
Supplementary Table 1: Numbers and demographics of subjects in control and intervention cohorts  

 

*: Baseline 

 Controls  MedDiet Intervention 

All 

Countries 

Italy UK Netherlands Poland France All 

Countries 

Italy UK Netherlands Poland France 

Individuals 

with 

sequenced 

microbiome 

289 91 16 37 105 40 324 112 32 38 112 39 

Median Age 

(Min-Max) 

71 

(65-79) 

72 

(65-79) 

70.5 

(65-79) 

71.5 

(65-79) 

72 

(65-79) 

68 

(65-77) 

71 

(65-79) 

72 

(65-79) 

70.5 

(65-79) 

71.5 

(65-79) 

72 

(65-79) 

68 

(65-72) 

Gender 

(Male:Female) 

145:144 46:45 7:9 21:16 46:59 25:15 141:182 56:56 12:20 13:25 45:67 15:24 

Median BMI 

(Min-Max) 

26.8 

(18.8-

44.6) 

26.4 

(18.8-

44.6) 

27.20 

(20-

31.5) 

26.7 

(19.7-35.1) 

26.4 

(21-37.6) 

25.05 

(18.9 – 

37.5) 

26.9 

(18.5-46) 

27.15 

(18.7-

37.9) 

25.95 

(18.5-

33.7) 

25 

(20.3-35.8) 

28.1  

(19.5-

46) 

24.3 

(19.7-

31.3) 
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SUPPLEMENTARY TEXT 1 

 

MEASUREMENT OF INFLAMMATORY AND ADIPOSITY RELATED 

HORMONES 

Briefly, fresh blood from each participant was collected after fasting in each recruiting centre. 

Blood was immediately centrifuged at 2000 x g for 10 min at 4°C and separated into plasma 

and serum according to a standardized operating procedure. All the specimens were stored at -

80 until the time of analysis and sent to the project partners responsible for the analyses. A 

magnetic bead-based multiplex immunoassay (Bio-Plex) (BIO-RAD laboratories, Milan, Italy) 

was used to measure the inflammatory and adiposity related markers according to the 

manufacturer’s instructions. In particular, Interleukin (IL) 1beta, 1Ra, 2, 4, 5, 6, 7, 8 10, 12p70, 

13, 17, 17A, 18, Tumor Necrosis Factor alpha (TNFα), Interferon gamma (INFγ), Granulocyte 

Macrophage Colony-Stimulating Factor (GM-CSF), Granulocyte Colony-Stimulating Factor 

(G-CSF), Macrophage inflammatory protein-1beta (MIP1β) and Monocyte Chemotactic 

Protein-1 (MCP-1), were measured in multiplex with Bio-Plex Pro Cytokine, Chemokine, and 

Growth Factor Assays (intra-assay coefficient of variation (CV) was lower than 4.55% for all 

the molecules); Transforming Growth Factor beta1 (TGF-β1 intra-assay CV, 3.83%) with 

Bioplex Pro TGF- beta assay; Ghrelin (inter-assay CV, 2%) and Resistin (inter-assay CV, 4%) 

in multiplex with Bio-Plex Pro human diabetes assay. Plates were read and analyzed by Bio-

Plex Manager Software. The level of Interleukin 6 receptor alpha (IL6rα, inter-assay CV, 

3.1%)), Glycoprotein 130 (gp130, inter-assay CV, 5.9%), Pentraxin-3 (inter-assay CV, 6.8%) 

and soluble TNFalpha receptors R1 (TNF-R1, inter-assay CV, 6.1%) and R2 (TNF-R2, inter-

assay CV, 7.7%) were assessed in multiplex in a subgroup of 360 samples with Bioplex Pro 

human inflammation assay (gp-130, inter-assay %CV 5.9). The quantitative determination of 

hsCRP, leptin, adiponectin has been performed by ProcartaPlexTM Immunoassay 

(eBioscience, Hatfield, UK) according to the manufacturer’s instructions. Analysis was 

performed using Luminex 200 instrumentation (Luminex Corportation, The Netherlands). 

