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A-BI+: A Framework for
Augmented Business Intelligence

Matteo Francia, Matteo Golfarelli∗, Stefano Rizzi

DISI – University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Abstract

Augmented reality allows users to superimpose digital information (typically, of
operational type) upon real-world objects. The synergy of analytical frameworks
and augmented reality opens the door to a new wave of situated analytics, in
which users within a physical environment are provided with immersive analyses
of local contextual data. In this paper, we propose an approach named A-
BI+ (Augmented Business Intelligence) that, based on the sensed augmented
context (provided by wearable and smart devices), proposes a set of relevant
analytical queries to the user. This is done by relying on a mapping between the
objects that can be recognized by the devices and the elements of the enterprise
multidimensional cubes, and also by taking into account the queries preferred
by users during previous interactions that occurred in similar contexts. A set
of experimental tests evaluates the proposed approach in terms of efficiency,
effectiveness, and user satisfaction.

Keywords: Augmented reality, OLAP, Query recommendation

1. Introduction

With the disruptive advances in pervasive computing and industry 4.0, busi-
ness intelligence is shifting its focus on the integration of (internal) enterprise
and (external) contextual data. In this direction, the synergy of analytical
frameworks and augmented reality opens the door to situated analytics1, in
which users within a physical environment are provided with immersive anal-
yses of local contextual data. Indeed, augmented reality (AR), a variation of
virtual reality, allows users to superimpose digital information upon real-world
objects [2], thus determining an augmented environment. Nowadays digital data
returned to users are typically operational, meaning that they either describe
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the current state of the visualized objects (e.g., the temperature of a machine)
or suggest the operations to be carried out (e.g., instructions to use the ma-
chinery). Conversely, limited attention has been devoted to providing analytical
reports that can be used by decision makers to evaluate the behavior and per-
formance of the visualized objects from a tactical and strategic point of view,
for instance with reference to their past history or to other objects of the same
type.

This new goal opens relevant research challenges and revamps many issues
related to business intelligence and recommendation systems [3]. Indeed, when
working with high-dimensional contextual data (the multidimensional nature of
the context is well understood [4, 5]), identifying insightful queries and visual-
izations is not trivial [6] and requires several research issues to be solved [1]:
How can data be sensed and accessed in real time? How is the sensed context
mapped to enterprise data? Which data is salient to the user analysis? How do
users interact with the retrieved data?

To the best of our knowledge, none of the context-aware recommender sys-
tems proposed in the literature addresses the above questions with reference to
situated analytics in general, and to AR in particular. While the research on
computer vision [7, 8] and situated visualization [9, 10, 11] is vivid, not much
has been done to set up a business intelligence process bridging context sensing,
data visualization, and decision making.

In this paper we envision and formalize a foundation for Augmented Business
Intelligence (A-BI+), a framework empowering AR users with context-aware an-
alytical information under visualization and time constraints. The context is
modeled as a set of recognizable environment objects (e.g., a machine in a manu-
facturing environment) plus a set of additional user/environmental information
(e.g., the user role and the room temperature). The analytical information re-
turned is tailored to the context currently perceived by the user and comes in
the form of reports obtained by running OLAP queries on the enterprise mul-
tidimensional cubes. The quantity of data returned must be limited in size
and focused on the context to meet performance constraints and be easily in-
terpretable by the user; furthermore, the intrinsic dynamics of AR applications
ask for right-time (reasonably a few seconds) responsiveness of A-BI+.

An overview of the A-BI+ framework is given in Figure 1 which shows Bob,
a controller working for a company producing fitness equipment and wearing
AR smart devices featuring sensors of different types. We assume the pattern
recognition capabilities necessary to recognize the context are provided by these
smart devices. Bob’s task is to optimize the production based on the assem-
bling times of manufacturing devices, also considering the sale volumes of the
different products. When he stares at an assembly machine, the AR glasses he
is wearing recognize the machinery and some nearby objects (in the picture, a
seat being assembled with an exercise bike); a context is generated accordingly,
also including data about the current date and time and Bob’s position and
role.

Our goal in this setting is to suggest to Bob in real time the set of analyt-
ical queries over the enterprise multidimensional cubes that are more relevant
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Figure 1: Overview of the A-BI+ framework

according to both a-priori knowledge and feedback given by users in similar
contexts. Relevant figures could be the number of produced items, the assem-
bly times, and the revenues for the product being sensed. With reference to
Figure 1, this task is carried out by the Context interpretation component using
a collaborative filtering approach that relies on the query log. Although A-BI+

supports the possibility of learning meaningful queries from the log, its capa-
bility of returning the right information primarily comes from some a-priori
knowledge provided by domain experts. This choice is not simply a solution
to the well-known cold-start problem (i.e., the problem of providing significant
recommendations when user feedbacks are still insufficient); it is rather a de-
sign choice aimed at enabling the system to give a useful answer in complex
context scenarios, where learning from the log would require too many exam-
ples. The a-priori knowledge is modeled through a set of mappings between the
potentially recognizable environment objects (stored in a dictionary) and the
multidimensional elements of the enterprise cubes. Rather than proposing the
most relevant query only, A-BI+ proposes a set of alternative queries to Bob; all
of them are related to the current context but they are different enough to offer
to the user different flavors of the same information. This phase is implemented
by the Query selection component. At this time, Bob can either execute one
of the proposed queries or express a new query to obtain a different report.
Finally, Bob gives his feedback on the proposed queries, which is stored in the
log.

A-BI+ can be applied to different application domains ranging from health-
care [12] to factories [13, 14]; for this reason, the main modeling choices under-
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lying our approach (e.g., how to define the relevance of an object in a context)
have been formalized in a domain-independent fashion, while domain-dependent
examples are provided in the context of AR in a factory where fitness equipment
is produced.

To sum up, the main contributions of this paper are:

1. We envision an A-BI+ framework, its functional architecture, and the
user/system interaction process.

2. We explain how a-priori expert knowledge can be modeled by mapping
context objects to relevant multidimensional elements.

3. We describe an efficient algorithm to generate relevant and diverse queries
to be returned to the user.

4. We propose a collaborative filtering approach to let the system learn from
user feedback.

A-BI+ extends our previous contribution [15], named A-BI, mainly by (i) gen-
eralizing queries to operate on multiple cubes (drill-across queries in the OLAP
terminology) to better fit real decision-making contexts; (ii) generalizing the
object-to-cube mappings to map onto sets of multidimensional elements, so as
to enhance their expressiveness; (iii) giving a new definition of query relevance
and the corresponding formalization of the query selection problem as an op-
timization problem; and (iv) providing an extensive experimental evaluation
based on a real manufacturing environment.

The remainder of the paper is organized as follows. Section 2 describes the
related work in the field of context-aware recommendation systems. Section 3
formalizes the A-BI+ framework. Sections 4 and 5 describe the context inter-
pretation and query selection components, respectively. Section 6 describes the
results of experimental tests that measure the performance of A-BI+. Finally,
Section 7 sums up our contribution and gives future research directions.

2. Related work

The A-BI+ framework can be classified as a recommender system in the
area of business intelligence based on a context made of augmented entities.
Despite the huge amount of work in these areas, to the best of our knowledge,
no approach lies at their intersection.

