
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Height variation hypothesis: A new approach for estimating forest species
diversity with CHM LiDAR data

Michele Torresania,⁎, Duccio Rocchinib,c, Ruth Sonnenscheind, Marc Zebischd, Heidi C. Hauffee,
Michael Heymf, Hans Pretzschf, Giustino Tonona

a Free University of Bolzano/Bozen, Faculty of Science and Technology, Piazza Universitá/ Universitätsplatz 1, 39100 Bolzano/Bozen, Italy
bAlma Mate Studiorum University of Bologna, Department of Biological, Geological and Environmental Sciences, via Irnerio 42, 40126 Bologna, Italy
c Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcka 129, Praha – Suchdol
16500, Czech Republic
d Institute for Earth Observation, EURAC, European Academy of Bolzano/Bozen, Viale Druso 1, Bolzano/Bozen, Italy
e Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
f Chair of Forest Growth and Yield Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising,
Germany

A R T I C L E I N F O

Keywords:
Forest ecosystems
Biodiversity
Rao’s Q index
Height heterogeneity
Remote sensing
Canopy height model
Forest density

A B S T R A C T

An indirect method for estimating biodiversity from Earth observations is the Spectral Variation Hypothesis
(SVH). SVH states that the higher the spatial variability of the spectral response of an optical remotely sensed
image, the higher the number of available ecological niches and hence, the higher the diversity of tree species in
the considered area. Here for the first time we apply the concept of the SVH to Light Detection and Ranging
(LiDAR) data to understand the relationship between the height heterogeneity (HH) of a forest and its tree
species diversity, a concept we have named the ‘Height Variation Hypothesis’ (HVH). We tested HVH in two
different European forest types: a coniferous mountain forest in the eastern Italian Alps and a mixed temperate
forest in southern Germany. We used the heterogeneity index Rao’s Q to estimate HH using a Canopy Height
Model (CHM) at different resolutions derived from LiDAR data, and linear regression models and relation
analysis to assess the relationships between HH and three species diversity indices derived from in situ collected
data: Shannon’s H, Simpson’s S and species richness. The relationships were calculated for all plots in both study
areas, and separately for plots with a defined Canopy Closure (CC > 70%, CC > 80%, CC > 90%) to un-
derstand the effect of forest density on the relationship between HH and tree species diversity. Our results
showed that HH is related to the tree species diversity of the forest ecosystems reaching (in the case of Shannon’s
H) values of R2 =0.63 for the coniferous mountain forest and R2 =0.56 for the mixed temperate forest, par-
ticularly when calculated with a CHM resolution of 2.5 m. The associations also increased with increasing ca-
nopy closure suggesting that HVH is scale and forest density dependent. Our results also underlined that the
abundance-based diversity measures are more highly correlated with HH than with species richness. Finally, our
findings suggest that the HVH is a valuable tool for assessing tree species diversity in forest ecosystems, and
could also be useful for overall biodiversity estimates.

1. Introduction

1.1. Forest structure and tree diversity

The preservation of biological, ecological and genetic diversity is
one of the targets of sustainable forestry (Lindenmayer et al., 2000).
Intact forest ecosystems host the majority of the world’s terrestrial
animal and plant species, thanks to the wide variety of habitats and
niches they represent (Ozanne et al., 2003). Highly biodiverse forests

deliver many ecosystem services, providing oxygen, filtering air pollu-
tion, preventing soil erosion, hosting crop pollinators, offering re-
sistance to colonization by invasive species and pathogens, and miti-
gating the effect of abiotic factors (Hakkenberg et al., 2018; Naidu and
Kumar, 2016). The loss of this fundamental source of diversity, due to
various direct (e.g. deforestation, overharvesting) or indirect (e.g. cli-
mate change, pollution) processes is an alarming and problematic trend
(Gao et al., 2014; Singh et al., 2001; Dirzo and Raven, 2003).