Assay sensitivities were 19.31 pg/mL for Leptin, 4.39 pg/mL for hsCRP, and 47.46 pg/mL for 

adiponectin. 
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SUPPLEMENTARY TEXT 2 

METHODOLOGY OF DNA EXTRACTION AND GENERATION OF 16S rRNA 

AMPLICON READS 

A 250 mg stool sample was incubated with 1 ml lysis buffer (500 mM NaCl, 50 mM tris-HCl, 

pH 8.0, 50 mM EDTA and 4% sodium dodecyl sulphate (SDS)) in a 2-ml screw cap tube with 

0.5 g sterile 0.1 mm zirconia beads and four sterile 3.5 mm glass beads (BioSpec Products, 

Bartlesville, OK). This was homogenised three times for 60 s at maximum speed (Mini-

Beadbeater™, BioSpec Products), with cooling on ice for 60 s between homogenisation cycles. 

Samples were incubated at 95 °C for 15 min to further lyse the cells. Samples were centrifuged 

(16,000g) at 4 °C for 5 min and the supernatant was collected. For increased yield, an additional 

300 μl of RBB lysis buffer was added to the pellet and the RBB steps were repeated as before. 

The supernatants were pooled and incubated with 350 μl of 7.5 M ammonium acetate (Sigma 

Aldrich, …) for 10 min. The protein-free DNA was precipitated with isopropanol at 4 °C and 

centrifuged at 16,000g. The pellet was washed with 70% (v/v) ethanol, allowed to dry, re-

suspended in TE buffer, and treated with 10 mg/ml RNAse A (Thermo Scientific, Ireland). 

Proteinase K treatment and remaining DNA isolation was performed on-column using the 

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) according to manufacturers’ 

instructions leading to 200 μl of DNA eluted in AE buffer. DNA was visualised on a 0.8% 

agarose gel for quality assessment and quantified using a NanoDrop 2000 system (Thermo 

Scientific). DNA was stored at −20 °C until use.  

16S rRNA gene libraries for the Illumina MiSeq System were prepared manually following the 

manufacturer’s protocol (15031942; Illumina, San Diego, CA, USA), with some modifications. 

V3 and V4 region of 16S rRNA genes were amplified using 15 ng of DNA template, Phusion 

HF Master Mix (Thermo Scientific) and 0.2 μM primers (98 °C 30 s; 25 cycles of 98 °C 10 s, 

55 °C 15 s, 72 °C 20 s; 72 °C 5 min)(60). Amplicons were cleaned up using SPRIselect 

magnetic beads (Beckman Coulter, Indianapolis, IN) and checked for quality on a 1.2% agarose 

gel. Cleaned amplicons (5 μl) were used as template for Index PCR using Phusion HF Master 

Mix and Nextera XT Index Kit v2 Set A and D (Illumina) (98 °C 30 s; 8 cycles of 98 °C 30 s, 

55 °C 30 s, 72 °C 30 s; 72 °C 5 min). Indexed amplicons were cleaned up using SPRIselect 

magnetic beads, run on a 1.2% agarose gel and quantified by Qubit dsDNA HS Assay (Thermo 

Scientific). The samples were pooled in equimolar amounts (40 ng DNA per sample) with up 

to 288 samples per library. Final library sizes were validated using Bioanalyzer DNA 1000 

chips (Agilent Technologies, Santa Clara, CA). Libraries were denatured with 0.2 N NaOH 
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and diluted to 6 pmol/L with a 20% PhiX control before loading onto the MiSeq flow cell. 