Over the years, scholars have highlighted the importance of exploiting con-
textual information to provide focused recommendations with the nature of
contexts being quite heterogeneous (a summarized description in provided in
Table 1), for instance space and time [27], query logs [18, 19], statistics on re-
sults [23, 24] or databases [21], user interests [16], and social data [20]. Given
such heterogeneity, other contributions (e.g., [30, 31, 20]) address the integra-
tion of contextual data to provide a common ground (e.g., a global schema [31]
or an application programming interface [20]) enabling recommendation from
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User input Context MD RT C D
[16] OLAP query User profile 3
[17] OLAP session OLAP session log 3 3
[18] SQL query Query logs 3 3
[19] OLAP query Dashboards, reports 3
[20] SPARQL query Web documents
[21] SQL query Database statistics 3 3
[22] SQL query Result feedback 3
[23] SQL query Result statistics
[24] SQL query Result statistics 3 3
[25] Web query Clicks, query log
[26] Web query Clicks, query log 3
[27] Web query Location 3 3
[28] Web query Query logs
[29] OLAP query Query logs 3
A-BI+ none Physical env., log 3 3 3 3

Table 1: Comparison of recommender systems in terms of user input, context type, recom-
mendation of multidimensional OLAP queries (MD), real-time constraint (RT), cardinality
constraint (C), and query diversification (D)

multiple data sources. The previous context types have been widely adopted
in several applications where the recommendation process is activated by an
explicit user-defined input statement (e.g., query or keywords). Examples of
applications are web query categorization [28, 17], recommendation [16, 25],
and diversification [26]; query completion [18, 19]; localized web keywords sug-
gestion [27]; and interactive exploration of databases [22]. The main differences
between A-BI+ and these works are: (1) the multidimensional nature of the
data handled and returned, (2) the nature of the context as well as the type
of user/system interaction that triggers the recommendation, and the presence
of (3) real-time, (4) cardinality and (5) diversification constraints. As to (1),
multidimensional and hierarchical data support recommendations at different
granularities, which intrinsically makes finding the best recommendation more
complex; as to (2), physical contexts require ad-hoc solutions to choose the
relevant context elements due to application specificities (e.g., object engage-
ment) and to the possibility of having in the context elements that are perceived
but that are not relevant for the user; as to (3), (4), (5), these constraints are
required by immersive applications [1].

Recommender systems in business intelligence applications are well surveyed
in [32]. Recommendations typically involve multidimensional queries [29] or ses-
sions [17] (i.e., query sequences) using query logs as contexts. These approaches
are based on collaborative filtering techniques that do not synthesize new queries
from existing ones, but pick queries from the log depending on their similarity
score. Conversely, A-BI+ allows the generation of queries not already present
in the log by combining similar queries from the log and contextual information
into a set of diverse queries. This assumption collocates A-BI+ as a hybrid ap-
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proach to recommendation [32], differentiating A-BI+ from the above-mentioned
contributions in multidimensional recommendation systems. Note that diver-
sification and multiple recommendations are used to better meet user interests
[33]. A further advantage of A-BI+ over pure collaborative filtering approaches
is that A-BI+ does not suffer from the so-called cold start problem, since it is
able to return an appropriate recommendation even when the log is empty [34].

In the area of AR and situated analytics, contexts play an even more central
role. There, a context is the set of objects recognized in the environment that
acts as situated stimulus (i.e., object properties) to be translated into inputs for
a search query; it is augmented with virtual information and is returned to the
user [10]. Physical environment becomes a source of contextual information in
[35], where user interaction with a physical environment is leveraged to retrieve
operational data of interest. The usage of AR as an interactive medium opens
to a natural data exploration and is especially helpful when the analysis goals
are not specified [11]. Scholars focus on finding proper visualization to embed
operational data in physical objects [9, 10, 11], with a particular effort on the
implementation of toolkit allowing the rapid prototyping of such visualizations
[36]. Although [9] considers multidimensional data, it is not specified how the
process of information retrieval and analysis of data at multiple level of details
is carried out. Besides, these approaches do not include collaborative filtering
to discover potentially useful information. Interestingly, although [9] does not
consider analytical data, it introduces a mantra for situated analytics: “de-
tails first, analysis, then context-on-demand” which contradicts the well-known
mantra “overview first, zoom and filter, then details-on-demand” [37] of classical
visualization systems. Indeed, when it comes to pure augmented visualizations,
information is directly attached to single objects [9, 10], assigning higher priority
to details than to generic information.

3. Preliminaries

We start this section by introducing a formal setting to manipulate multidi-
mensional data; for simplicity we will consider linear hierarchies only.

Definition 1 (Hierarchy). A hierarchy is defined as a triple h = (Lh,�h,≥h)
where:

(i) Lh is a set of categorical levels; each level l ∈ Lh is coupled with a domain
Dom(l) including a set of members (all domains are disjoint);

(ii) �h is a roll-up total order of Lh; and

(iii) ≥h is a part-of partial order of
⋃
l∈Lh Dom(l).

Exactly one level dim(h) ∈ Lh, called dimension, is such that dim(h) �h l for
each other l ∈ Lh. The part-of partial order is such that, for each couple of
levels l and l′ such that l �h l′, for each member u ∈ Dom(l) there is exactly
one member u′ ∈ Dom(l′) such that u ≥h u′.
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For instance, for a temporal hierarchy Time, it is Date �Time Month �Time

Year and 02/12/2019 ≥Time Dec2019 ≥Time 2019.

Definition 2 (Group-by Set). Given a set of hierarchies H, a group-by set
of H is a subset G of levels in the hierarchies of H including at most one level
for each hierarchy. The roll-up order on the hierarchies of H induces a partial
order on the group-by sets of H as follows:

G � G′ ⇔ ∀l′ ∈ G′ ∃l ∈ G s.t. l �h l′

Definition 3 (Cube and Data Mart). Given a set of hierarchies H, a cube
over H is defined as a triple c = (Gc,Mc, ωc) where:

(i) Gc is a group-by set of H;

(ii) Mc is a set of numerical measures; each measure m ∈ Mc is coupled with
one aggregation operator op(m) ∈ {sum, avg, . . .}; and

(iii) ωc is a partial function that maps the tuples of members for the levels of
Gc to a numerical value for each measure m ∈Mc.

A data mart is a couple of a set of hierarchies H and a set C of cubes over H,
M = (H,C).

The levels, members, and measures of cube c are given the generic name of md-
elements of c. Note that the ωc is defined as partial since cubes are normally
sparse; the cardinality of c is the number of tuples of members that are mapped
through ωc and is denoted with |c|.

Example 1 (Data Mart). Our working example (Figures 1 and 2) includes
two cubes, Sales and Assembly, which share hierarchies Product and Date; the
two cubes are completed by hierarchies Store and Device, and Part. Sales are
described by measures Quantity and Revenues, while Assembly is described by
measures AssembledItems and AssemblyTime; all measures are additive, i.e.,
they are coupled with the sum operator. A member of the Part level is Seat,
while a member of Product is BikeExcite. �

In the A-BI+ framework, cubes are queried through GPSJ (Generalized Pro-
jection / Selection / Join) queries, a well-known class of queries that was first
studied in [38]. A GPSJ query is composed of joins, selection predicates, and
aggregations. Remarkably, having all the cubes inM defined over the same set
of hierarchies H corresponds to assuming that the cubes share a set of conformed
dimensions, which enables the formulation of drill-across queries (queries join-
ing two or more cubes).

Definition 4 (Query). A query q on data mart M = (H,C) is a triple
q = (Gq, Pq,Mq) where Gq is a group-by set of H; Pq is a set of Boolean
equality clauses defined over members of levels of H whose conjunction defines
the selection predicate for q; Mq is the set of measures whose values are returned
by q. Let Cq ⊆ C be the subset of cubes such that at least one of their measures
is part of Mq; query q is well-formed if
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Figure 2: Roll-up total orders (top), part-of partial orders (middle), and an excerpt of the
group-by set partial order (bottom) for our working example; the group-by sets of the Sales
and Assembly cubes are in gray

(i) all predicates in Pq are external, i.e., they are expressed on levels that are
less or equal to a level in Gq in the roll-up order [39]; and

(ii) all the measures it returns are available at the required granularity:

(a) ∀c ∈ Cq Gc � Gq if Mq 6= ∅;

(b) ∃c ∈ C s.t. Gc � Gq if Mq = ∅ 2

In the following, we will often need to denote the md-elements to which query
q = 〈Gq, Pq,Mq〉 refers; specifically,

• if l ∈ Gq, then q refers to level l;

• if m ∈Mq, then q refers to measure m;

• if (l = u) ∈ Pq, then q refers to member u and to level l, being l the level
whose domain includes u.