While various methods have been proposed for assessing and
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monitoring biodiversity, including spatial and temporal changes
(Berglund and Jonsson, 2001; Smith et al., 2007; Chirici et al., 2012), a
number of studies have shown that species diversity is the best pre-
dictor of overall biodiversity (Huang et al., 2003; Homeier et al., 2010).
In forest ecosystems, tree species diversity and composition are driven
by a number of interconnected factors such as climatic conditions
(Waring and Schlesinger, 1985), exposition and altitude (Fontaine
et al., 2007), light (Poulson and Platt, 1989) and forest management
(Battles et al., 2001). Forest structure has been also identified as an
indicator of tree species diversity across a wide range of forest types
around the world (Guo et al., 2017). ”Structure” describes how the trees
are distributed within a forest (Gadow et al., 2012), including both the
vertical and horizontal elements. The vertical structure is defined as
”the bottom to top configuration of above ground vegetation within a
forest unit” (Brokaw, 1999) while the horizontal structure describes
how the trees are distributed and aggregated within a forest
(Kuuluvainen et al., 1996). The more complex the structure, the higher
the heterogeneity, which means there is a higher number of potential
habitats and niches that can host a wider variety of plant species
(Lindenmayer et al., 2000). This also means that tree species diversity is
higher in older, structurally complex forests, than in structurally
simple, younger stands and plantations (Ishii et al., 2004). Furthermore,
the association between forest structure and tree species diversity
guides modern forest management, such that managers and ecologists
maintain a heterogeneous forest structure at both stand and landscape
scales to maintain biodiversity (Hunter, 1993). Finally, forest density
and related canopy cover also impact environmental heterogeneity and
community diversity by impacting the quality, quantity and spatio-
temporal distribution of the light in the forest (Valverde and
Silvertown, 1997; Jennings et al., 1999), which influences the coex-
istence of species with diverse ecological requirements (Brokaw, 1985).

1.2. Height variation hypothesis

Monitoring and mapping tree species diversity over large areas by
field sampling is costly and time-consuming. In contrast, remote sensing
has made it relatively rapid and economical to collect vast quantities of
environmental data at multiple spatial and temporal resolutions
(Hakkenberg et al., 2018). Optical images have been largely used for
this purpose. Digital Aerial photographs (Garzon-Lopez et al., 2013),
hyperspectral (Clark et al., 2005) and multi-spectral data (Gillespie
et al., 2009; Feilhauer and Schmidtlein, 2009) from unmanned aerial
vehicles (UAV) (Dandois et al., 2015; Porcar-Castell et al., 2015), air-
borne (Lassau et al., 2005) and from satellites (Rocchini, 2007;
Gillespie, 2005) provided very interesting results for the assessment of
tree species diversity. Several approaches have been developed for this
purpose (Turner et al., 2003). The Spectral Variation Hypothesis (SVH)
represents one of them. It proposes that the variability of the spectral
response of a remotely sensed image could be used as a proxy for plant
biodiversity (Palmer et al., 2002), on the basis that areas with higher
spectral variation have a higher number of available niches that can
host more species (Palmer et al., 2002; Rocchini et al., 2013). The SVH
has already been tested across many forest ecosystems (Rocchini et al.,
2010), with various optical remote sensing data (Torresani et al., 2019),
considering field data-set of different extents (Schmidtlein and
Fassnacht, 2017), and focusing on both plant (Lopes et al., 2017) and
animal (Da Re et al., 2019) species diversity.

In order to estimate spectral variation of images, heterogeneity in-
dices have been developed, such as the coefficient of variation (Levin
et al., 2007), the main distance from centroid (Rocchini, 2007), the
convex hull volume and convex hull area (Gholizadeh et al., 2018);
more recently, the Rao’s Q index (Rao, 1982) has also been proposed as
a heterogeneity index (Rocchini et al., 2017). This new index was in-
troduced by Rao (1982) and suggested by different authors (Botta-
Dukát, 2005; Ricotta and Moretti, 2011; Marcantonio et al., 2014) as a
useful measure of functional diversity in ecology. Rocchini et al.

(Rocchini et al., 2017) proposed the index as a new spectral variation
measure to be applied to remote sensing data. When used with optical
remote sensing, the Rao’s Q index considers both the values of the
pixels in the image (based on different distances between their value
e.g. euclidean distance) and the abundance of pixels within the image
(see Rocchini et al. (2017) for details). This index has been recently
tested with several data-sets for the estimation of both alpha (Torresani
et al., 2019; Michele et al., 2018) and beta (Rocchini et al., 2019; Khare
et al., 2019) diversity, confirming its usefulness in assessing spectral
heterogeneity.

Some concerns have been raised in SVH-related studies about the
indices used to estimate in situ species diversity (Gholizadeh et al.,
2018; Torresani et al., 2019), which is compared to the diversity esti-
mated using spectral heterogeneity in the same area. For example,
when both evenness and species richness have been considered (e.g. as
is the case with the Shannon and Simpson’s indices), correlations be-
tween spectral heterogeneity and species diversity are higher than with
species richness alone (Oldeland et al., 2010). This suggests that species
abundance distribution also includes information about species com-
position and structure, which influences the spectral heterogeneity
(Oldeland et al., 2010).

