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Natural Compounds as a Strategy to Optimize ‘‘In Vitro’’
Expansion of Stem Cells

Tullia Maraldi,1 Cecilia Prata,2 Pasquale Marrazzo,3 Silvana Hrelia,3 ,* and Cristina Angeloni4,*

Abstract

The efficient use of stem cells for transplantation is often limited by the relatively low number of stem cells
collected. The ex vivo expansion of human stem cells for clinical use is a potentially valuable approach to
increase stem cell number. Currently, most of the procedures used to expand stem cells are carried out using a
21% oxygen concentration, which is about 4- to 10-fold greater than the concentration characteristic of their
natural niches. Hyperoxia might cause oxidative stress with a deleterious effect on the physiology of cultured
stem cells. In this review, we investigate and critically examine the available information on the ability of
natural compounds to counteract hyperoxia-induced damage in different types of stem cells ex vivo. In par-
ticular, we focused on proliferation and stemness maintenance in an attempt to draw up useful indications to
define new culture media with a promoting activity on cell expansion in vitro.

Keywords: stem cell expansion, natural compounds, hyperoxia, oxidative stress, cell proliferation, stemness
maintenance

Introduction

Human stem cells are being investigated for the
treatment of many different diseases, like cardiovas-

cular and autoimmune diseases and traumatic lesions.1

Among stem cells, particular interest has been focused on
mesenchymal stem cells (hMSC) that can be derived from
many tissues but are often insufficient to reach a relevant
number of cells adequate for clinical use. Moreover, patient
age, gender, genetic background, and clinical history influ-
ence their quantity and quality.

At present, most procedures to expand stem cells are
carried out at an ambient oxygen concentration where cells
are exposed to 21% O2, which is 4- to 10-fold greater than
the concentration characteristic of their ‘‘in vivo’’ niches.2,3

Several studies have demonstrated the deleterious impact of
a 21% oxygen tension on the physiology of stem cells, for
example, neuronal stem cells,4 bone marrow stem cells,5,6

umbilical cord stem cells,7 or adipose tissue stem cells.8,9 In
fact, in vitro culture of MSCs exposed to a 21% oxygen
concentration might increase the production of reactive
oxygen species (ROS) and, as a consequence, to be sub-
jected to environmental oxidative stress. In general, ROS,

including hydrogen peroxide (H2O2) and superoxide anion
(O2

-), plays crucial roles in stem and progenitor physiology.
Nevertheless, the ‘‘redox window’’ hypothesis must be
considered: suitable ROS level is vital for physiological
cellular functions,10 whereas excess ROS contribute to ad-
verse effects on MSCs, including premature senescence,
increase of the population doubling time, damages to
DNA,11,12 and reduced engraftment after transplantation.13

Human MSCs are particularly susceptible to early senes-
cence and typically halt proliferation at approximately
passage 8, which limits their expansion potential and ther-
apeutic value.14 Another issue to be considered is the need
of long-term cryopreservation of stem cells, a routine
practice that requires extremely controlled and safe tech-
niques of specimen storage. However, more and more
studies are showing contradictory results on the influence of
stem cell cryopreservation and thawing, such as wide
stresses at physical and biological level, mitochondrial
damages, modifications to basal respiration and ATP syn-
thesis, apoptosis and necrosis, shortening of telomeres and
cellular senescence, damage to DNA, and oxidative stress.15

These results have raised serious alarms concerning the
therapeutic effectiveness and safety of stem cells. Ability to
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enhance MSC culture expansion and delay senescence could
substantially improve efficacy for autologous stem cell
therapy. On these bases, a promising strategy to counteract
oxidative stress induced by hyperoxia or by cryopreserva-
tion and thawing could be the use of compounds with an-
tioxidant activity. In particular, many natural antioxidant
compounds have been demonstrated to counteract oxidative
stress by directly scavenging free radicals or activating antioxi-
dant defense pathways.16–18 Moreover, the safety of many nat-
ural antioxidant compounds has been largely demonstrated19–21

and this is an important issue considering that stem cell expan-
sion has principally performed with the intent of implantation.

Another important issue to take into consideration in
using natural antioxidant compounds to counteract oxidative
stress in stem cells is that these compounds can induce
changes in cells that should be checked before using them
for treatment. A good antioxidant compound should not
impair stem cell stemness, potency, and proliferation. In this
review we investigate and critically examine the available
information on the ability of natural compounds to coun-
teract hyperoxia-induced damage in different type of stem
cells ex vivo. In particular, we focused on proliferation and
stemness maintenance in an attempt to draw up useful in-
dications to define new culture media with a promoting
activity on cell expansion in vitro.

From the Niche to the Bank

In living organisms, stem cells reside in a specific micro-
environment called niche. Quiescent stem cells are located in
the niche until specific signals finish the dormant state and
activate the differentiation process. In particular, this dynamic
microenvironment accomplishes primarily three functions,
thanks to secreted or cell surface molecules: stem cell pro-
liferation control, stem cell daughters fate determination, and
protection of stem cells from exhaustion or death.22 Not only
structural and soluble factors, but also hypoxia plays a crucial
role for the stemness maintenance of mesenchymal, embry-
onic, neural stem, and hematopoietic cells, and could also
impact on proliferation and differentiation.23

In MSC niches, the local oxygen concentrations fluctuate
depending on stem cell type: between 10% and 15% O2 in
the adipose tissue,24 about 1.3% both in the amniotic fluid
and amniotic membrane,22 and between 1% and 7% O2 in
bone marrow.25

The bone marrow niche is the most studied in literature.
Although bone marrow has a highly complex vascular net-
work, the entire bone interior is relatively hypoxic, with pO2

in the range of 1%–4%.26 In general, HSCs stay quiescent in
the bone marrow niche, whereas various stimuli that cause
loss of quiescence induce strong entry into the cell cycle,
and trigger proliferation frequently accompanied by stress,
apoptosis, and damage to DNA.27,28 Zhou et al.29 observed
that a low-oxygen niche in bone marrow reduces ROS
generation, therefore providing long-term protection against
oxidative stress. Ex vivo expansion techniques should pro-
mote symmetric stem cell divisions,30 and consequently
stem cell self-renewal without inducing differentiation and
apoptosis.