The set of md-elements to which q refers will be denoted with ref(q).

Example 2 (GPSJ query). With reference to the Sales cube, the query ask-
ing for quantity of sold products for each month of 2019 and each product type
is q = 〈Gq, Pq,Mq〉, with

Gq ={Month,Type}
Pq ={(Year = 2019)}
Mq ={Quantity}

2We assume that, when Mq = ∅, query q asks for a count of the cardinality of Gq , so the
existence of at least a cube at the required granularity ensures that q is well-formed.
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The SQL formulation of q on a star schema featuring fact table FT Sales and
dimension tables DT Date and DT Product would be

SELECT DT Date.Month, DT Product.Type, sum(FT Sales.Quantity)

FROM FT Sales

JOIN DT Date ON (FT Sales.DateId = DT Date.DateId)

JOIN DT Product ON (FT Sales.ProductId = DT Product.ProductId)

WHERE DT Date.Year = 2019

GROUP BY DT Date.Month, DT Product.Type

For this query it is

ref(q) = {Month,Type,Year,Quantity, 2019}

By adding measure AssembledItems, from the Assembly cube, to Mq we get an
example of a drill-across query whose SQL formulation is

SELECT DT Date.Month, DT Product.Type,

sum(FT Sales.Quantity), sum(FT Assembly.AssembledItems)

FROM FT Sales

JOIN DT Date ON (FT Sales.DateId = DT Date.DateId)

JOIN DT Product ON (FT Sales.ProductId = DT Product.ProductId)

JOIN FT Assembly ON (FT Assembly.DateId = DT Date.DateId AND

FT Assembly.ProductId = DT Product.ProductId)

WHERE DT Date.Year = 2019

GROUP BY DT Date.Month, DT Product.Type

�

Enterprise cubes are the data source for the analytical reports to be returned
to users according to the environment as perceived by the AR device. The set
of data possibly perceived are listed in a dictionary that, intuitively, defines the
device capabilities. These data are not limited to physical objects recognized in
the environment through a pattern recognition process, but may include user-
related information such as the user role as well as environmental properties
such as the room temperature.

Definition 5 (Dictionary). A dictionary D is a set of classes, each coupled
with a domain of values. Each pair d = 〈class, value〉 such that value belongs
to the domain of class is called an entry of D.

Note that the dictionary can describe the sensed environment at different levels
of precision. For example, if the smart device that perceives the environment
successfully identifies a bike, but is not capable of labeling the specific bike
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model, it will return the 〈Object,Bike〉 entry. On the other hand, if the spe-
cific product BikeExcite is recognized, the smart device will return the entry
〈Object,BikeExcite〉.

The power of the A-BI+ framework comes from the ability to bind the per-
ceived entries to the cube md-elements. This capability is rooted in a-priori
knowledge that specifies which md-elements can be interesting for the user
when a given dictionary entry is perceived. This knowledge is defined through
a dictionary-to-cube mapping established by a domain expert at setup time.
To enhance the expressiveness of our framework, we consider that some md-
elements may be interesting non per se but only when associated with other
md-elements, so we map entries not on simple sets of md-elements but on sets
of fragments, each fragment being a set of md-elements that should appear all
together in queries.

Definition 6 (Mapping). A mapping from dictionary D to data mart M is
a multivalued function µ that maps an entry d to a set of fragments, i.e., sets of
md-elements of the cubes in M. Each fragment f ∈ µ(d) has a mapping weight,
wmap(d, f) ∈ (0, 1].

The mapping function is multivalued since many fragments of md-elements may
be of interest for each dictionary entry; this typically happens for hierarchy
levels, which can be all interesting —even if with different values of w. For
example, when some device is perceived, besides showing data for that specific
device, also showing aggregated data for the device type could be interesting.
Through mapping weights, domain experts give an a-priori quantification of the
interest of each fragment for analyses when a given entry is part of the context.

Although a discussion about how the dictionary is created and the mappings
are established is out of the scope of this paper, we remark that this does not
necessarily have to be done manually for all the cube members, which would
be tedious for attributes with large domains, but it can be largely automated.
For instance, to reduce the user’s effort in populating the dictionary, an ap-
proach like the one proposed in [40] could be used. There, continual learning
is applied to classify known objects and to learn objects of never-seen classes.
Once sensed and marked as relevant, novel objects can be easily learned and
added to the dictionary. Giving novel objects names equal or similar to names
of md-elements ensures that a set of basic mappings from the dictionary to the
data mart can be automatically created, to be possibly fine-tuned later by a
domain expert. Alternatively, tentative mappings could be established by pro-
viding universally-quantified rules such as µ(〈Object, value〉) = {{value}} for
each value that corresponds to a member of some level in a hierarchy.

Example 3 (Dictionary and Mappings). The dictionary for our ex-
ample includes, among the others, entries related to products (e.g.,
〈Object,BikeExcite〉), product parts (e.g., 〈Object, Seat〉), and user roles
(e.g., 〈Role,Controller〉). An excerpt of the mapping from this dictionary to the
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cubes of Example 1 may look like this (Figure 1):

µ(〈Object,Seat〉) = {{Seat}, {Device}},
µ(〈Object,BikeExcite〉) = {{BikeExcite}},
µ(〈Role,Controller〉) = {{AssembledItems,Quantity}},

µ(〈Date, 16/10/2018〉) = {{Date}}

The first line returns two fragments including a member and a level respectively;
it states that, when the user senses a seat, she may be interested in analyzing
either the part to be assembled or the data concerning the assembly device. The
second line returns one fragment including a member; it states that, when the
user senses a product, it is normally interested in analyzing the data for that
product. The third line returns one fragment including two measures; it states
that controllers are interested in comparing the number of assembled items with
the quantity sold. The fourth line returns one fragment including a level; it
states that users are normally interested in daily data. Finally, examples of
mapping weights are

wmap(〈Object,BikeExcite〉, {BikeExcite}) = 0.5

wmap(〈Role,Controller〉, {AssembledItems,Quantity}) = 1

�

4. Context interpretation

In this section, we show how, given a set of perceived objects, A-BI+ pro-
duces a set of relevant queries, i.e., queries whose results may be of interest to
the user.

4.1. Take the context...

The A-BI+ starting point is the context, i.e., a set of dictionary entries
corresponding to the currently perceived environment objects. More formally:

Definition 7 (Context). A context T over dictionary D is a set of entries of
D; each entry d ∈ T is coupled with a context weight wcnt(T, d) ∈ (0, 1].

The value of the weight for each entry may depend on different factors,
depending on the application domain. Non-perceived entries (i.e., for which it
would be wcnt(T, d) = 0) are not included in the context. In our case study we
assume that a subset of entries are engaged, meaning that they have explicitly
been indicated by the user as being part of her current focus of interest [8];
for these entries, the weight is always 1. For the other entries, the weight is
inversely proportional to the distance between the user and the specific object
being observed.