In this paper, we propose to transfer the concept of SVH to struc-
tural heterogeneity to understand the relationship between the varia-
tion in forest tree height and their species diversity. This “Height
Variation Hypothesis” (HVH) approach assumes that the higher the
variation in tree height, the more complex the overall structure of the
forest and the higher the tree species diversity. We will use the Canopy
Height Model (CHM) derived from LiDAR (Light Detection and
Ranging) data to derive height heterogeneity (HH) across two areas of
forest. In contrast to optical remote sensing data, which returns in-
formation on horizontal forest patterns, laser sensors provide geor-
eferenced information of the 3D structure of forest canopy. Areas with
high HH, such as old growth natural forests, have a higher number of
layers with more available niches and are expected to host more spe-
cies. On the other hand, forests with a homogeneous canopy, as in the
case of even-aged forests (e.g. plantation forests), have a lower HH: the
light barely penetrates the canopy, the micro habitats are limited, and
are expected to host fewer species.

Our overall objective was to test the HVH in order to assess forest
tree species diversity from LiDAR data. We tested the HVH in two dif-
ferent forest ecosystems in Europe: an alpine coniferous forest located
in the eastern Italian Alps and a temperate forest situated in southern
Germany. Specifically, we related the HH, calculated with CHM LiDAR
data using the heterogeneity index Rao’s Q and the field-derived tree
species diversity estimated by three different indices (Shannon’s H,
Simpson’s S, species richness). Finally, we examined how different
forest densities and spatial resolutions of the CHM affect the relation-
ship between HH and in situ tree diversity.

2. Material and methods

2.1. Study areas

We tested the HVH in two study areas characterized by two distinct
forest types. Study Area 1 (San Genesio/Jenesien) (Fig. 1) is located in
the Province of Bolzano/Bozen (Italy) in the municipality of the same
name (N46°55’ E11°32’). The size of the study area is approximately of
270 ha. Twenty plots having size of 1 ha (100m×100m) were ran-
domly chosen within a dense coniferous forest at 1100m a.s.l. char-
acterized by a high canopy cover. Following previous study designs
(Schmidtlein and Fassnacht, 2017; Torresani et al., 2019; Oldeland
et al., 2010), the center and corners of all plots were geo-referenced
with a GPS device (spatial accuracy of ± 3m; Garmin, U.S.A.). From
June to August 2017, trees with a diameter at breast high (DBH) of at
least 5 cm were classified to species. Ninety-five percent of the mea-
sured trees were coniferous species, dominated by Pinus sylvestris,
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followed by Larix decidua and Picea abies. The remaining 5% were de-
ciduous such as Betula alba, Corylus avellana, Salix caprea and Sorbus
aucuparia.

The second Study Area (Froschham; Fig. 2) is located in the muni-
cipal forest estate of the city Traunstein in south-eastern Germany
(N47°52’ E12°38’). This site is part of the ForestGEO network ( https://
forestgeo.si.edu/), established and censused in 2015. The size of the
Study Area 2 is approximately 25 ha. All trees with diameter at breast
height (DBH) ⩾ 5 cm were geo-located and measured with a tree ca-
liper, in total 15,824 trees covering 29 tree species. In this mixed
temperate forest, 52% of the trees were conifers dominated by Picea
abies (covering approx. 50% of the site), while 48% are broadleaves
dominated by Acer pseudoplatanus. Within the area, there is a gradient
of even aged monospecific stands (eastern part) to uneven aged mixed
stands (western part). While in the former the transition to a hetero-
geneous structure has only just started, in the latter, multi-layered
mixed forests already exist. For a more detailed area description see (
https://forestgeo.si.edu/sites/europe/traunstein). One hundred 1 ha
plots (100m×100m) were randomly chosen within the Study Area 2.
Due to their size, part of the plots have a common overlapped area. This
should not create problems to the analysis which is a per plot-based
analysis and does not aim at interpolating values of diversity but at
relating species and height diversity using the plot grain.

2.2. In-situ species diversity

To estimate field-based tree species diversity, three different indices
were used: Species richness, Shannon’s H and Simpson’s S. Species
richness (SR) refers to the total number of species found in each Study
Area.

Shannon’s H formula (1) is based on the abundance of each species
in the plot area and reflects the evenness of the population (Shannon,
1948). This index is commonly used in ecology including remote-sen-
sing studies (Oldeland et al., 2010; Torresani et al., 2019).

