from the on-

line stereo leaderboard, reporting the D1 metric on the

background (D1-bg%), foreground (D1-fg%) and all (D1-

all%) pixels. Unfortunately, results for AnyNet were not

submitted by the authors to the online KITTI leaderboard.

IoU iIoU IoU iIoU Runtime
Network class% class% category% category% (s)

VideoProp-LabelRelax [55] 72.82 48.68 88.99 75.26 -
IfN-DomAdap-Seg [63] 59.50 30.28 81.57 61.91 1.00
SegStereo [9] 59.10 28.00 81.31 60.26 0.60

RTS2Net (ours) 57.67 27.42 82.85 60.72 0.02 (0.008)
SDNet [64] 51.14 17.74 79.62 50.45 0.20
APMoE seg ROB [65] 47.96 17.86 78.11 49.17 0.20

TABLE VI: Result on KITTI 2015 segmentation benchmark.

Nonetheless, previous experimental results highlighted the

superior accuracy of our proposal. From the table, we can

notice how RTS2Net results more accurate than state-of-the-

art real-time frameworks MADNet [27] and StereoNet [32],

confirming the effectiveness of jointly inferring semantic and

disparity estimation. The gap with state-of-the-art architec-

tures reported in the upper portion of Table V ranges between

1.2 and 1.7% on D1-all%, yet running 7 to 90× faster.

Table VI reports a comparison between RTS2Net and

published methods on the KITTI semantic segmentation

online benchmark, highlighting semantic stereo frameworks

in yellow. Regarding the execution time of RTS2Net, we

report it when regressing only semantic information (0.008s)

and depth plus semantic (0.02s). Compared to SegStereo [9],

our network performs slightly worse on class level, while

being more accurate on categories and running about 30×
faster. Moreover, it outperforms some competitors specifi-

cally trained for semantic segmentation only [64], [65].

F. Qualitative results

Figure 3 shows some qualitative examples of semantic

segmentation and disparity maps generated by RTS2Net.

Finally, we refer the reader to the supplementary material1

for qualitative results on a KITTI video sequence.

V. CONCLUSIONS

This paper proposed a fast and lightweight end-to-end

deep network for scene understanding capable of jointly

inferring depth and semantic segmentation exploiting their

synergy. As reported in the exhaustive experimental results,

this strategy compares favorably to the state-of-the-art in both

tasks. Moreover, a peculiar pyramidal design strategy enables

us to infer stereo and semantic segmentation in a fraction of

the time required by other methods as well as to dynamically

trade accuracy for speed according to the specific application

requirements. To the best of our knowledge, our proposal is

the first network enabling to simultaneously infer accurate

depth and semantic segmentation suited for real-time appli-

cations, even on a low power budget deploying embedded

devices like the NVIDIA Jetson TX2.

1https://www.youtube.com/watch?v=wbtQcWAbgo0

https://www.youtube.com/watch?v=wbtQcWAbgo0

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” IJCV, vol. 47, no. 1-3,
pp. 7–42, 2002.

[2] R. Caruana, “Multitask learning,” in Learning to Learn, 1998.

[3] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspec-
tive,” in CVPR, 2014, pp. 89–96.

[4] A. Mousavian, H. Pirsiavash, and J. Košecká, “Joint semantic seg-
mentation and depth estimation with deep convolutional networks,” in
3DV. IEEE, 2016, pp. 611–619.

[5] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille,
“Towards unified depth and semantic prediction from a single image,”
in CVPR, 2015, pp. 2800–2809.

[6] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 7482–7491.

[7] P. Zama Ramirez, M. Poggi, F. Tosi, S. Mattoccia, and L. Di Stefano,
“Geometry meets semantics for semi-supervised monocular depth
estimation,” in Asian Conference on Computer Vision. Springer, 2018,
pp. 298–313.

[8] F. Tosi, F. Aleotti, P. Zama Ramirez, M. Poggi, S. Salti, L. Di Ste-
fano, and S. Mattoccia, “Distilled semantics for comprehensive scene
understanding from videos,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[9] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “Segstereo: Exploiting
semantic information for disparity estimation,” in ECCV, 2018, pp.
636–651.

[10] J. Zhang, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson,
“Dispsegnet: Leveraging semantics for end-to-end learning of disparity
estimation from stereo imagery,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 1162–1169, 2019.

[11] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, “Towards real-
time unsupervised monocular depth estimation on cpu,” in IEEE/JRS

Conference on Intelligent Robots and Systems (IROS), 2018.

[12] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. van der Maaten,
M. Campbell, and K. Q. Weinberger, “Anytime stereo image depth
estimation on mobile devices,” in Proc. of the IEEE International

Conference on Robotics and Automation, 2019.

[13] M. Poggi, F. Tosi, and S. Mattoccia, “Quantitative evaluation of
confidence measures in a machine learning world,” in ICCV, 2017,
pp. 5228–5237.

[14] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches.” Journal of Machine

Learning Research, vol. 17, no. 1-32, p. 2, 2016.

[15] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang, “A deep visual
correspondence embedding model for stereo matching costs,” in ICCV,
2015, pp. 972–980.

[16] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” in CVPR, 2016, pp. 5695–5703.

[17] A. Seki and M. Pollefeys, “Patch based confidence prediction for dense
disparity map.” in BMVC, vol. 2, no. 3, 2016, p. 4.

[18] ——, “Sgm-nets: Semi-global matching with neural networks,” in
CVPR, 2017, pp. 231–240.

[19] S. Gidaris and N. Komodakis, “Detect, replace, refine: Deep structured
prediction for pixel wise labeling,” in CVPR, 2017, pp. 5248–5257.