Given a context, the mapping function identifies the relevant fragments of
md-elements, i.e., those that will be involved in the queries to be issued against
the cube.
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Definition 8 (Image). Given context T over dictionary D and mapping µ
from D to data mart M, the image of T through µ is the set of fragments
that are mapped through µ from the entries in T :

Iµ(T ) =
⋃
d∈T

µ(d)

Example 4 (Context). A possible context is the one depicted in Figure 1,
where Bob is inspecting the assembly of fitness equipments in Room A.1 on
October 16th 2018:

T = {〈Object,Seat〉,
〈Object,BikeExcite〉,
〈Role,Controller〉,
〈Location,RoomA.1〉,
〈Date, 16/10/2018〉}

The BikeExcite product is engaged. Possible context weights are

wcnt(T, 〈Object,Seat〉) = 0.6,

wcnt(T, 〈Object,BikeExcite〉) = 1,

wcnt(T, 〈Role,Controller〉) = 1,

wcnt(T, 〈Location,RoomA.1〉) = 0.6,

wcnt(T, 〈Date, 16/10/2018〉) = 0.6

The image of T through the mapping µ described in Example 3 is

Iµ(T ) = {{Seat}, {Device}, {BikeExcite}, {AssembledItems,Quantity}, {Date}}

�

The image includes the set of fragments relevant to a context according to the
mapping, but it does not specify how they will be used to generate the queries
to be proposed to the user when that context is sensed. Indeed, given an image,
several queries can be generated, each including a subset of the fragments in the
image.

4.2. ...add the log...

The a-priori knowledge expressed through a mapping does not enable the
system to learn by considering how user interests evolve, which instead could
lead to picking different md-elements when proposing queries or to choosing one
of them more/less frequently. To this end, A-BI+ exploits the history of previ-
ous interactions, stored in the query log, by means of a collaborative filtering
approach. The log stores, for each context, all the queries proposed to the user
and the specific one chosen for execution.
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Definition 9 (Log). A log L is a multiset of triples 〈T, q, ok〉 where T is a
context, q is a query, and ok (feedback) is 1 if the user accepted the query, −1
if she rejected the query.

Example 5 (Log). A possible log for our working example is L =
(〈T, q1,−1〉, 〈T, q2, 1〉), where

q1 = 〈{Date,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}〉

q2 = 〈{Month,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}〉

While q1 has been rejected, q2 (which is a roll-up of q1 on the Date hierarchy)
has been accepted. �

A log entry related to context T ′ should impact the recommendations related
to the current context T only if the two contexts are similar, since it is reasonable
to assume that the user will have similar behaviors in similar contexts.

Definition 10 (Context Similarity). Given two contexts T , T ′ over dictio-
nary D, we define the similarity between T and T ′ as their Jaccard index:

sim(T, T ′) =
|T ∩ T ′|
|T ∪ T ′|

Given log L, the image Iµ(T ) of context T is extended to take previous user
interactions into account as follows. Let LT ⊆ L be the subset of log triples
whose context is similar to T :

LT = {〈T ′, q, ok〉 ∈ L s.t. sim(T, T ′) ≥ ε}

where ε is a similarity threshold. Then, Iµ(T ) is extended by adding, for each
query q in LT , one fragment corresponding to the set of md-elements referred
to by q:

I∗µ(T ) = Iµ(T ) ∪ {ref(q) : ∃〈T ′, q, ok〉 ∈ LT }

In this way, I∗µ(T ) includes all the fragments that are relevant to context T
either according to the mapping or to the previous user experience.

We now define the log relevance to T of fragment f ∈ I∗µ(T ) as the weighted
number of times f has been accepted by the user (i.e., ok = 1) over the number
of times it has been proposed (i.e., ok = ∗); weighting is based on the similarity
between the current context T and the considered log context T ′:

ρT (L, f) =
1 +

∑
〈T ′,q,1〉∈LT (f) sim(T, T ′)

2 +
∑
〈T ′,q,∗〉∈LT (f) sim(T, T ′)
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where LT (f) = {〈T ′, q, ok〉 ∈ LT s.t. f v ref(q)} and v is a hierarchy-aware
containment relationship between sets of md-elements:

f v ref(q)⇔ (∀m ∈ f s.t. m is a measure, m ∈ ref(q))∧
(∀u ∈ f s.t. u is a member, ∃u′ ∈ ref(q) s.t. u′ ≥h u)∧
(∀l ∈ f s.t. l is a level, ∃l′ ∈ ref(q) s.t. l′ �h l)

To avoid relevance to be 0 when f has never been accepted, a Laplace smoothing
is applied in the formula above. Noticeably, the impact of Laplace smoothing
decreases as the cardinality of LT (f) increases, that is, the weight tends to 0 if
several queries referring f have been proposed but never accepted by the user.
Conversely, it tends to 1

2 if only a few queries referring f have been proposed.
It is now possible to define the relevance to T of each fragment f ∈ I∗µ(T )

by taking into account, for each context entry d that maps to f , not only the
entry weight wcnt(T, d) and the mapping weight wmap(d, f), but also the log
relevance ρT (L, f):

relT (f) = ρT (L, f) ·

 ∑
d∈T s.t. f∈µ(d)

wcnt(T, d) · wmap(d, f)


where wcnt(T, d) = wmap(d, f) = 1

2 for all f ∈ I∗µ(T )\Iµ(T ). Clearly, the reason
for providing a default value for all fragments present in the extended image but
not deriving from the context is to avoid the corresponding contribution to the
relevance to be null; choosing the default value of 1

2 is in line with the Laplace
smoothing applied to the log relevance.

Example 6 (Extended image). With reference to the image Iµ(T ) from Ex-
ample 4 and to the log entries in Example 5, the extended image is

I∗µ(T ) = {{Seat}, {Device}, {BikeExcite}, {AssembledItems,Quantity}, {Date},
{Month,Part,Product,BikeExcite,AssembledItems,AssemblyTime},
{Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}}

The last two fragments have been added to Iµ(T ) as they corresponds to queries
drawn from contexts similar to T . As to ρT (L, f) and relT (f) it is

ρT (L, {Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}) = 0.33

ρT (L, {AssembledItems,Quantity}) = 0.5

relT ({Date,Part,Product,BikeExcite,AssembledItems,AssemblyTime}) = 0.16

relT ({AssembledItems,Quantity}) = 0.5

�

We close this section by observing that the log size will quickly increase
with time and spending a few words about how the log can be curated. Indeed,
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in [41] it is highlighted that many recommended queries can become irrelevant
(e.g., in case of sensible context variations such as room refurnishment) or non-
computable (e.g., due to changes in the multidimensional schema). A basic way
to deal with memory limitations when storing large logs would be to provide
a log cache, with size limits, where only the latest entries are cached per user.
A more sophisticated way would be to adopt an indicator of obsolescence as in
[41] to decide whether to prune obsolescent log entries.

4.3. ...get the queries

As already stated, the context interpretation component is in charge of gen-
erating a set QT of queries relevant to context T . In principle, the query that
includes all the md-elements in the fragments of the extended image of T might
be directly proposed to the user. Unfortunately, when several objects are sensed
in the environment and the context includes a large number of entries, such
queries would be monster queries, i.e., quite complex queries with very high
cardinalities. Monster queries are particularly undesirable in AR applications
since:

• High-cardinality queries take a long time to be computed, transferred to
the user smart device, and visualized.

• While working on the field, users must be quick and reactive, while the
results of monster queries are hardly interpretable.

In the A-BI+ framework, monster queries are avoided in two ways: (i) by posing
an upper bound γ to the query cardinality, and (ii) by considering only the most
relevant fragments in the image when generating the queries to be proposed to
the user.