∑= −
=

H p p*log( ),
i

q

i i
1 (1)

where:

H=Shannon’s entropy used in ecology
q=number of species
pi =proportion of species i relative to the total number of species.

Simpson’s S index formula (2) is also widely used as a measure of
species diversity (Nagendra, 2002; Lamb et al., 2009) which takes into
account both the abundance and the number of species present in an
area, and estimates the probability that two randomly chosen in-
dividuals belong to the same species.

Fig. 1. The Study Area San Genesio/Jenesien located in South Tyrol in the municipality of San Genesio-Jenesien (Italy). The center of the 20 plots are indicated by
white dots. The white square shows one of the Study Area (image used: Sentinel-2 RGB, June 26th 2017).

Fig. 2. The Study Area Froschham, located in Bavaria, near the municipality of Traunstein (Germany). In red the border of the forest. The white square indicates one
of the 100 plots while the white dots indicate the center of all the 100 plots (image used: Sentinel-2 RGB, June 08th 2018).
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where:

S=Simpson index
n= total number of organisms of a particular species
pi =proportion of species i relative to the total number of species

For both Shannon’s H and Simpson’s S pi has been calculated as the
ratio between the number of individual for a considered species in a
plot and the total number of individual in the plot.

2.3. LiDAR data

For Study Area 1, the LiDAR data used to test the HVH were derived
from an Airborne Laser Scanning (ALS) campaign carried out in 2006
by the Province of Bolzano/Bozen (free available here:http://
geocatalogo.retecivica.bz.it/geokatalog/). The average density of the
LiDAR point cloud (PC) over the Study Area was 2.9point/m2 which
allowed us to derive a free ‘no-data’ digital terrain model (DTM), digital
surface model (DSM) and CHM (the difference between the DSM and
DTM) with a final resolution of 2.5 m. CHMs with a resolution of 5m,
10m and 20m were successively derived (also in this case from the
difference between DSM and DTM) to test the HVH at different re-
solutions. Unfortunately, there were no other updated LiDAR data
available over that area. About the temporal mismatch with the field
data collection (2017) we assume that the effect of the temporal dis-
crepancy is relatively low, since in the forested area, no cuts have been
done the in last 15 years.

For Study Area 2, we used two different LiDAR data-sets to derive
the final CHMs. A DTM with a resolution of 1m was available from a
2010 ALS campaign. We also made use of a PC with a density of
6.3points/m2 derived from a 2018 ALS campaign, to derive a DSM. This
allowed us to derive final CHMs with a resolution of 1m. CHMs with a
resolution of 2.5 m, 5m, 10m and 20m were derived from the PC to
test the HVH at different resolutions. Additionally, we reduced the PC
to 2.9 point/m2 using the R function “lasfilterdecimate” (R package
”lidr” (R Core Team, 2013)) to allow a comparison of results between
the two study sites. This function removes randomly a given proportion
of points from the PC to achieve a specific point density. We then used
this reduced PC (PCRed) to derive CHMs with a final resolution of 2.5 m,
5m, 10m, 20m. We used the ”dsmtin” function of the R-package ”lidr”
(R Core Team, 2013) to calculate the DSMs from the PCs for both study
areas. This function makes use of the Delaunay triangulation of the first
returns to set the algorithm for the DSM computation.

2.4. Heterogeneity index

HH was calculated using Rao’s Q index following Rocchini et al.
(Rocchini et al., 2017). We applied this index to a CHM raster calcu-
lating the distance dij among pixel values (each pixel represents the
canopy height value), and their relative abundance, calculated as:

∑ ∑=
=

−

= +

Q d p p* * ,rs
i

F

j i

F

ij i j
1

1

1 (3)

where:

Qrs =Rao’s Q applied to remote sensing data
p=relative abundance of a pixel value in a study plot (F)
dij =distance between the i-th and j-th pixel value (dij = dji and

=d 0ii )
i = pixel i
j = pixel j

The relative abundance p is calculated as the ratio between the
considered pixel (pi and pj) and the total number of pixels in F. The
distance matrix dij can be built in different dimensions, allowing the
consideration of more than one band or raster at a time. In our case, the
dij was calculated as a simple Euclidean distance based on the single
band (CHM values). We used and implemented the R-package function
“spectralrao()” (developed by Rocchini et al. (2017)) to retrieve a Rao’s
Q value for each 100m×100m plot for the following resolutions: for
Study Area 1 (CHM at 2.5 m, 5m, 10m, 20m), for Study Area 2, with
original PC (CHM at 1m, 2.5m, 5m, 10m, 20m) and with PCRed (CHM
at 2.5m, 5m, 10m, 20m). The resulting values of HH were correlated
by linear regression with the three field-based species diversity indices
(Shannon’s H, Simpson’s S, species richness). Since our analysis was
based on multiple hypotheses, we corrected the p-values with the
Benjamin-Hochberg correction to get an unbiased measure of sig-
nificance (Benjamini and Hochberg, 1995).