[20] K. Batsos and P. Mordohai, “Recresnet: A recurrent residual cnn archi-
tecture for disparity map enhancement,” in International Conference

on 3D Vision (3DV). IEEE, 2018, pp. 238–247.

[21] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in CVPR, 2016,
pp. 4040–4048.

[22] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and
context for deep stereo regression,” in ICCV, 2017, pp. 66–75.

[23] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual
learning: A two-stage convolutional neural network for stereo match-
ing,” in ICCV, 2017, pp. 887–895.

[24] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou,
and J. Zhang, “Learning for disparity estimation through feature
constancy,” in CVPR, 2018, pp. 2811–2820.

[25] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and
depth boundaries with a generic network for disparity, optical flow
or scene flow estimation,” in The European Conference on Computer

Vision (ECCV), September 2018.

[26] X. Song, X. Zhao, H. Hu, and L. Fang, “Edgestereo: A context
integrated residual pyramid network for stereo matching,” in ACCV,
2018.

[27] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. Di Stefano, “Real-
time self-adaptive deep stereo,” in CVPR, June 2019.

[28] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution
decomposition for match density estimation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6044–6053.

[29] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in
CVPR, 2018, pp. 5410–5418.

[30] G.-Y. Nie, M.-M. Cheng, Y. Liu, Z. Liang, D.-P. Fan, Y. Liu, and
Y. Wang, “Multi-level context ultra-aggregation for stereo matching,”
in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[31] S. Tulyakov, A. Ivanov, and F. Fleuret, “Practical deep stereo (pds):
Toward applications-friendly deep stereo matching,” in Advances in

Neural Information Processing Systems, 2018, pp. 5871–5881.

[32] S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and
S. Izadi, “Stereonet: Guided hierarchical refinement for real-time edge-
aware depth prediction,” in ECCV, 2018, pp. 573–590.

[33] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, “Group-wise
correlation stereo network,” in CVPR, 2019.

[34] F. Aleotti, M. Poggi, F. Tosi, and S. Mattoccia, “Learning end-to-
end scene flow by distilling single tasks knowledge,” in Thirty-Fourth

AAAI Conference on Artificial Intelligence, 2020.

[35] M. Poggi, D. Pallotti, F. Tosi, and S. Mattoccia, “Guided stereo
matching,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[36] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in CVPR. IEEE, 2008, pp.
1–8.

[37] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and
object localization with superpixel neighborhoods,” in ICCV. IEEE,
2009, pp. 670–677.

[38] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[39] D. Eigen and R. Fergus, “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,”
in ICCV, 2015, pp. 2650–2658.

[40] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention
to scale: Scale-aware semantic image segmentation,” in CVPR, 2016,
pp. 3640–3649.

[41] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” TPAMI, vol. 40, no. 4,
pp. 834–848, 2018.

[42] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and
A. Yuille, “Semantic image segmentation with deep convolutional nets
and fully connected crfs,” in ICLR, 2015.

[43] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
TPAMI, 2017.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-

ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[45] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refine-
ment networks with identity mappings for high-resolution semantic
segmentation,” CVPR, 2017.

[46] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent
neural networks,” in ICCV, 2015, pp. 1529–1537.

[47] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017, pp. 2881–2890.

[48] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei,
“Deformable convolutional networks,” CoRR, abs/1703.06211, vol. 1,
no. 2, p. 3, 2017.

[49] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” WACV, 2018.

[50] R. P. Poudel, U. Bonde, S. Liwicki, and C. Zach, “Contextnet:
Exploring context and detail for semantic segmentation in real-time,”
in BMVC, 2018.

[51] R. P. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn: fast semantic
segmentation network,” in BMVC, 2019.

[52] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet:
Bilateral segmentation network for real-time semantic segmentation,”
in Proceedings of the European Conference on Computer Vision

(ECCV), 2018.
[53] D. Mazzini, “Guided upsampling network for real-time semantic

segmentation,” in BMVC, 2018.
[54] X. Chen, X. Lou, L. Bai, and J. Han, “Residual pyramid learning

for single-shot semantic segmentation,” IEEE Transactions on

Intelligent Transportation Systems, p. 111, 2019. [Online]. Available:
http://dx.doi.org/10.1109/TITS.2019.2922252

[55] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. D. Newsam, A. Tao, and
B. Catanzaro, “Improving semantic segmentation via video propaga-
tion and label relaxation,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019.
[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[57] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
2016.

[58] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

[59] M. Menze and A. Geiger, “Object scene flow for autonomous vehi-
cles,” in CVPR, 2015, pp. 3061–3070.

[60] H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” PAMI, vol. 30, no. 2, pp. 328–341, 2008.

[61] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in CVPR, 2012.

[62] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in CVPR, 2019.

[63] J.-A. Bolte, M. Kamp, A. Breuer, S. Homoceanu, P. Schlicht, F. Hger,
D. Lipinski, and T. Fingscheidt, “Unsupervised Domain Adaptation to
Improve Image Segmentation Quality Both in the Source and Target
Domain,” in Proc. of CVPR - Workshops, Long Beach, CA, USA, Jun.
2019.

[64] M. Ochs, A. Kretz, and R. Mester, “SDNet: Semantic guided depth
estimation network,” in German Conference on Pattern Recognition

(GCPR), 2019.
[65] S. Kong and C. Fowlkes, “Pixel-wise attentional gating for parsimo-

nious pixel labeling,” in WACV, 2019.

http://dx.doi.org/10.1109/TITS.2019.2922252