Sequencing was performed on an Illumina MiSeq platform using a 2 × 250 bp paired end 

protocol, as per manufacturer’s instructions (Illumina), on multiple sequencing runs. 
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Supplementary Figure 1: Pictorial workflow describing the Random Forest based prediction of adherence scores from the microbiome abundance 

profiles and the identification of adherence score associated markers including the DietPositive and DietNegative markers. 
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Supplementary Figure 2: Pictorial representation of the methodology of computation of the microbiome indices using the leave-one-out strategy. 
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Supplementary Figure 3: Procustes plot showing the relative movement of the samples between the Principal Coordinate Analysis (PCoA) plots 

of the dietary and the microbiome profiles. 
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Supplementary Figure 4: Association of different genera with the specific nationalities shown as a. Plotted based on the weights of their 

association with the Principal Coordinate Analysis (PCoA) axes (as in Fig 1b). b. Plotted as heatmap showing the nationality-specific median 

abundances. Only those genera that are significantly over-abundant in at least one nationality as compared to the rest (Mann-Whitney tests using 

FDR corrected p-value < 0.15). Principal Component Analysis plots showing the changes in the microbiome profiles of subjects belonging to the 

various nationalities in c. control d. intervention cohorts. The p-values (obtained using envfit) of the association between the country and change 

of the microbiome in both the control and intervention cohorts are also indicated.  
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Supplementary Figure 5: Shannon diversity indices of the microbiota at baseline and Final time points for subjects in the intervention and control 

cohorts in the five different countries. 
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Supplementary Figure 6: Relationship between the Random Forest predicted and the actual dietary adherence scores for a. Baseline and b. Final 

time points. Boxplots showing the variation of the correlations between the actual and predicted dietary adherence scores obtained using iterative 

Random Forest prediction models with different number of top predictive features for c. Baseline and d. Final time-points. For both the time-

points, the performance was observed to peak when the number of top features used was 75. Based on this, threshold of 75 top features was 

obtained for both time-points. The merger of the two lists of 75 features produced the final list of 129 features having optimal predictive ability 

across at least one of the time points. 
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Supplementary Figure 7: a. Baseline Dietary Adherence Scores for the five different nationalities. b. Mean squared dietary adherence prediction 

errors for samples from five different nationalities c. Correlations and d. Mean squared errors between actual and predicted dietary adherence 

scores obtained using two different versions of iterative Random Forest models (two fold cross validation) separately for the samples from 

Netherlands (at baseline), While the first version was built using the set of 129 Diet-Associated Marker taxa as described in the previous figures 

(labelled as ‘Markers’) and the other using all 1064 OTUs besides the Diet-Associated Markers (labelled as ‘Non-Markers’).  
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Supplementary Figure 8: Boxplots showing the variation of the cumulated abundances of the DietPositive and the DietNegative OTUs across 

overlapping windows of subjects with increasing adherence to the diet across the entire cohort as well as within the samples for the baseline and 

post-intervention time points (See Methods). 
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Supplementary Figure 9. Detection of specific taxonomic modules across the gut microbiomes using the iBBiG approach and association of specific modules with dietary 

adherence and reduced frailty. a. OTU detection profiles of the various modules obtained using the iBBiG approach. The color codes used for the various modules are: the 

primary core ‘A’ in pink; the Prevotella-associated ‘B’ in blue; the Alistipes-associated ‘C’ in orange; the Bacteroides-associated ‘D’ in maroon; the reduced core ‘E’ in 
darkgreen and; ‘F’ in light green. b. Bar-plot showing the number of samples containing each module (top) as well as the number of OTUs constituting each module 

(bottom). c. Heatmap showing the normalized abundances of the various genera within the OTUs constituting each module. d. Relative association of each of the modules 

with diet scores and frailty. The proportion bar-plots on the top right show the relative representation of the OTUs showing positive and negative association with diet scores 

within each module. The bar-plot on the bottom shows the log-fold increase in the number of samples containing each module in the individuals with reduced frailty (across 

time-points) as compared to those showing no change or an increase of frailty. Overall, these trends show the specific association of certain iBBiG modules with diet and 

frailty. While Modules B and D are associated positively with the Mediterranean diet and reduced frailty, Modules C shows the opposite trend. 
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Supplementary Figure 10: a. Boxplots showing the variation of the cumulated abundance of the DietPositive and DietNegative OTUs in the 

Frail, Pre-Frail and the Non-Frail individuals. b. Variation of the effect-size differences (cohens’ d) of the across time-point changes of the 