2.5. Canopy closure

To understand the effect of forest density on the relationship be-
tween HH and tree species diversity, canopy closure (CC) was calcu-
lated for each plot. This ecological indicator is related to forest density
and is defined as ”the proportion of sky hemisphere obscured by ve-
getation when viewed from a single point” (Jennings et al., 1999). We
calculated the CC formula (4) for each plot by using the CHMs as the
ratio of the number of pixels above a certain height and the number all
pixels within specified extent (Liu et al., 2017). We set the tree height
threshold to 2m, according to the design of previous similar studies
(Ma et al., 2017; Vastaranta et al., 2013). The accuracy of CC is con-
strained by the CHM resolution (Korhonen et al., 2011), and is im-
proved with high resolutions, which can better discriminate between
forest and not-forest pixels.

=CC
px
px

*100,m

tot

2

(4)

where:

CC =Canopy closure
px m2 = number of pixels with a CHM > 2m
pxtot = total number of pixels

Subsequently, HVH was assessed for both the study areas con-
sidering all plots and separately for plots with a CC > 70%,
CC > 80% and CC > 90%.

3. Results

3.1. In-situ tree species diversity

Table 1 summarizes the values of the three in situ tree species di-
versity indices for both study areas. All mean alpha diversity indices, as
well as most min/max values, are higher in Study Area 2, the deciduous
forest.

3.2. Canopy closure

All the plots in Study Area 1 showed a CC of 100% for all CHMs
(Table 2). In Study Area 2, the pattern was more complex: the CC
calculated using the original PC generally decreased with increasing
CHM resolution, presumably because the higher the CHM resolution,
the higher the accuracy of the method for differentiating between forest
(> 2m) and non-forest pixels. This effect was stronger with higher
canopy closure (> 90%). The percent of plots with a CC > 70% in-
creased from 93 to 100% as the resolution of the CHM decreased from
1m to 20m while the number of plots with a CC > 90% increased
from 68% to 100%. This is probably due to a smoothing effect induced
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by reducing the CHM resolution. Similar results were obtained when
the point density was artificially reduced from 6.3 point/m2 to 2.9
point/m2 (PCRed).

3.3. Height variation hypothesis

In Study Area 1, HH and species diversity indices were positively
and significantly correlated only for the Shannon’s H(R2 = 0.63) and
Simpson’s S (R2 = 0.57) indices at 2.5m CHM resolution
(p=0.001117 and 0.002365, respectively; Fig. 3). All other correla-
tions were positive but not significant.

The R2 values for both abundance-based species diversity indices
(Shannon’s H and Simpson’s S) have similar values and tendencies
(decreasing with decreasing CHM resolution), while values for species
richness have the opposite pattern (increasing from 0.08 to 0.18 with
decreasing CHM resolution)

In Study Area 2, HH is positively and significantly correlated with
all three species diversity indices, regardless of CHM or CC, for both the
original PC and PCRed (Appendix 1). Interestingly, when the original PC
is used, R2 values (Fig. 4) are less variable between models and p values
are much higher overall (Appendix 1) with the highest values of R2

(0.56, 0.56, 0.48 respectively for Shannon’s H, Simpson’s S and species
richness) with CHM 2.5m and CC > 90% (Appendix 1, Figs. 2, 6, 10).
When all the plots (‘All’) are used, R2 has lower values for both the
Shannon’s H and Simpson’s S. Curiously, R2 values for species richness
increase with decreasing resolution. For the three species diversity in-
dices, when only the plots with CC > 70% are considered the R2 has
also a low value for the available CHMs. Focusing instead on the plots
with CC > 80%, the coefficient of determination reaches discrete va-
lues of 0.47, 0.48 and 0.41 respectively for Shannon’s H, Simpson’s S
and species richness when used with a CHM of 1m, and then decreasing
with the CHM of 2.5m.