Indeed, oxygen concentration has a major role in the
proliferation and differentiation of stem cells, also in the
placenta. It has been demonstrated that cytotrophoblasts

proliferate in low-oxygen tension (2% O2), whereas they
differentiate in high-oxygen tension (20% O2).31 The re-
duction of oxygen tension below a specific threshold leads
to the initiation of a gene expression program by the tran-
scription factor, hypoxia-inducible factor-1 (HIF-1). HIF-1
signaling pathway plays a fundamental role in regulating
key processes such as energy metabolism, angiogenesis, cell
proliferation, and viability depending on the availability of
oxygen in the cell (reviewed in Ref.32). The low-oxygen
tension stabilizes HIF-1, the oxygen-sensitive monomer of
the HIF-1, since its ubiquitination and proteasomal degra-
dation are prevented.33,34 HIF-1 is linked to transcription of at
least 70 genes holding functional hypoxia-responsive element.
Most of these genes are involved in cell survival, through the
expression of cell surface receptors, angiogenic growth factors,
glucose transporters, and glycolytic enzymes.34,35 Moreover,
under low-oxygen tension stem cell pluripotency is maintained
by HIF-2 interaction with the promoter region of OCT4 caus-
ing increased transcriptional activity.36 OCT4 is the principal
regulator of pluripotency in embryonic stem cells (ESCs) and
essential to obtain induced pluripotent stem cells (iPSCs) but
disappears upon differentiation.37

For example, bone marrow HSCs (BHSCs) are quiescent
in vivo through conservation of a hypoxic phenotype with
high levels of HIF-1a protein and the hypoxic marker pi-
monidazole, even when contiguous to arterioles.38 Thus, in
preserving quiescence into the niche, HSCs must depend on
anaerobic glycolysis for energy production.39 Indeed, gly-
colysis is induced by HIF-1a in response to hypoxia, ex-
pressing pyruvate dehydrogenase kinase 1 (PDK1), which
inhibits pyruvate dehydrogenase and avoids mitochondrial
acetyl-Co-A production and oxidation. The clear result is a
metabolic shift that induces glycolysis and decreases ROS
generation in hypoxia. Correspondingly, expansion of MSCs
in atmospheric oxygen levels upregulates OXPHOS genes and
mitochondrial respiration, and accelerates cellular senescence,
while hypoxic culture conditions delay senescence.40

It is known that the use of O2 in several fundamental
metabolic processes by living organisms has got an evolu-
tionary price, as O2 metabolism is the main source of ROS
in the cells. The condition known as oxidative stress occurs
when the endogenous production of ROS exceeds the cel-
lular capacity of the antioxidant systems. Unfortunately, not
always the cellular adaptive processes are able to counteract
the accumulation of oxidative damage to key molecules,
such as lipids, DNA, and proteins.29 While all the cells of an
organism might be subjected to the accumulation of dam-
ages triggered by oxidative damage, the effects of ROS on
stem cells in most self-renewing tissues are of specific in-
terest to the processes of aging and cancer development
owing to their undifferentiated condition and longevity of
replicative potential.41,42

Excessive ROS production leads to the overexpression of
the tumor suppressor genes, p21, p53, and p16.43,44 Ac-
cordingly, oxidative stress is one of the principal causes of
physiological decline during cellular senescence. Forkhead
box (Fox) O proteins control ROS generation in stem cells
by regulating catalase and SOD expression.45,46 It has been
observed that the increase of ROS level in FoxO-deficient
mice is associated with the disruption of HSC quiescence,
increase in HSC apoptosis, and impairment in hematopoietic
repopulating abilities.
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In animal models with damaged cellular antioxidant de-
fense system, such as SOD2, an antioxidant enzyme that is
present in mitochondria and modulated by FoxO3, a po-
tential correlation between ROS and HSC impairment has
been observed. SOD2 evoked a protective activity in mouse
neural stem cells (NSCs), and its upregulation improved
NSC’s survival both in vitro and in vivo. In addition, the
alterations related to aging in SOD2 modulation by FoxO3
and DNA damage, recognized by serine/threonine protein
kinase ATM (ataxia telangiectasia mutated), contribute to
HSC functionality reduction with aging.46 HSC self-renewal
capacity relies on ATM-mediated reduction of ROS pro-
duction as demonstrated by studies carried out in Atm-/-.
There is a crosstalk with the ATM-p53 signaling converging
on p16 to trigger stem cell senescence.47

Other key modulators of aging, oxidative stress, and stem
cell functionality are sirtuins (SIRT), a family of NAD-
dependent protein deacetylases. Recently it has been sug-
gested, a role for SIRT1 in maintaining MSC growth and
differentiation that have been observed to deteriorate with
age. Interestingly, its activation in aged cells protects the
cells from p53-dependent apoptosis or senescence.48 SIRT3,
is crucial in the aged HSCs in the maintenance of mito-
chondria metabolism and in controlling oxidative stress.
Moreover, ectopic upregulation of SIRT3 enhances the
function of HSCs during aging by increasing SOD2 anti-
oxidant activity.49

On these bases, the aging of stem cells may be controlled
by regulating their metabolic and redox state, which in turn
might impact on the intracellular accumulation of ROS. The
condition defined as ‘‘cell culture stress’’ might induce ge-
netic instability and therefore constitutes a biological risk
for cell therapy protocols. These pathways should be re-
versed or avoided to obtain an efficient stem cell expansion
in vitro.