As to (i), given query q = (Gq, Pq,Mq), the expected cardinality of its result,
denoted card(q), can be estimated as follows:

card(q) = card(Gq)×
∏
p∈Pq

sel(p)

where card(Gq) is the expected cardinality of a query with group-by set Gq and
no selection predicates, and sel(p) is the selectivity of each simple predicate p
belonging to Pq. Note that we can safely use this formula to estimate card(q)
because, as a consequence of the way we create queries in our approach, all
predicates in Pq are always external, i.e., they are expressed on levels that are
less or equal to a level in Gq [39] in the roll-up partial order. As to card(Gq),
it must be computed taking the cube sparsity into account, considering that
the sparsity differs from cube to cube. In the simple case in which all measures
in Mq belong to a single cube ci, it can be estimated for instance using the
Cardenas formula as shown in [42, 43]:

card(Gq) = cardci(Gq) = Φ(cardmax(Gq), |ci|)
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where |ci| is the cardinality of ci and cardmax(Gq) is the maximum cardinality
(i.e., if there were no sparsity) of group-by set Gq:

cardmax(Gq) =
∏
l∈Gq

|Dom(l)|

If q is a drill-across query,3 the measures in Mq are scattered across two or more
cubes c1, . . . , cr; in this case the sparsities of these cubes can be assumed to be
mutually independent:

card(Gq) = cardmax(Gq) ·
r∏
i=1

cardci(Gq)/cardmax(Gq)

where cardci(Gq)/cardmax(Gq) expresses the probability that a given tuple of
members is present in ci, thus the product expresses the probability of that
tuple to be present in all the involved cubes. Note that other approaches have
been devised for a more precise cardinality estimation in presence of selection
predicates on multiple attributes, for instance [44], which uses singular value
decomposition, and [45], based on histograms.

Example 7 (Cardinality). Given cubes Assembly and Sales, let |Assembly| =
200000, |Sales| = 400000, |Dom(Product)| = 100, and |Dom(Date)| = 1000.
Consider query

q = 〈{Date,Product},
{(Year = 2019)},
{AssembledItems,Quantity}〉

By applying the formulas above we get

cardmax({Date,Product}) = 100000

cardAssembly({Date,Product}) = 86467

cardSales({Date,Product}) = 98169

card({Date,Product}) = 84884

Assuming that sel(Year = 2019) = 0.25, we get card(q) = 21221. �

As to (ii), i.e., considering only the most relevant fragments in the image,
before we proceed we remove from the extended image I∗µ(T ) all the fragments
f whose relevance relT (f) is below a given threshold η, being the relevance
defined as follows.

3We recall from Section 3 that drill-across queries can be formulated because all cubes in
the data mart share a set of conformed dimensions.
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Figure 3: The relevance of q (in blu its md-elements) is the sum of the relevances of fragments
f and f ′

Definition 11 (Relevant Queries and Query Relevance). Given context
T , query q is said to be relevant to T if (i) it is f ⊆ ref(q) for at least one frag-
ment f in the extended image of T , (ii) q is well-formed, and (iii) card(q) ≤ γ.
The set of relevant queries to T is denoted with QT . The relevance to T of
query q ∈ QT in presence of log L is defined as

relT (q) =
∑

f∈I∗µ(T ) s.t. f⊆ref(q)

relT (f)

For instance, with reference to Figure 3, the relevance of q is estimated by
summing up the relevances of fragments f and f ′ as these are the only fragments
of Iµ(T ) completely contained in ref(q).

Example 8 (Query relevance). Given the mapping weights in Example 3,
the context weights in Example 4, the log relevance in Example 5, and the ex-
tended image in Example 6, the relevance of

q = 〈{Month,Part,Product},
{(Product = BikeExcite)},
{AssembledItems,AssemblyTime}〉

is relT (q) = 0.4. The fragments contributing to the query rel-
evance (i.e., those contained in ref(q)) are {BikeExcite} and
{Month,Part,Product,BikeExcite,AssembledItems,AssemblyTime}. �

In the remainder of this section we explain how we create the set QT of rele-
vant queries, as introduced in Definition 11, to be handed to the query selection
component. Basically, in Algorithm 1 we follow a depth-first enumeration ap-
proach [46] to generate all possible combinations of the fragments in I∗µ(T ). This
is done by calling the recursive procedure Expand, whose pseudocode is shown
in Algorithm 2, for each fragment available. Within Expand, function Gen(f)
(Line 1) returns a query q using the md-elements in fragment f as follows:

• Gq includes all the levels in f plus the levels of all the members in f ;

• Pq includes a selection predicate on each member in f ;
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Algorithm 1 Generation of relevant queries

Require: I∗µ(T ): extended image, γ: cardinality threshold
Ensure: QT : set of relevant queries

1: QT ← ∅ . Result set
2: F ← I∗µ(T ) . Fragment set
3: for each f ∈ F do . For each fragment...
4: F ← F \ {f}
5: Expand(F, f) . ...generate relevant queries from f and add them to QT

6: return QT

Algorithm 2 Procedure Expand(F, f)

Require: F : set of fragments, f : fragment to be used for generating queries
1: q ← Gen(f) . Generate a query from f
2: if wellFormed(q) ∧ q 6∈ QT then

. If q is not well-formed and has already been generated, stop
3: if card(q) ≤ γ then . If q has low cardinality...
4: QT ← QT ∪ {q} . ...add it to QT

5: for each f ′ ∈ F do . For each other fragment in F ...
6: F ← F \ {f ′}
7: Expand(F, f ∪ f ′) . ...add it to f and generate relevant queries

• Mq includes all the measures in f .

To avoid redundancies in Gq and Pq, only levels and members at the finest
granularity are kept for each hierarchy. If the query returned by Gen(f) is not
already present in QT , has low cardinality, and is well-formed, it is added to
the result (Line 4). Then, recursion is triggered by calling Expand with the
union of f and any other available fragment (Lines 5-7, parameter F is passed
by value).

Remarkably, if q is not well-formed (Line 2), the current branch of recursion
can safely be pruned. Indeed, a query is not well-formed when either (i) it has
non-external predicates or (ii) it returns a measure that is not available at the
required granularity (see Definition 4). As to (i), we note that Gen(q) adds to
the query group-by set the levels of all the members in f , so it cannot generate
queries with non-external predicates. As to (ii), when proceeding with the
recursion, new md-elements would be added to q; this may make the granularity
of q finer but it cannot make it coarser. Thus, the queries obtained by adding
further md-elements to a query q that is not well-formed can never be well-
formed. The current branch can also be pruned if q has already been added to
QT ; in this case, since we are adopting a depth-first approach, the extension of
q with further fragments has already been done as well. We finally note that
cardinality cannot be used to prune the search space; indeed, by adding further
md-elements to a high-cardinality query, we get a new query whose cardinality
might be below the threshold γ.
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Figure 4: Depth-first query generation for Example 9 (gray arcs are safely pruned, so gray
queries are not added to QT

Example 9 (Query generation). Let

I∗µ(T ) = {{BikeExcite,Quantity}, {Part,Bike},
{Month,AssembledItems}, {Year,AssembledItems}}

As sketched in Figure 4, Algorithm 1 works as follows. The first fragment picked
by the for cycle of Line 3 is {BikeExcite,Quantity}, which corresponds to query
q = 〈{Product}, {(Product = BikeExcite)}, {Quantity}〉. This query is well-
formed and it has cardinality equal to 1, so it is added to QT . The depth-first
exploration continues by picking fragment {Part,Bike} (Algorithm 2, Line 5) and
calling Expand on the union fragment {BikeExcite,Quantity,Part,Bike}. Since
measure Quantity is not defined at the part granularity, the query obtained is not
well-formed and this branch of recursion is pruned (Algorithm 2, Line 2). The
next fragments picked by Line 5 of Algorithm 2 are {Month,AssembledItems}
and {Year,AssembledItems}, which are expanded as shown in Figure 4.