As for the original PC, for PCRed, the highest R2 values (Fig. 5) were
found for the three species diversity indices with a CHM of 2.5m and
CC > 90%, reaching a value of 0.54 for the Shannon’s H and Simpson’s
S indices and 0.45 for species richness (Appendix 1 Figs. 14, 18, 22).
Also in this case, when the plots with a CC > 70% and CC > 80% are
used, R2 has lower values. Interestingly, when all the plots (‘All’) are
used, R2 has lower values for both the Shannon’s H and Simpson’s S
while for species richness it increases with decreasing of the resolution.

4. Discussion

In this paper, the HVH was tested in two different forest ecosystems
to understand the relationship between tree species diversity and HH
using Rao’s Q as the heterogeneity index. Since we used the Rao’s Q on
one single layer using half the squared Euclidean distance (1/2 dij

2)
where dij is the Euclidean distance, as in this paper, this means Rao’s Q
was reduced to variance, which is a good approximation of hetero-
geneity when using continuous variables (Laliberté et al., 2020). We
refer to Ricotta (2005), Ricotta and Szeidl (2006) and Ricotta et al.
(2012) for additional information on the mathematical properties of
Rao’s Q. This said, as in our first test, Rao’s Q may be applied to a
variety of multidimensional layers together, by explicitly considering
pixel values in several dimensions at the same time.

Our analysis confirmed that the HH calculated from CHM at certain
resolutions is a good proxy of forest tree species diversity. In addition,
we showed that the HVH is both density- and scale-dependent. The
study underlined the strength of Rao’s Q index, adopted in previous
studies to test the SVH (Torresani et al., 2019; Rocchini et al., 2019;
Rocchini et al., 2018; Da Re et al., 2019), and for the first time used
here with LiDAR data to analyze the HVH. Compared to indices re-
viewed in previous literature, Rao’s Q has the advantage of taking into
account both distance among pixel values as well as their relative
abundance in a single formula (Rocchini et al., 2017).

The strong relationship of HH with tree species diversity is probably
due to the fact that variation of tree heights is related to forest structure
complexity: the higher the complexity, the higher the number of niches
available as species habitats (Hernandez-Stefanoni et al., 2012; Guo
et al., 2017). More specifically, forests with a multi-layered structure
have a higher plant species diversity, particularly if they are mixed
broadleaved and coniferous (Gao et al., 2014), as a result of higher light
availability in complex forest structures. In addition, forest and crown
structure influence photosynthetic capacity, growth and distribution of
trees (Ishii et al., 2004). Therefore, areas with high HH, such as old
growth natural forests, have a higher number of layers where light
penetrates to different degrees throughout the forest, allowing the
growth of both shade-tolerant and intolerant trees (Brokaw and
Scheiner, 1989). This link between forest structure and forest tree
species diversity is also the basis of the new naturalistic silviculture
adopted in Italy where forest managers maintain the diversity of forest
structural attributes at both stand and landscape scales in order to
promote higher forest species diversity (Hunter, 1993; Paci, 2004).

Table 1
Mean, standard deviation and min/max of the three considered species diversity indices for both study areas.

Study Area 1: San Genesio/Jenesien Study Area 2: Froschham
In-situ species diversity index In-situ species diversity index

Shannon’s H Simpson’s S Species Richness Shannon’s H Simpson’s S Species Richness

Mean 0.67 0.36 6.3 1.14 0.55 8.87
Standard deviation 0.33 0.18 1.9 0.31 0.15 2.86
Min 0.11 0.04 4 0.39 0.18 4
Max 1.36 0.63 11 1.63 0.76 11
Median 0.69 0.39 6 1.19 0.58 9

Table 2
The table shows the % of plots with a CC > 70%,>80%,>90% calculated using different CHMs.

Study Area 1 Study Area 2 PCoriginal Study Area 2 PCRed

> 70% > 80% > 90% > 70% > 80% > 90% > 70% > 80% > 90%

CHM 1 m – – – 93 87 68 – – –
CHM 2.5 m 100 100 100 97 95 80 97 94 76
CHM 5 m 100 100 100 100 97 97 100 96 94
CHM 10 m 100 100 100 100 100 100 100 100 100
CHM 20 m 100 100 100 100 100 100 100 100 100
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One of the main outcomes of this study is that the HVH is CC and
CHM resolution dependent. That is, the highest R2 was found in plots
with a CC higher than 90% using a CHM of 2.5m, in which open areas
are limited. Although CC is a measure used to define the density of the
forest, this measure is not always related to its structure (Jennings et al.,
1999). This is because CC measures the proportion of sky obscured by
the vegetation, but it does not consider its height. Furthermore the CC
values are influenced by the threshold used to differentiate between

presence of vegetation and absence of vegetation (2m in our case).
Therefore, there are naturally dense forests (with high CC), where dif-
ferent trees alternate creating different layers and high structural het-
erogeneity. On the other hand, our results highlighted that the HVH
does not hold true in the areas with a lower CC, where the HH is high
due to gaps in forest canopy, but tree species diversity is low. This lack
of correlation is interesting, since open areas should provide an en-
vironment where different tree species compete to share heterogeneous