DietPositive OTUs, DietNegative OTUs and Not-Associated OTUs in Individuals with Reduced Frailty versus those with Increased or No Change 

in Frailty. c. Proportional representation of individuals with reduced and increased frailty in the control and intervention cohort. There was a 

marginally significant increase (Fishers’ test P-value) in the representation of individuals with increased frailty in the control cohort. d. Boxplots 

showing the variation of adherence score changes in individuals with reduced frailty and those with increased or no change in frailty status. 
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Supplementary Figure 11: Heatmap showing the variation of the association patterns (obtained using Spearman Rhos) of the adherence associated 

marker OTUs (arranged from top to bottom in increasing order of their correlations with the adherence scores) with a. each of the pro/anti-

inflammatory cytokine levels and b. the different measures of frailty, cognitive function. For each cell, colors indicate the Spearman Rho values 

(as shown), ** indicates a significant association with FDR corrected P-value < 0.15, * indicates a marginal association with nominal P-value < 

0.05. The DietPositive and the DietNegative OTUs are also demarcated. Measures highlighted in red are those, for which the association patterns 

with the individual OTUs were observed to exhibit significant positive or negative correlations (Spearman correlation FDR corrected P-value < 

0.15) with the OTU-adherence score association values.  
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Supplementary Figure 12: Heatmap showing the partial spearman associations of the different dietary components with the marker OTUs 

arranged in increasing order of their association with the dietary adherence scores. For each marker OTU, partial spearman correlations were 

obtained after adjusting for the confounding effects of age, BMI, gender, country and poly-pharmacy. 
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Supplementary Figure 13. Violin plots showing the a. Partial spearman correlations between the consumption of different dietary components 
and the microbiome index across all time-points taking into account age, bmi, gender, country and poly-pharmacy. b. Partial spearman correlations 
between the consumption of different dietary components and the microbiome index across all subjects at the baseline taking into account age, 
bmi, gender, country, disease-status and poly-pharmacy. 
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Supplementary Figure 14. Boxplot showing the comparison of the MedDiet modulated microbiome index for individuals suffering from heart 

attack (a), inflammatory disorders (b), Type II Diabetes (c) and Cancer (d) with the control individuals (tagged as no-disease) at baseline. Boxplot 

showing the variation of microbiome index (e) and the abundance ratio of the DietPositive to DietNegative markers (f) for individuals with 

multiple, single and no-diseases at the baseline. The P-values of the Mann-Whitney U tests are also indicated for each pairwise-comparisons. 
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Supplementary Figure 15: a. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive 

function and inflammatory marker levels (identified in figure 4) with the MedDiet modulated Microbiome index at the baseline after taking into 

account the age, BMI, gender, nine different disease pathologies (with greater or equal to 10 subjects), polypharmacy and gender as a confounder. 

b. Violin plot showing the association (partial Spearman correlations) of the different measures of frailty, cognitive function and inflammatory 

marker levels (identified in figure 4) with the MedDiet modulated Microbiome index at both the baseline and follow-up time points after taking 

into account the age, BMI, gender, polypharmacy and gender as a confounder. X-axis contains the spearman Rho values, and Y-axis indicates the 

-log (base 10) of the P-values. While most negatively associated measures are expected to be extreme left of the plot, the most positively associated 

measures are expected to be extreme right of the plot. Points are colored based on the significance of the obtained associations (Red indicates 

associations with FDR corrected P-value < 0.1). 
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Supplementary Figure 16: Scatterplots showing the correlation between the microbiome response (that is the across time-point change in microbiome indices) and a. Baseline 

dietary adherence scores and b. final dietary adherence scores. c. Violin plots showing the spearman correlations of the changes in the different cytokine levels with the change 

in microbiome indices between the follow-up and baseline time points. X-axis contains the spearman Rho values, and Y-axis indicates the -log (base 10) of the P-values. While 

most negatively associated measures (that is those cytokines for which negative changes in levels are associated with positive changes in microbiome indices) are expected to 