Once the recursion started from {BikeExcite,Quantity} is terminated, the
other three fragments are picked by Line 3 of Algorithm 1. In particular, when
{Month,AssembledItems} is picked, the corresponding query is added to the re-
sult (assuming it has low cardinality). Now, the fragment is expanded with
{Year,AssembledItems} (Algorithm 2, Line 5), producing the union fragment
{Month,AssembledItems,Year}; remarkably, since the corresponding query is al-
ready present in the result (Year is coarser than Month, so it is removed by
Gen(f)), this branch is pruned. �

5. Query selection

Context interpretation returns the set QT of relevant queries, whose results
may be of interest to the user. This set is potentially exponential in the number

19



of fragments; as we will show in Figure 12, discarding ill-formed and high-
cardinality queries does not drastically reduce the cardinality of QT , which may
easily turn out to be several thousands. Clearly, some selection has to be done
to avoid flooding the user with tons of (probably very similar to each other)
queries. Thus, the goal of the step discussed in this section is to select from
QT a fixed number rq of queries to be recommended to the user. The guiding
criterion is to select the subset of queries that are both maximally relevant to
the context and diverse; this is done by defining an ad-hoc measure of query set
relevance that takes both relevance and diversity into account.

To this end, we start by generalizing to sets of queries the definition of sim-
ilarity given for query pairs in [47]. This definition combines three components:
one related to group-by sets, one to selection predicates, and one to measure
sets. Let levBelow(Gq) denote the set of levels that are below a level of Gq in
the roll-up order:

levBelow(Gq) = {l′ : l �h l′, for l ∈ Gq}

and memBelow(Pq) denote the set of members that are below a member of Pq
in the part-of order:

memBelow(Pq) = {u′ : u ≥h u′, for u ∈ Pq}

Definition 12 (Query Similarity). Given context T , let Q ⊆ QT . The sim-
ilarity of the queries in Q is defined as

sim(Q) = α · σgbs(Q) + β · σsel(Q) + γ · σmeas(Q)

where α, β, and γ are normalized to 1 and

σgbs(Q) =
|
⋂
q∈Q levBelow(Gq)|

|
⋃
q∈Q levBelow(Gq)|

σsel(Q) =
|
⋂
q∈QmemBelow(Pq)|

|
⋃
q∈QmemBelow(Pq)|

σmeas(Q) =
|
⋂
q∈QMq|

|
⋃
q∈QMq|

Like in [47], we choose α = 0.35, β = 0.5, and γ = 0.15.

Example 10 (Query similarity). Let Q = {q′, q′′, q′′′}, with

q′ =〈{Product,Month}, {(Type = Bike)}, {AssembledItems,Quantity}〉
q′′ =〈{Product,Month}, {(Category = Equipment)}, {AssembledItems,AssemblyTime}〉
q′′′ =〈{Type}, {(Category = Equipment)}, {AssembledItems}〉

Considering the roll-up and part-of orders in Figure 2 and the involved md-
elements (see Table 2), it is sim(Q) = 0.35 · 2

5 + 0.5 · 1
2 + 0.15 · 1

3 = 0.44.
�
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Table 2: Md-elements for computing quest similarity in Example 10; intersecting md-elements
are in bold

md-element q′ q′′ q′′′

⋃
q∈Q levBelow(Gq)

Product 3 3
Type 3 3 3

Category 3 3 3
Month 3 3
Year 3 3⋃

q∈QmemBelow(Pq)
Bike 3

Equipment 3 3 3⋃
q∈QMq

AssembledItems 3 3 3
AssemblyTime 3

Quantity 3

Based on the definition of query similarity, we can now define the relevance to
the context of any set of queries. The global relevance of a set of queries cannot
be properly computed as the sum of their relevances due to the intersections
between their md-elements, thus we have to apply the well-known inclusion-
exclusion principle [48]. The inclusion-exclusion principle counts the number of
distinct elements in the union of finite sets by summing up the cardinalities of
the individual sets, subtracting the number of elements that appear in at least
two sets, adding back the number of elements that appear in at least three sets,
and so on. Similarly, to estimate the global relevance of a set of queries we
sum the relevances of individual queries, subtract the average query relevance
weighted by their similarity for any pair of queries, add back the average query
relevance weighted by their similarity for any triple of queries, and so on.

Definition 13 (Query Set Relevance). Given context T , let Q ⊆ QT . The
relevance to T of Q is defined as

relT (Q) =
∑

∅ 6=Q′⊆Q
sim(Q′) ·

∑
q∈Q′ relT (q)

|Q′|
· (−1)|Q

′|+1

Example 11 (Query set relevance). With reference to Figure 5, given Q =
{q, q′} such that rel(q) = 0.8, rel(q′) = 0.7, and sim(Q) = 0.2, it is relT (Q) =
relT (q) + relT (q′)− sim(q, q′) · (relT (q) + relT (q′))/2 = 1.35. �

Applying the inclusion-exclusion principle in Definition 13 ensures that, at
a parity of relevances of the single queries, the more diverse these queries are,
the higher the query set relevance. Thus, selecting from QT the subset R of
rq queries with the maximum query set relevance implicitly allows A-BI+ to
recommend queries that are both relevant to the context and diverse. More
formally:
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Figure 5: Estimation of query set relevance in Example 11

Algorithm 3 Query selection

Require: QT : set of relevant queries, rq: number of queries to be recommended
Ensure: R: recommended query set

1: R← ∅ . Result set
2: Q← QT . Search space
3: while (|R| < rq) ∧ (Q 6= ∅) do

. Still room in R and search space not empty
4: q ← argmaxQ(relT (R ∪ {q})) . Pick the most promising query...
5: Q← Q \ {q} . ... remove it from the search space
6: R← R ∪ {q} . ... and add it to the result

7: return R

Problem 1 (Query Selection). Given context T , select the subset R, ∅ 6=
R ⊆ QT , such that relT (R) ≥ relT (R′) for each ∅ 6= R′ ⊆ QT .

The query selection problem can be mapped to a Weighted Maximum Cov-
erage Problem (WMCP) where each q ∈ QT corresponds to a set of elements
(i.e., fragments), each with its own weight (i.e., relevance). We want to find out
the subset R ⊆ QT with maximal weight and such that |R| < rq. The reduction
in relevance due to query similarity is taken into account in the WMCP, which
adds only once the weight of elements appearing in more than one q ∈ R. It
is easy to verify that also every WMCP can be mapped to a query selection
problem where (i) for each element a new fragment f is created, (ii) for each set
of elements a new query q ∈ QT is created, and (iii) relT (f) is set to the weight
of the element corresponding to f .

Since the two problems can be mapped to each other, they must have the
same complexity. In [49] it is shown that the WMCP is NP-hard and that it
can be faced with polynomial complexity by adopting a greedy algorithm that,
at each iteration, picks the most promising element; so we adopt the greedy
approach whose pseudocode is shown in Algorithm 3. Basically, at each iteration
we pick fromQT the query that, if added to the resultR, maximizes the query set
relevance relT of R (at the first iteration, this equals to picking the most relevant
query). The algorithm is incremental, so queries can be recommended as soon
as they are picked —without having to wait for the algorithm to terminate.