Fig. 3. Linear regression between the three species diversity indices (A= Shannon’s H, B= Simpson’s S, C= Species richness) and the HH calculated at different
CHM resolutions for Study Area 1: San Genesio/Jenesien. The results include values from all the plots, since all have a CC > 90%.

Fig. 4. HVH assessed on Study Area 2: Froshham with original PC: R2 derived from the linear regression between the three field-based species diversity indices
(Shannon’s H, Simpson’s S and Species richness) and the HH calculated using Rao’s Q index at different CHM resolutions derived from the original PC. The
relationship was calculated using all the plots (‘All’) and separately using only the plots with a CC > 70%, CC > 80%, CC > 90%.
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resources, providing numerous species niches (Schnitzer and Carson,
2001). However, although light may be the main factor influencing
forest species diversity, there are also many others (e.g. exposition,
elevation, inclination, water availability) (Kimmins, 2004). For this
reason further analysis should be conducted to test the HVH in different
forest ecosystems and especially in areas with a low CC.

In both the study areas, the best relation between HH and tree
species diversity was found with CHM of 2.5m. This could be due to the
fact that the CHM resolution of 2.5 m, in plots with such a high density,
can be considered the most appropriate for the detection of the single
trees. The basic concept behind the HVH is that the HH should reflect
the trees heterogeneity, therefore a too high or too coarse CHM re-
solution (1m or 20m) risks being inappropriate for our purpose. The
choice of the appropriate LiDAR resolution for the estimation of single
tree parameters (e.g height or size), or more in general in the study of
forest structure is still a key point as reported by many studies in lit-
erature. Huang et al. (2009) stated that low resolution LiDAR data are
less accurate to provide detailed information on tree canopy structure.
On the other hand Zimble et al. (2003) reported that the use of coarse
LiDAR data (⩾2m spacing) are useful enough in determining tree
height detail differences and to distinguish different structure classes.
Lastly, Ene et al. (2012) stated that spatial resolution of the CHM play
an important role for the estimation of single tree characteristics.

Our results using in LiDAR data from Study Area 2 showed that the
PC density does not affect HVH outcome; that is, the R2 and p-values
were quite similar between the original PC and the PCRed. This is
probably due to the fact that the HVH was tested from the CHM and not
directly through the PC, since our aim was to understand how the
difference in canopy is related to the tree species diversity of the forest.
Another possible reason for the outcome may be due to the temporal
mismatch between the LiDAR campaign (2006) and the field data col-
lection (2017). In fifteen years, the forest canopy height may have been
changed due to tree growth. This is a common issue in LiDAR related
studies where the temporal gap between field data acquisition and
LiDAR campaign can be considerable (Schmidtlein and Fassnacht,
2017; Polychronaki et al., 2015) as a result of the infrequent acquisition
of LiDAR data. It should be noted, however, that the impact of this
mismatch on results is considered minimal due to the typically slow
development and growth of the forests (Paci, 2004) as well as the
coarse spatial resolution (2.5 m or more) of the LiDAR data-set con-
sidered.

Our outcomes for both study areas showed that the abundance-
based diversity measures (Shannon’s H and Simpson’s S) are more
highly and significantly correlated to HH than the species richness. This
suggests that both Shannon’s H and Simpson’s S indices contain more

accurate information about the vegetation and the forest structure,
which is considered a subset of habitat heterogeneity (Oldeland et al.,
2010; Dogan and Dogan, 2006). Similar results have been found in
literature testing SVH. Oldeland et al. (2010) analyzed the relationship
of richness and abundance-based diversity measures of vascular plants
with spectral variation of optical images over a semi-arid ecosystem in
central Namibia. Their results showed that the abundance-based
Shannon’s H Index was in general more strongly related to spectral
variability than species richness itself. Madonsela et al. (2017) reached
the same outcome testing the SVH in savannah woodland: the spectral
heterogeneity calculated on Landsat-8 images was better related to
species diversity measures that considered both species richness and
abundance than species richness only.