Recently, the increasing interest in the use of MSCs in the
clinical practice has led to a high number of studies on the
effects of culture conditions and expansion on pathways, be-
havior, and function of stem cells. As in vivo HSC self-renewal
and differentiation are regulated by niche cells secreting cyto-
kines and growth factors, including pleiotrophin, angiopoietin-
1, -3, thrombopoietin, granulocyte colony-stimulating factor,
stem cell factor, and Notch ligands,50 cytokines were the first
drugs studied for HSC ex vivo expansion. Overall, cytokines
and their combinations can maintain HSCs and progenitors
counteracting apoptosis in in vivo proliferation but leading to a
contained human HSCs (hHSCs) expansion. For this reason,
further elements are obviously essential for a positive expansion
of hHSCs ex vivo.

The impact of oxygen concentration in adult stem cell
phenotype, morphology, proliferative capacity, and func-
tionality has been largely investigated with controversial
outcomes.

For example, MSCs cultured in low oxygen tension (1%–10%
oxygen) has revealed enhanced regenerative/reparative prop-
erties in animal models of heart, brain, and lung damage.51–53

In particular, several studies have shown that human stem
cells cultured in a range of 1%–5% of oxygen tensions showed
improved cell proliferation and longer lifespan.5,12,54,55 Cul-
turing in hypoxia have also been demonstrated to avoid double-
strand breaks (DSB) and chromosomal abnormalities in several
types of stem cells.56,57 In agreement with this notion, Estrada

et al.11 showed that, compared with cells grown at 3% O2, short-
term growth of hMSC at 20% O2 tension enhances oxidative
stress and DNA damage markers, such as DSB, chromosomal
aberrations, aneuploidy, and telomere shortening rates. In this
study, they showed that expansion at 3% O2 significantly in-
creases the growth rate of adipose tissue-derived hMSC with a
better conservation of telomere length. However, telomerase
activity in hMSC was low and insensitive to O2 concentration
suggesting that the protection from oxidative stress, due to the
growth at 3% O2, avoids telomere erosion.

Moreover, hypoxia upregulated the expression of OCT4
and CXCR7 in MSCs, and deferred modifications in phe-
notypic characteristics such as morphology, cell size, and
senescence.58 Furthermore, besides these effects, hypoxia
also increased the levels of MSC-secreted factors, such as
matrix metalloprotease-(1 and 3) and secreted lysyl oxidase
(LOX), which are required for migration and cell matrix
adhesion.59

However, other authors described different results. For
example, Pezzi et al.60 found that cells exposed to protracted
hypoxia behaved similar to their controls in normoxia
concerning viability, immunophenotyping, differentiation,
and ROS levels. Cells subjected to low oxygen tensions
(4%–1%) showed lower proliferation, smaller cell size,
greater cellular complexity, lower mitochondrial activity,
and autophagy. These data validate a study by Holzwarth
et al.,61 that, by culturing MSCs in conditions of 21%, 5%,
3%, and 1% oxygen, concluded that hypoxia limits MSC’s
proliferation in incubation period of 7 days. This inconsis-
tency could be due to heterogeneity of culture conditions,
such as supplementation and period of exposure to hypoxia,
as well as intradonor variability that may explain the con-
tradictory effects of hypoxia on the proliferation and dif-
ferentiation capacities of MSCs.61–64 Furthermore, donor’s
age directly worsens cell proliferative capacity, concurring
to the variability of results.65

Supplementation with molecule affecting ROS levels has
been tested in many studies. For example, El Alami et al.66

demonstrated that for human dental pulp stem cells
(hDPSCs) cultured under 21% O2, oxidative stress promotes
the sequential activation of p38 MAPK, p21, and the nuclear
factor erythroid 2-related factor 2 (Nrf-2) antioxidant de-
fense pathway. The antioxidant properties of p21 depend on
Nfr2 activity that upregulates HO-1 and NQO1. Therefore,
incubation with Trolox, a water-soluble analog of vitamin E,
or with a p38 inhibitor, reestablishes high proliferation rate
of hDPSCs even under 21% O2.

Source of ROS and Antioxidant Defense System
in Stem Cells

ROS include nonradical species, such as hydrogen per-
oxide and singlet oxygen, as well as radical species (su-
peroxide, hydroxyl, hydroperoxy, peroxy, and alkoxy
radicals). Biologically, superoxide and hydrogen peroxide
play a pivotal role in modulating redox signaling.67 The
effects exerted by these molecules is related to their nature,
intracellular levels, and localization: ROS can be involved
not only in macromolecule’s oxidative damage and cell
death induction, but also in signal transduction linked to cell
proliferation and gene transcription activation.68 In partic-
ular, numerous experimental evidences suggest a clear
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correlation between intracellular H2O2 levels and features of
stem and progenitor cells.10,41,69–71 As is well known, ex-
cess ROS contributes to pathological conditions, neverthe-
less, a proper and controlled ROS production is mandatory
for physiological cellular functions, the so-called and pre-
viously cited ‘‘redox window’’ hypothesis.72,73

Much remains to be learned about the identification of the
main ROS source in stem cells. In mammalian cells, a
number of ROS sources are known, including: mitochondrial
OXPHOS,67,74 plasma membrane NOXs,75 cytochrome P-
450, and b5 enzymes at endoplasmic reticulum level,76 per-
oxisome oxidases,77 lipoxygenases,78 and xanthine oxidase.79

The fewer mitochondria content of stem cell compared
with their progeny is in accordance with their utilization of
glycolysis rather than OXPHOS for ATP production.39,80