Example 12 (Query selection). Let QT = {q′, q′′, q′′′} such that rel(q′) =
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0.7, rel(q′′) = 0.6, rel(q′′′) = 0.5, sim(q′, q′′) = 0.6, sim(q′, q′′′) = 0.1, and
sim(q′′, q′′′) = 0.2. After initialization, Algorithm 3 picks q′ from QT (Line 4)
as it has top query relevance so it also maximizes query set relevance. At the
second iteration, q′′′ is picked at Line 4: although rel(q′′) > rel(q′′′), q′′ is more
similar to q′ than q′′′, thus the query set relevance if q′′ is added to R is lower
(relT (q′, q′′) = 0.91, relT (q′, q′′′) = 1.14). Assuming rq = 2, query selection
stops here. �

6. Experimental tests

In this section, we evaluate the A-BI+ framework in terms of (1) effectiveness,
(2) efficiency, and (3) user satisfaction (i.e., to what extend the recommended
queries meet the users’ desiderata).

As to (1) and (2), we compare A-BI+ to our previous implementation A-BI
[15]. Tests are carried out against a synthetic benchmark since, in this work, we
assume the problem of context generation to be addressed by the smart device
and, to the best of our knowledge, no AR open dataset exists. The user-system
interaction works as follows: a session simulates a user walking through a factory
of 10 rooms. While moving, she collects one view of each room (in a session
each room is visited once). From each view, the smart device recognizes a set
of objects belonging to the dictionary and lists them into a context. For each
context, A-BI+ recommends a set R of queries to the user; she either chooses one
of these queries (i.e., she gives a positive feedback for one of the recommended
queries) or formulates an additional query that is slightly different from the ones
proposed (i.e., she gives a negative feedback for all the queries and adds a new
one). After some time, the user ends her exploration of the factory (i.e., her
session). When a new user enters the factory (i.e., a new session begins), A-BI+

relies on the query log to recommend a new set of queries that better suit her
interests. Since each session covers 10 rooms, after each session 10 contexts are
added to the log together with the corresponding user feedback. The contexts
related to each room may be slightly different, since the user could perceive the
room from a different point of view, or the smart device could fail to recognize
some of the objects.

This interaction is simulated by randomly generating 10 seed contexts, each
corresponding to a different room. Seed contexts differ significantly from each
other. Then, to simulate multiple visits of each room, small context variations
are generated starting from each seed (i.e., different room perspectives). The
number of objects recognized in each room (i.e., the context cardinality) ranges
between 10 and 16. The test is repeated 10 times and the average behavior is
considered.

We denote with s the number of sessions, i.e., the number of times each
room has already been sensed. Besides, for each context, we call:

• qmax the query with maximal relevance in R. We recall that Algorithm 3
always recommends the set of rq well-formed queries with the highest
relevance to the context.
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Table 3: Notation summary

Notation Meaning
T Context (corresponds to a view of a factory room)
R Set of recommended queries
rq = |R| ∈ [1, 4] Number of recommended queries
qmax Query with maximal relevance to the context
qu User query
qdiv Query most similar to qu
s ∈ [0, 8] Number of times the user has already sensed a context
δ ∈ [0.5, 1] Similarity between qu and qmax
γ = 1000 Query cardinality threshold
ε = 0.8 Context similarity threshold
η = 0.2 Fragment relevance threshold
θ ∈ [0.05, 0.25] Diversification threshold for A-BI

qmax

qu
qdiv

δ

R

Figure 6: The user query qu, the maximal query qmax, and the set R of recommended queries;
among them, qdiv is the one most similar to qu

• qu the query formulated by the user. We denote with δ the similarity
between the user query and the maximal query (δ = sim({qu, qmax}),
as of Definition 12). The lower the value of δ, the higher the difference
between the user and maximal queries; if δ = 1, the user exactly chooses
the maximal query.

• qdiv the query most similar to qu among those in R.

A notation summary is provided in Table 3.
Queries qu and qmax can be different since the relevance initially estimated by

A-BI+ might not be aligned with the user’s perceived one. This gap, evaluated
in Section 6.3, decreases as the user returns in the same rooms since A-BI+ can
exploit the log to align its estimation of relevance to the user’s one. An intuitive
representation of qu, qmax, and qdiv is shown in Figure 6, where the query space
is represented as a Cartesian plane with Euclidean distances.

We executed our tests against a cube including 5 linear hierarchies with
5 levels each. Each dimension has 64 members, determining a maximum cube
cardinality of about 109. The dictionary includes one entry for each md-element
(i.e., we assume the smart device can recognize every single element of the cube);
each dictionary entry d is mapped to a fragment f containing at most 3 md-
elements. Mapping weights wmap(d, e) randomly range in [0.2, 1]. Note that
A-BI+ entails mappings with higher expressiveness than A-BI, where dictionary

24



1 2 3 4
rq

0.55

0.60

0.65

0.70

0.75
si

m
({

q u
,q

di
v}

)

A-BI +

A-BI0.05
A-BI0.15
A-BI0.25

1 2 3 4
rq

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
l T

(R
)

Figure 7: Average similarity between qdiv and qu (left) and average relevance of the recom-
mended query set (right) for increasing values of rq (s = 0, δ = 0.7, |T | = 12)

entries were mapped to single md-elements. Also, while in A-BI+ diversification
is inherently tied to the maximization of the relevance of the returned queries, in
A-BI it is ruled by a specific parameter, θ. We will compare the two approaches
using different thresholds of diversification θ ∈ [0.05, 0.25]; in the figures, with
A-BI0.15 we denote a run of A-BI with a diversification threshold set to 0.15.
Values of θ higher than 0.25 deviate too much from the queries related to the
context and are not considered [15].

6.1. Effectiveness

A-BI+ can recommend a variable number of queries, rq. The higher rq, the
larger the user effort in choosing the best query out of the recommended ones.
In an AR context, due to real-time and visualization constraints, this aspect
becomes even more critical; thus, we limit the maximum number of retrieved
queries to rq = 4.

Figure 7 characterizes R when different numbers of relevant queries are rec-
ommended to the user. The left part of the figure shows that the recommenda-
tion effectiveness, measured as the similarity between the user’s query qu and
qdiv, improves as rq increases. Remarkably, the similarity between qdiv and qu
is always higher for A-BI+ than for A-BI, independently of the diversification
strength θ used by A-BI. A-BI+ overcomes A-BI due to (1) its enriched mapping
expressiveness; (2) the improved algorithm for generating relevant queries (Al-
gorithm 2); and (3) the implicit diversification process. As to (1), given two md-
elements that are only relevant if picked together, in A-BI+ they can only appear
together in a query, while in A-BI they may be added to the query individually.
As to (3), the diversification effectiveness in A-BI+ is better understood from
Figure 7 (right), which shows that the relevance of the recommended query set
is always superior to A-BI, independently of the diversification strength θ.

Although Figure 7 (left) shows that the similarity between qdiv and qu
slightly increases with rq, the actual impact of diversification will be better
appreciated in Section 6.3, where we will see that the users preferred a recom-
mended query different from the most relevant query qmax in 15% of the times.
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This confirms the benefit of diversification in offering users different query fla-
vors among which to choose [50]). Clearly, when there is a low correlation
between the user’s interest and the context, it becomes hard for a recommender
to return useful answers. In our tests this divergence between the context and
the user’s query is simulated by increasing δ; Figure 8 shows that even in this
case A-BI+ improves over A-BI, and that diversification helps in mitigating the
correlation gap.

As rooms are repeatedly visited, collaborative filtering comes into play and
the effectiveness of A-BI+ improves. Figure 9 depicts to what extent the query
log helps in making qdiv closer to qu. In a real scenario, both the context and
the user query qu could slightly change in different visits. Figure 9 compares
the recommendation effectiveness when the user query is fixed (left) and when
the context is fixed (right). It is apparent that, when qu is fixed, qdiv quickly
converges to qu. Convergence is not complete due to context variations: like hy-
brid recommendation approaches [32], A-BI+ merges the user’s interests stored
in the log with the a-priori knowledge stored in the enriched image. If, for
the very same context, the user requires slightly different queries across differ-
ent visits, convergence is limited to the query fragments that are permanently
required. In all cases, A-BI+ performs better than A-BI.