Our results also highlighted that HVH holds over the two considered
forests types: an alpine coniferous and a mixed temperate forest.
However, the relationship between ‘high structural diversity’ and ‘high
tree species diversity’ is not always valid for all forest ecosystems. There
are natural forests in temperate areas that are in a ‘climax’ state, with a
high structural diversity that host a low number of species. Larch forests
found at the upper altitudinal limits of vegetation in alpine environ-
ments are a typical example. These pioneer forests, due to the cold
harsh weather conditions have low competition and are characterized
by a low density, with a heterogeneous structure. Yet species diversity
is low, since only a few forest species can survive in these conditions.
Therefore, HVH should be further tested in these and additional forest
ecosystems before the approach can be considered a generalized
method for the estimation of forest tree species diversity worldwide. As
for the SVH, and as mentioned above, the assessment of species di-
versity in forests is driven by a series of proprieties caused by the in-
fluence of different physical factors within the forest canopy (solar ra-
diation, precipitation, temperature, distribution of nutrients between
the soil and vegetation) that are different in distinct forest ecosystems
and geographical areas (Ricklefs, 1977; Rocchini, 2007).

For the Study Area 1: San Genesio/Jenesien, previous research
(Torresani et al., 2019) tested SVH for its capacity to estimate tree
species diversity using Sentinel-2 and Landsat 8 data, confirming the
usefulness of this approach. The SVH takes advantage of the free
availability of satellite images (like Sentinel-2 or Landsat 8) to derive
information on species diversity in different habitats but has some
drawbacks such as the need for cloud-free images, unavailable in some
areas of the world. In addition, it has been recently argued by Torresani
et al. (2019) that SVH is season dependent, and that image pre-pro-
cessing can modify the spectral heterogeneity ratio (Torresani et al.,
2019); in general there is also a lack of free high resolution images.
Instead, the results of this paper confirm the strength of HVH in

Fig. 5. HVH assessed on the Study Area Froshham with PCRed: R2 derived from the linear regression between the three field-based species diversity indices (Shannon’s
H, Simpson’s S and Species richness) and the HH calculated through Rao’s Q index at different CHM resolutions derived from the PCRed. The relation is calculated
using all the plots (‘All’) and separately using only the plots with a CC > 70%, CC > 80%, CC > 90%.
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reaching the same objective; moreover, LiDAR technology has the ad-
vantage of generating season-independent data on the overall 3D forest
structure not achievable through optical data. The potential dis-
advantages of this new method are related to the low availability and
the high costs of LiDAR data-set acquisition, although these are de-
creasing with recent technological advances (Ruiz et al., 2014); in ad-
dition, UAV platforms could be used for the acquisition of LiDAR data
(Wallace et al., 2012) or images used in this case to derive CHM
through photogrammetry (Lisein et al., 2013). Costs can be further
reduced by acquiring low density PC (Dalponte et al., 2012) that, as
shown in the results, are sufficiently precise for testing the HVH (see
difference between PC and PCRed).

5. Conclusion

In this paper we introduced the HVH as a means of investigating the
relationship between HH and tree species diversity in forest ecosystems.
The main hypothesis behind such testing is that the higher the variation
in tree height, estimated through a LiDAR CHM, the more complex the
overall structure of the forest and the higher the tree species diversity.
The results highlighted the strength of the proposed approach parti-
cularly in dense forests (with a CC > 90%) using a CHM of 2.5 m.

However, the suggested method should be tested in other forest
ecosystems, with diverse data-sets and indices, before the approach can
be considered a generalizable method. Further analysis could be con-
ducted by using the whole LiDAR PC to consider the 3D structure of the
forest or by developing a methodology to combine information from
optical sensors, aimed at combining multiple types of information.
Moreover, the next research step could focus on assessing tree species
diversity combining the information derived from the SVH and HVH in
order to combine the spectral and structural information.

Since the diversity in forest structure is related to the concept of
”ecological niches” and to the overall vegetation diversity, additional
analysis could also be conducted to test the HVH considering a more
complete picture of forest plant species diversity, i.e. including not only
trees but also shrubs and herbs. Furthermore, new analysis could focus
on the study of the relationship between the HH and the specie func-
tional/phylogenetic Rao’s Q (instead of Shannon’s H or Simpson’s S) in
order to better understand the habitat structure and the effects of the
change in species diversity on ecosystem functioning. We suggest the
HVH could be used by forest manager or ecologists as a ‘first filter’ in
the identification of tree species diversity hot-spots or to guide field
sampling.
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