Since it is often assumed that mitochondria are the main
ROS source,67 members of NOX family could represent
major cellular sources of ROS in HSCs, as also suggested by
Drehmer et al.81 in relation to the metabolic switches for
adipogenic stem cell differentiation. hHSCs indeed express
NOX1, 2, and 4 and various regulatory subunits of
NOXs80,82 and Piccoli et al. estimated that NOX-mediated
extramitochondrial O2 consumption accounts for about half
of the endogenous cell respiration in hHSCs.80 Interestingly,
mouse BHSC-enriched LSK-cells express NOX1, 2, and 4,
whereas NOX4 is not present in HPCs, Lin- cells, and
mononuclear cells from mouse BM, suggesting that NOX4
expression is downregulated during HSC differentiation and
that NOX4 may play an important role in the regulation of
HSC function.83 However, the increase in ROS production
in HSCs is associated with upregulation of NOX4 expres-
sion,83 but is not related to mitochondrial dysfunction nor
elevated mitochondrial superoxide production.84

Nevertheless, it has been shown that cells, including
HSCs, from Bmi1-/- mice exhibit abnormal mitochondrial
function with consequently an increased ROS production.85

In addition, an elevation of mitochondrial biogenesis and
oxidative activities seems to be related to an increased
production of ROS in HSCs from Tsc1-/- mice.86

ROS derived from various cellular sources and compart-
ments could be used by different stem cells to perform un-
ique functions. For example, Udx1 (a dual NOX), allows the
conversion of O2!

- to H2O2 to prevent polyspermy and
regulate cleavage in the zygote of the sea urchin.87 Cardi-
ovascular differentiation of ESCs depends on increased ROS
generation derived from various NOXs.88 However, an in-
crease in mitochondrial mass and production of ATP and
ROS is linked to human ESC (hESC) differentiation.89

To regulate redox signaling and to counteract excessive
amounts of ROS derived from aerobic metabolism, a com-
plex antioxidant system plays an important role. In partic-
ular, MnSOD plays a primary role in the cell protection
from mitochondrial ROS. Nevertheless, although MnSOD
has been extensively studied in relation to aging and tumor
biology, the crucial role of MnSOD in stem cell physiology
still remains unclear.90 The cytosolic Cu/Zn SOD isoform
not only is present in stem cell but also represent a factor
secreted by MSCs. Importantly, MSCs have been reported
to restore the radiation-induced reduction of Cu/Zn SOD
levels after whole thorax irradiation, suggesting a paracrine
action exerted by MSC-derived SOD1 in the protective
function exerted by MSC.91

Outside mitochondria, the glutathione-based systems
(GSH/GSSG ratio regulated by glutathione S-transferase, glu-
tathione peroxidase/reductase) usually represent the major
redox-regulatory mechanisms leading to H2O2-scavenging
mechanism involving its reduction to water and a similar reac-
tion is catalyzed by CAT inside the peroxisome.

Thioredoxin is mainly localized in the endoplasmic re-
ticulum and reduces disulfide bonds of oxidatively modified
proteins. Sundaramoorthy et al.92 demonstrated that the
treatment with TXN, 24 hours following irradiation, miti-
gates radiation-induced cell injury of hematopoietic stem in
mice.

Natural Compounds to Optimize Expansion
of Stem Cells In Vitro

Many studies have explored the effect of natural antiox-
idant compounds against hyperoxia-induced oxidative stress
in ex vivo cultures of different stem cells to increase cell
proliferation, maintain potency, counteract senescence and
DNA damages (Table 1). In particular, purified phyto-
chemicals and their potential in vivo metabolites, plant ex-
tracts, combinations of purified compounds, and/or extracts
have been investigated.

Purified Phytochemicals

Many purified phytochemicals have been studied for their
ability to enhance proliferation and maintain stem cell po-
tency, and the majority of them are polyphenolic com-
pounds, in particular flavonoids (Fig. 1).

Epigallocatechin gallate [(-)-cis-3,3¢,4¢,5,5¢,7-hexahydr
oxyflavane-3-gallate] is the most abundant and biologically
active catechin in green tea. This compound is a polyphenol
belonging to the flavonoid family whose members are
known for their in vitro and in vivo antioxidant activity.93

Wang et al.94 showed that epigallocatechin gallate treatment
(10–40 lM) significantly increased cell proliferation of adult
hippocampal neural progenitor cell cultures. Another study
demonstrated that low concentrations (0.1 lM) of epigallo-
catechin gallate increased the number of dividing cells and
stimulated neurosphere formation of cochlea NSCs, con-
firming the positive effect of this flavonoid on stem cell
proliferation.95

Quercetin (3,3¢,4¢,5,7-pentahydroxyflavone) is a natural
flavonoid present in many edible plants, including grapes,
apples, onions, and berries.96 The effect of this flavonoid,
along with its major in vivo metabolite, quercetin-3-O-
glucuronide, has been considered in cultures of human
embryonic NSCs.97 The results showed that quercetin and
quercetin-3-O-glucuronide have totally opposed effects on
cell viability. Quercetin (20–60 lM) decreased NSC via-
bility, decreased Akt phosphorylation, and increased apo-
ptosis. In contrast, quercetin-3-O-glucuronide (20–60 lM)
increased proliferation through the Akt/cyclin D1 and
BDNF signaling pathway. Quercetin’s negative effect on
cell viability was also observed in hESCs. In particular,
quercetin (25–200 lM) induced mitochondrial ROS pro-
duction that were responsible for quercetin-mediated hESC
cell death.98 From our point of view, as quercetin is a very
active compound, the range of concentrations tested in these
studies are too high to evoke a proliferative effect. Further
studies should be carried out to assess lower quercetin
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Table 1. Phytochemicals with a Positive Effect on Stem Cell Proliferation and Stemness Maintenance In Vitro

Compounds Effective concentration Type of stem cell Molecular targets References

Epigallocatechin-3-gallate 10–40 lM Mice hippocampal
neuronal progenitor
cells

Not investigated 88

0.1 lM Mouse cochlear NSCs Not investigated 89

Quercetin-3-O-glucuronide 20–60 lM Human embryonic NSCs [Akt/cyclin D1 and [BDNF signaling pathway 91