To better emphasize how the hybrid nature of A-BI+ impacts effectiveness,
in Figure 10 we compare it to the two baselines given by its pure collaborative
filtering behavior on the one hand, by its pure context-based behavior on the
other. The first baseline, named Coll, returns the query that was chosen in the
past from the most similar context; the second one, Ctx, returns the maximal
query. Overall, Coll achieves worse performances than A-BI+ since (i) no query
is returned for s = 0 (i.e., sim() = 0), (ii) it completely ignores the currently
sensed entities as it only contains entities sensed in the past, and (iii) if the
user picks different queries in similar contexts, collaborative filtering initially
oscillates between different queries. Conversely, A-BI+ outperforms Ctx since
the latter cannot keep into account the fragments that are actually chosen by
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the user even if they are not coded by mappings. Finally, Coll is worse than Ctx
since its recommendations sum up two errors: the exclusion of currently sensed
entities, and the inclusion of entities sensed in the past that are included in the
target query.

6.2. Efficiency

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz CPU and 8GB RAM, with the A-BI+ framework implemented
in Scala; the log is stored in main memory. Figure 11 (left) shows the total time
required to recommend increasing numbers of queries. Remarkably, the order
of magnitude is 10−1 seconds. Besides, although the execution time slightly
increases with rq, the time needed to return the first recommendation is fixed
as Algorithm 3 never drops a query once it has been added to the result set
R. Figure 11 (right) shows the increase in execution time for larger contexts
(the higher the number of context entries, the higher the number of mappings).
Query generation (which encompasses Algorithms 1 and 2) accounts for most of
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the time; indeed, the generative approach is computationally heavy, requiring
to find, inside the fragment space, a potentially exponential number of relevant
queries. Pruning in Algorithm 2 (Line 2) helps in constraining the generation
search space. Figure 12 shows how pruning decreases the (exponential) num-
ber of generated queries for different context cardinalities. Remarkably, when
large contexts are considered it is possible to cut down generation times by
constraining the number of generated queries.

We finally emphasize that the execution time corresponds to the time nec-
essary to generate the recommended queries, and not to the time to actually
execute them. Queries are executed against the enterprise data mart and their
performance clearly depends on the underlying multidimensional engine.

6.3. User evaluation

There is no point in recommending a set of queries if the relevance estimated
by the recommender significantly differs from the user’s one. To assess how
close the user’s relevance is to the one of A-BI+ or, in other words, to assess
the recommendation quality, we conducted a set of tests with 30 users, mainly
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master students in data science with basic or advanced knowledge of business
intelligence and data warehousing. The evaluation is based on a real-world
factory environment provided by Technogym, a large Italian company producing
gym equipment. After a 10 minute introduction to A-BI+, we simulated two
user sessions in which the user enters two rooms for the first time (i.e., the log is
not considered). For each room, the user was asked to impersonate a production
controller and to suggest a GPSJ query qu that could help her in carrying out
an assigned task based on a given context. To avoid biases, the assigned tasks
were generic, meaning that there is not a single query that obviously fulfills the
task, so the suggested queries depend on the personal interpretation of the task.
In each room, once the user has provided her query, three queries recommended
by A-BI+ were presented to her. Finally, the user was asked to provide (1) the
perceived similarity of each recommended query to the query she suggested, and
(2) a score (on a scale from 1 to 10) indicating how the recommended queries are
deemed to be relevant to the context and to the proposed task. The first question
enables the evaluation of how the similarity adopted in A-BI+ is perceived
by the users independently of the relevance of the recommended queries to
the context. Conversely, the second question is aimed at understanding the
perceived relevance of the recommended queries to the context/task.

Example 13 (Room visit). With reference to the Assembly cube and to the
context represented in Figure 1

T = {〈{Object,BikeExcite}〉, 〈{Object,Seat}〉,
〈{Date, 20/05/2019}〉, 〈{Role,Controller}〉}

the assigned task is: “Analyze the assembly speed with reference to the context”.
Examples of queries recommended by A-BI+ are

q = 〈{Year,Part,Product},
{(Year = 2019) AND (Part = Seat) AND (Product = BikeExcite)},
{AssembledItems,AssemblyTime}〉

q′ = 〈{Year,Part,Category}
{(Year = 2019) AND (Part = Seat) AND (Category = Sport)},
{AssembledItems,AssemblyTime}〉

q′′ = 〈{Date,Part,Category},
{(Date = 20/05/2019) AND (Part = Seat) AND (Category = Sport)},
{AssembledItems,AssemblyTime}〉

�

The results are summarized in Table 4. The average perceived similarity
between the user query qu and the three queries recommended by A-BI+ is
0.58 ± 0.20 for Room 1 and 0.57 ± 0.20 for Room 2, which is very close to the
one computed through sim() (0.59±0.15 and 0.61±0.15, respectively). Having
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Room 1 Room 2
Avg. sim() 0.59± 0.15 0.61± 0.15
Avg. perceived similarity 0.58± 0.2 0.57± 0.2
Pearson correlation 0.41 0.41
qmax matches 62% 69%
qdiv matches 77% 88%

Table 4: Results of user evaluation

near values is not enough to certify the coherence between the two similarities,
thus we also computed their Pearson correlation coefficient obtaining an overall
correlation of 0.41, which further supports this coherence.

As to the perceived relevance of recommended queries to the assigned tasks,
the users evaluated the relevance of the recommended query set as 7.85 for Room
1 and 7.62 for Room 2, proving their satisfaction towards the recommendation.
We finally emphasize that, without diversification (rq = 1), A-BI+ would return
only the most relevant query, qmax, which turned out to be the most similar
one to qu in 62% of cases for Room 1 and 69% of cases for Room 2. When
diversification is taken into account (rq = 3), these percentages increase to 77%
for Room 1 and 88% for Room 2.

7. Conclusion

The A-BI+ framework is a first result in the direction of establishing a tight
connection between analytical reporting and AR applications. Besides propos-
ing a reference functional architecture and an interaction process, in this paper
we have shown that query recommendations can be given in real-time, high-
lighting the role of diversification and collaborative filtering in improving their
effectiveness. Noticeably, our framework could be easily generalized to oper-
ate in other contexts, e.g., to recommend analytical queries concerning nearby
objects based on the recognition of RFID tags.

A-BI+ can be improved along different directions. First of all, it would be
interesting to investigate how A-BI+ could be turned into a purely statistical
framework where all weights are expressed in terms of probabilities and reason-
ing is probabilistic as well; in this case, the log could be used to directly update
mapping weights. Another possibility is to extend our model of context to a
graph, so as to base recommendations on separate groups of entries (e.g., to dis-
tinguish foreground from background objects and to make mappings role-aware);
this could be particularly relevant to take egocentric computer vision and en-
gagement into account [8]. Also the execution performances of recommended
queries deserve further attention. Some possible enhancements here would be
(i) to add a criterion for query selection that also considers an estimate of the
query performance and (ii) to give users, for each recommended query, an esti-
mate of its execution time plus a quick preview of its its results; note that the
latter point would raise some interesting possibilities for multiquery optimiza-
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tion and caching. Finally, recommendation could also be extended from plain
OLAP queries to complex analytics, e.g., anomaly detection: some event that
is not in line with historical trends is going on, so it should be singled out.

In a broader perspective, it would be interesting to correlate context-
awareness to data quality issues. In fact, it has been recognized that contextual
assessments can be as important as objective quality indicators because they
affect which information gets used for decision making tasks [51]. Specifically,
the data quality dimensions impacted by contextual data are relevancy, value-
added, timeliness, completeness, and amount of data [52].
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