Kaempferol 20 lM mESCs [Nanog 94

Naringenin 1–100 lg/mL hBMSCs Not investigated 96

1–100 lg/mL hAFSCs Not investigated 97

Icariin 10 nM–1 lM hBMSCs 99

100 nM mNSCs [ERK 100

10 lM hNSCs [FGFR1, [Wnt family, YGSK-3b 101

100 lM rNSCs [cyclin D1, [p21 102

20–320 lM rBMSCs [pERK, [pp38, [Elk-1, [c-Myc 103

100 nM rASCs [RhoA/ROCK signaling pathway 104

Icaritin 5–10 nM mESCs Y CDX2 and p130, [cyclin E/CDK2, [Oct4, [Nanog,
[Klf4, [Sox2

99,106

100 nM hMSCs [STAT3 signaling pathway 107

Chrysin Loaded on 3D nanofibers (15% wt) hASCs [Oct4, [Nanog, [Rex-1, [Sox2 108

Loaded on 3D nanofibers (5 lM) mMSCs Ycyclin C1, [cyclin B1, [cyclin E1 109

3,2¢-dihydroxyflavone 5 lM mESCs and iPSCs [STA3, [Akt, YGSK-3b, YERK, [Oct4, [Nanog, [Fgf4,
[Sox2, [Cripto

110

Morin hydrate 1–2 mg/L mNSCs 112

Resveratrol 10 nM–10 lM hMSCS [NO/cGMP signal 114

10 nM–10 lM hMSCs [Estrogen receptor dependent MAPK pathway 115

0.1 lM hMSCs [Sirtuin 1, [Sirtuin 2, [Birc4, [Birc5 116

50–500 nM mESCs [Pcna, [cyclin D [cyclin A, [Oct4, [Sox2, 117

50 lM hESCs [SIRT1-ERK signaling pathway 118

Di-(2-ethylhexyl) phthalate 100–600 lM rNSCs [Sox2 132

Silymarin 50–100 lgM hBMSCs [GSH 139

Daucosterol 5 lM rNSCs [IGF1, [pAkt 119

Salvianolic acid B 5–20 lM rNSPCs [pAkt, [Nestin, [Notch-1 121

Oleuropein 10–100 lM hASCs 123

Curcumin 0.1–0.5 lM C17.2 cells [pERK, [pp38 125

Astaxanthin 5–10 ng/mL Mouse neuronal progenitor
cells

[PI3K and MEK signaling pathway, [Rex1, [CDK1,
[CDK2, [Oct4, [Sox2, [Nanog, [Klf4

128

Essential oil of Lippia origanoides 1 lg/mL hASCs 130

Hydroethanolic extract Cirsium
vulgare

200–1000 lg/mL rNSCs 132

Water extract of Hibiscus sabdariffa 0.5–1.0 lg/mL mBMSCs [GSH, [SOD 135

Drynaria fortune 0.1 g/L DPSCs 136

Epimedium 200–400 lg/mL Rat hippocampal NSCs 137

Blueberry extract, green tea extract,
carnosine, vitamin D3

500 ng/mL, 500 ng/mL, 20 lM, 5 lM Human hematopoietic
stem cells

140

Epigallocatechin-3-gallate,
sulforaphane

10 lM, 1 lM hAFSCs [GSH, [NQO1, [TR, [Oct4, [Nanog, Yp16, Yb-gal 141

3D, three-dimensional; ASCs, adipose-derived stem cells; ERK, extracellular signal-regulated kinase; hAFSCs, human amniotic fluid-derived stem cells; hBMSCs, human bone mesenchymal stem
cells; hESCs, human embryonic stem cells; iPSCs, induced pluripotent stem cells; mBMSC; mESCs, murine embryonic stem cells; mMSCs, mouse mesenchymal stem cells; NSCs, neural stem cells;
ROCK, rho-associated protein kinase; STAT3, signal transduction activator transcription factor 3; rASCs; rBMSCs; rNSCs; rNSPCs; mNSCs; hNSCs; hASCs; TR, thioredoxin reductase.
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concentrations on NSCs viability. Our hypothesis is re-
inforced by the study of Nichols et al.,99 which showed that
0.3–3 lM quercetin, but not 10 lM quercetin, increased cell
viability of primary cortical neuron subjected to oxygen–
glucose deprivation.

Kaempferol (3,4¢,5,7-tetrahydroxyflavone) is a flavonoid
structurally similar to quercetin apart from the lack of the
hydroxyl group in 3¢ position. The treatment with high
concentrations (200 lM) of kaempferol negatively affected
murine ESCs (mESCs) viability and growth and increased
mitochondrial ROS, although the resulting cell colonies
were smaller but remain pluripotent.100 Nevertheless, lower
concentrations (20 lM) of this flavonoid increased the
pluripotency marker expression in mESCs but, at the same
time, inhibited proper differentiation of mESCs.

Naringenin (4¢,5,7-trihydroxyflavanone) is a flavonoid com-
pound belonging to the flavanone class mostly present in citrus
fruits, including lemon, orange, tangerine, and grapefruit.101

The supplementation of naringenin (1–100 lg/mL) to human
bone MSCs (hBMSCs) resulted in enhanced cell prolifera-
tion.102 The activity of naringenin was also studied in human
amniotic fluid-derived stem cells (hAFSCs) by Liu et al.103 In
agreement with the previous study, in the presence of naringin,
hAFSC proliferation increased dose dependently between 1 and
100 lg/mL. Unfortunately, no mechanisms have been sug-
gested to explain the observed effect on cell proliferation.

Icariin (4¢-O-methyl-8-c,c-dimethylallylkaempferol-3-
rhamnoside-7-glucoside) and its derivatives are flavonoids
obtained from traditional Chinese medicinal herbs of the
Epimedium genus.104 The first study that observed a pro-
moting activity of icariin on proliferation of stem cells was
carried out by Fan et al.105 Icariin in the range 10 nM–1 lM
induced the in vitro cell proliferation of hBMSCs. The same
effect was observed on NSCs derived from forebrains of
mice embryos.106 Icariin promoted neurosphere formation

and proliferation of NSCs in a dose-dependent manner,
achieving the maximum effects at 100 nM. The authors
suggested that these effects were partially mediated by the
extracellular signal-regulated kinase (ERK)/MAPK. The
regulatory roles of icariin in increasing cell proliferation of
NSCs in vitro was also investigated in human NSCs derived
from fetuses.107 The treatment of human NSCs with 10 lM
icariin led to a higher proliferation rate compared with
control cells. The microarray analysis carried out in this
study showed that icariin modulates the expression of dif-
ferent genes in the Wnt and bFGF pathways, in particular,
icariin significantly enhanced the expression of FGFR1 and
three important Wnt family members: CTNNB1, FZD7,
DVL3, and, at the same time, reduced the expression of
GSK-3b. These results were further defined and broadened
by Fu et al.108 who observed that icariin promoted the
growth and proliferation of rat hippocampus NSCs in a
dose-dependent manner through the regulation of the cell
cycle genes, cyclin D1 and p21. Higher concentrations of
icariin (20–320 lM) increased proliferation of rat BMSCs.109

The increased rBMSC proliferation appeared to be mediated
by the phosphorylation of ERK and p38 and by the over-
expression of MAPK targets, Elk-1 and c-Myc. Another study
evidenced that 100 nM icariin promotes in vitro proliferation
of rat adipose-derived stem cells (ASCs) through the RhoA
and Rho-associated protein kinase (ROCK) signaling path-
ways.110 Icariin has also been investigated in relation to the
cellular damages caused by oxidative stress experienced dur-
ing cryopreservation and thawing.111 The addition of icariin to
the freezing solution containing DMSO significantly increased
the postthawed cell viability, decreased the apoptosis rate,
improved cell adherence, and maintained the mitochondrial
functions, as compared with the freezing solution containing
DMSO alone. Moreover, icariin inhibited oxidative stress and
upregulated heat shock proteins 70 and 90.

FIG. 1. Chemical structure of phytochemicals used to optimize expansion of stem cell in vitro.
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Icaritin [3,5,7-trihydroxy-2-(4-methoxyphenyl)-8-(3-methyl
but-2-enyl)chromen-4-one], an icariin derivative, has been
shown to increase proliferation and enhance self-renewal of
mouse ESCs.105,112 Icaritin cooperates and stimulates ERa,
functioning as a effective inhibitor of CDX2 and p130,
which successively activates cyclin E/CDK2 signaling to
trigger G1/S phase progression and upregulates pluripotency
markers like Klf4, Oct4, Nanog, and Sox2. The proliferative
effect of different concentrations of icaritin for different
times has also been investigated in MSCs.113 Icaritin treat-
ment increased MSC proliferation after 2 and 3 weeks of
exposure with the highest MSC proliferation measured with
100 nM icaritin treatment. The study suggests that icaritin
promotes the proliferation of human adult MSCs by the
activation of the signal transduction activator transcription
factor 3 (STAT-3), with a resulting increase of cysteine (C)-
X-C motif chemokine receptor 4 (CXCR4) expression and
activity.

Another highly investigated flavonoid in relation to the
optimization of stem cell cultures in vitro is chrysin (5,7-
dihydroxyflavone), a flavone predominantly present in
honey, propolis, and passion fruit.114 In a recent article,
ASCs were cultured on three-dimensional nanofibrous mats
loaded with ASCs.114 Interestingly, ASCs, cultured in the
presence of chrysin, exhibited improved adhesion and in-
creased viability compared with cultures on nanofibers
without chrysin or tissue culture polystyrene. Moreover,
ASCs on chrysin-based nanofibers showed enhanced stem-
ness maintenance capability evidenced by the over-
expression of four stemness markers: Nanog, Sox-2, Oct-4,
and Rex-1. In another study, chrysin was incorporated into
biocomposite scaffolds encompassing chitosan, carbox-
ymethyl cellulose, and nanohydroxyapatite, and mouse
MSCs (mMSCs) were seeded on these scaffolds.115 Chrysin
released from scaffolds enhanced cell proliferation down-
regulating cyclin C1 mRNA, thus inducing the transition of
cells from G0 phase to G1 phase, upregulating Cyclin B1
and E1 and promoting the progression of mMSCs from G1
phase to S and G2/M phases.

A study explored the effect of different flavonoids char-
acterized by different hydroxylation pattern in the B ring of
skeleton of diphenylpropane (C6 C3 C6) on cell growth and
pluripotency marker expression in mouse embryonic stem
cells and iPSCs.116 Among the tested compounds only 3,2¢-
dihydroxyflavone increased cell growth and the expression
of pluripotency marker Sox2, Oct4, Nanog, Cripto, and
Fgf4. The mechanisms behind these effects were a strong
activation (AKT and STAT3) or inhibition (ERK and
GSK3b) of self-renewal-related kinase of both ESCs and
iPSCs. These data suggest that 3,2¢-dihydroxyflavone could
be useful for the maintenance of high-quality pluripotent
ESCs and iPSCs.

Morin hydrate (3,5,7,2¢,4¢ pentahydroxyflavone) is a
polyphenol compound extracted from Prunus dulcis, Cas-
tanea sativa, Morus alba, and other fruits.117 It has been
observed that morin hydrate (1–2 mg/L) promotes growth
and proliferation of isolated mouse inner ear NSCs as
measure by MTT assay and BrdU incorporation.118

Resveratrol (3, 5, 4¢-trihydroxystilbene), a nonflavonoid
polyphenol with stilbene structure, is found in different
plants such as cranberries, blueberries, grapes, peanuts, and
eucalyptus.119

The first studies that evidenced a stimulatory activity of
resveratrol on stem cell proliferation were conducted on
human bone marrow-derived mesenchymal stem cells
(hMSCs).120,121 In particular, 10 nM to 10 lM resveratrol
induced mBMSCs cell proliferation measured by [3H]-
thymidine incorporation through the NO/cGMP signal120

and stimulates hBMSCs proliferation through an estrogen
receptor-dependent mechanism and coupling to ERK1/2
phosphorylation.121 To gain better understanding of the ef-
fect of this polyphenols on MSCs, Peltz et al.122 investigated
the effect of short-term (14 days) versus long-term (28–70
days) exposure to resveratrol at different concentrations
(0.1–10 lM) in hMSCs. Resveratrol showed a dose-
dependent activity on hMSCs self-renewal as a result of its
combinatorial effect on cell doubling time, and on cell se-
nescence and cell proliferation rate. At 0.1 lM, resveratrol
showed the highest benefit, enhancing stem cell self-renewal
over both short- and long-term exposure, meanwhile 5 or
10 lM treatment inhibited cell self-renewal. In accordance
with these observations, the expression of genes involved in
cell survival (Sirtuin 1, Sirtuin 2, Birc4, and Birc5) was
increased by a lower resveratrol concentration but inhibited
by a higher resveratrol concentration. A study conducted on
mouse ESCs showed that nM concentrations of resveratrol
(50 and 500 nM) restored the pluripotency of ESCs differ-
entiated with retinoic acid by modulating the JAK-STAT3
signaling pathway which, in turn, stimulates the transcrip-
tion of the stemness key factors, OCT4 and SOX2.123 In
addition, the same resveratrol concentrations enhanced ESC
proliferation through the induction of genes related to pro-
liferation, such as Cyclin A, Cyclin D, and Pcna. Of note,
the authors observed that higher concentrations of resvera-
trol played a nonsignificant role in the regulation of ESC
self-renewal suggesting that the timing and concentration of
resveratrol are fundamental in eliciting its final activity on
self-renewal of ESCs. These aspects were further investi-
gated by Safaeinejad et al.124 who indicated that 50 lM
resveratrol might induce cell proliferation of hESCs by the
modulation of the cell cycle. Interestingly, this resveratrol
concentration did not negatively affect pluripotent markers
and upregulated antiapoptotic markers. The authors sug-
gested that resveratrol maintained self-renewal of hESCs at
least in part through ‘‘SIRT1-MEK/ERK’’ axis.

Daucosterol (b-sitosterol b-d-glucoside) is a phytosterol
present in many higher plants, especially in plant oils, nuts,
and seeds.125 It has been observed that 5 lM daucosterol
induced rat NSC proliferation and increased the percentage
of daughter cells reentering the cell cycle by the modulation
of numerous genes, especially increasing the expression of
IGF1 and phosphorylation of Akt.125

Salvianolic acid B is a hydrophilic compound present in
Salvia miltiorrhiza Bunge, commonly known as Danshen
and widely used for the treatment of various diseases, such
as cardiovascular disease, Alzheimer’s, hyperlipidemia, and
acute cerebrovascular disease.126 Salvianolic acid B signif-
icantly increased the proliferation of rat neural stem/pre-
cursor cells (NSPCs) by activating the PI3K/Akt signal
pathway and maintained NSPC’s self-renewal by increasing
the expression of two self-renewal markers, Nestin and
Notch-1.127

Oleuropein is a phenolic compound present in olive oil
with high antioxidant capacity.128 Human adipose-derived
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MSCs showed a higher proliferative rate in the presence of
10–100 lM oleuropein as measured by WST assay.129

Curcumin is a polyphenol isolated from the rhizomes of the
plant Curcuma longa (turmeric) and is a commonly used spice
throughout the world.130 This natural antioxidant has been
investigated in relation to the proliferation of multipotent
neural progenitor cells (C17.2 cells).131 Low doses (0.1 and
0.5 lM) of curcumin induced C17.2 cell proliferation, whereas
high doses (‡10 lM) triggered a cytotoxic effect. The authors
demonstrated that the mechanisms by which curcumin elicits
this effect is by activating ERK and p38 MAP kinases.

Astaxanthin is a xanthophyll carotenoid ubiquitous in
nature, especially in the marine environment, and is found in
high amounts in algae, and in aquatic animals such as salmon,
trout, krill, and lobster.132 It has been shown that astaxanthin
possesses a particularly strong antioxidant capacity compared
with other carotenoids.133 Treatment with astaxanthin (5–
10 ng/mL) increased proliferation and colony formation of
mouse neural progenitor cells in a dose/time-dependent man-
ner through the activation of the PI3K and MEK signaling
pathways.134 Moreover, astaxanthin upregulated transcription
factors associated to proliferation, such as CDK1, CDK2, and
Rex1, and increased the expression of stemness genes (OCT4,
Nanog, SOX2, and KLF4) suggesting that astaxanthin can also
improve stem cell potency.

In conclusion, different phytochemicals showed a prom-
ising activity in increasing stem cell proliferation and pro-
moting stemness maintenance suggesting their use in ex vivo
expansion of stem cells.

Plant Extracts

Not only purified phytochemicals, but also extracts from
officinal and not officinal plants have been demonstrated to
influence stem cell expansion and stemness maintenance.

Lippia origanoides is an aromatic plant widely found
throughout the Brazilian Amazon. Its essential oil has an-
tioxidant activity, thanks to the presence of the mono-
terpenoids, thymol, p-cymene, and myrcene, and the
sesquiterpene, caryophyllene.135 The supplementation of the
essential oil from L. origanoides (1 lg/mL) in the culture
medium of stem cells isolated from human adipose tissue
induced a strong increase of cell proliferation especially at
passage 3.136 The authors suggested that this effect could be
attributed to thymol, the principal constituent of the oil of L.
origanoides used in the study (88.2%).

Cirsium vulgare is a common plant belonging to Aster-
aceae family whose main components are flavonoids and
phenolic acids.137 The effects of a C. vulgare hydroethanolic
extract (200–1000 lg/mL) and its main component, di-(2-
ethylhexyl) phthalate (100–600 lM) have been investigated on
the proliferation and pluripotency of neonatal rat hippocampus-
derived NSCs. Both the extract and di-(2-ethylhexyl) phthalate
at the higher concentrations were able to increase proliferation
and the phthalate upregulated the expression of the stemness
marker Sox2.138

Hibiscus sabdariffa is a plant rich in flavonoids whose
biological effects seem to be mediated by its antioxidant
activity.139,140 The supplementation of a water extract of
H. sabdariffa to murine bone marrow-derived hematopoietic
stem cells showed a cell-genoprotective potential and
modulated proliferation and intracellular antioxidant status,

without causing a remarkable loss of surface marker ex-
pression for HSC.141

Huang et al.142 studied the proliferative effect of a com-
mercial flavonoid extract of Drynaria fortune, a common
type of traditional Chinese herb, on stem cells isolated from
rat dental pulp. The extract (0.01–0.1 g/L) induced dental
pulp stem cell proliferation in a dose-dependent manner by
increasing the number of stem cells entering into S phase
dose dependently.

Epimedium flavonoids, extracted from a traditional Chi-
nese Epimedium herb, promoted the proliferation of rat
NSCs.143 Unfortunately, the authors did not characterize the
extract they used.

Silymarin, a combination of flavonolignans obtained from
Silybum marianum, has been shown to have a strong anti-
oxidant activity.144 Silymarin (50 and 100 lM) increased
cell viability of MSCs from human bone marrow by ele-
vating intracellular GSH.145

Combination of Purified Phytochemicals
and/or Plant Extracts

One of the first study that took into account the possibility
to use a combination of natural antioxidant compounds to
stimulate the proliferation of stem cells was conducted by
Bickford et al.146 Human hematopoietic stem cells derived
from bone marrow were supplemented with different con-
centrations of catechin, carnosine, blueberry extract, green
tea extract, and vitamin D3 alone or in combination. All the
tested compounds exhibited a positive effect on cell pro-
liferation, although the combined treatments showed a
stronger effect with respect to the single treatments. In
particular, the combination of blueberry extract, green tea
extract, carnosine, and vitamin D3 led to a higher prolifer-
ation rate with respect to the positive controls treated with
human granulocyte colony-stimulating factor. Of all the
tested compounds, blueberry extract significantly increased
cell proliferation when combined with the other compounds.

Very recently, we demonstrated that a combination of
epigallocatechin-3-gallate and sulforaphane exhibited a
higher efficacy against oxidative stress induced by hyper-
oxia with respect to the single antioxidant treatments in
hAFSCs.147 In particular, the combined treatment was more
effective in reducing endogenous ROS generation, enhanc-
ing GSH levels and increasing the endogenous antioxidant
enzymes glutathione reductase, NAD(P)H:quinone
oxidoreductase-1 (NQO1), and thioredoxin reductase (TR).
Moreover, the combined treatment upregulated the plur-
ipotency markers, Oct4 and Nanog, and downregulated the
senescence-associated gene markers, p16 and b-gal.

Luo et al.148 investigated the effect of two different com-
binations of antioxidants, a proprietary antioxidant supple-
ment from Sigma-Aldrich (AOS, Catalogue Number: Sigma
A1345) at 10,000-, 50,000-, and 200,000-fold dilution, and a
homemade cocktail of l-ascorbate, l-glutathione (20 mM),
and a-tocopherol acetate at the concentrations of 20, 4, and
1 lM, respectively, on genomic stability of iPSCs during
long-term ex vivo expansion. Both the antioxidant treatment
did not reduce cell growth and maintained stemness up to 2
months. Furthermore, the expression of 53BP1 and ATM,
two critical molecules involved in DNA damage and re-
pair,149,150 were not modulated by the antioxidant
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supplementation, and array CGH analysis demonstrated a
reduction of the genetic aberration events only in iPSC line
supplemented with the homemade antioxidant cocktail. Of
course, further experiments are needed to corroborate the
benefit of antioxidants for long-term in vitro expansion of
iPSCs.

In conclusion, the use of different phytochemicals or plant
extracts demonstrated to be effective in reducing hyperoxia-
induced damage in vitro. Of note, any compounds elicited its
effect on cell proliferation or stemness maintenance targeting
specific molecular targets and at different concentrations in
the different cell cultures (Table 1). On these bases, the use of
a combination of different phytochemicals and plant extracts
seems to be the most promising approach to maximize the
effect.

Conclusions

Today, the potential application of stem cells is dramat-
ically increasing, and stem cell therapy will probably be
applied in numerous chronic degenerative disease therapies
in the future.

So, the maintenance of high-quality stem cells in culture
without any side effect in proliferation, potency, or differ-
entiation potential will be critical for all present and future
biomedical applications. The best way to isolate, culture,
and maintain stem cells from primary cultures should be
under their physiological conditions, that is, low oxygen
concentration and low glucose. Nevertheless, this often is
not possible due to economical and/or practical reasons and
therefore, the possibility to use natural antioxidants com-
pounds represents a potentially very effective alternative.
The use of natural products, and above all of natural phy-

tochemicals, opens new frontiers. Many of these com-
pounds, generally recognized as safe by the American Food
and Drug Administration, can act at different molecular and
cellular levels to modulate proliferation and stemness
maintenance in several stem cell types (Fig. 2). Further
studies are necessary to deepen the knowledge on the wide
world of natural compounds that could be used in stem cell
cultures, on their mechanisms of action, and on the optimal
dose and association of different phytochemicals to give an
important contribution to stem cell application in regener-
ative medicine.
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