be extreme left of the plot, the most positively associated measures (that is those cytokines for which positive changes in levels are associated with positive changes in 

microbiome indices) are expected to be extreme right of the plot. Points are colored based on the significance of the obtained associations (Red indicates associations with FDR 

corrected P-value < 0.1). Cumulated levels of anti-inflammatory cytokines were calculated as the mean ranked abundances of anti-inflammatory cytokines IL-10, IL-4, IL-5 

and IL-1ra. Ratios of hsCRP to anti-inflammatory cytokines were calculated as ratios of the ranked abundance of hsCRP and the mean ranked abundances of anti-inflammatory 

cytokines IL-10, IL-4, IL-5 and IL-1ra. d. Graph showing the marginal or significant associations (dotted line indicating marginal associations with P < 0.1 and solid line 

indicating P < 0.05) between the across time-point changes of the various measures obtained using pairwise linear regressions. 
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Supplementary Figure 17: Violin plots showing the inferred metabolite a. consumption and b. production profiles showing significant (positive 

or negative) associations (Spearman correlation; FDR corrected P-value < 0.15) with microbiome responses. While most negatively associated 

measures are expected to be extreme left of the plot, the most positively associated measures are expected to be extreme right of the plot. The 

points are colored based on the metabolite groups as indicated on the top panel of the Figure. 
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Supplementary Figure 18. a. Schematic representation of the bile acid conversion pathway, highlighting the specific sub-module converting 

glycine/taurine-conjugated bile acids (like TCA, GCDCA) to carcinogenic secondary bile acids (LCA/DCA), through CA and CDCA, that is 

associated with a negative change in microbiome index highlighted in red. b. Boxplots showing the spearman correlations of the abundances of 

the DietPositive and DietNegative OTUs with the measured plasma levels of CA, DCA and GCDCA for the subset of Italian and Polish individuals. 

c. Boxplot comparing the across the time-point changes in the microbiome index for individuals with increasing GCDCA/CA levels (grouped into 

three equal terciles with increasing GCDCA/CA ratios). P-values of pairwise Mann-Whitney U-tests are also indicated. 
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Supplementary Figure 19: Inter-OTU co-occurrence networks obtained for the different nationalities. DietPositive, DietNegative and the non-

associated OTUs are shown in green, red and gray color, respectively. Despite variations in their overall structures, all networks gave a clear 

picture whereby in the DietPositive taxa were placed in the centre of the neworks, while the DietNegative taxa in the periphery. 
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Supplementary Figure 20: Variation of the degree and betweenness centrality of the different groups of taxa within the co-occurrence networks 

for the different nationalities. 
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Supplementary Figure 21: a. Variation of the degree and betweenness centrality of the different groups of taxa across individuals belonging to 

the overlapping groups of increasing diet adherence scores. b. Relative co-occurrence propensities of the different groups of taxa with the iBBiG 

taxonomic modules. Relative co-occurrence propensities of the different groups with the frailty-associated Module C is provided in figure 5d. 
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SUPPLEMENTARY TEXT 3 

COMPLETE DESCRIPTION OF METHODS USED FOR THE BIOINFORMATIC 

STATISTICAL ANALYSIS OF THE MICROBIOME DATA 

 

Pre-processing of amplicon reads 

The FLASH program was used to join the paired-end reads (25). The data was barcode-

corrected and quality filtered using the QIIME package; followed by clustering of reads into 

Operational Taxonomic Units (OTUs) (97% identity threshold) using USEARCH Clustering 

algorithm; followed by chimeric removal (26, 27). The taxonomic classification of the 

representative sequences for each OTU was performed using both the RDP classifier (genus 

level: 0.8 confidence threshold) and the SPINGO classifier (species level: 0.7 confidence 

threshold) (28, 29).  

 

Multi-variate analysis of dietary profiles and taxonomic profiles 

Multivariate analyses using Principal Coordinate Analysis (PCoA) were performed using the 

ade4 package of the R programming interface, using Spearman distances of the individual 

sample profiles as well as the across time point changes (final-baseline).To test the significance 

of the between-country variation of the baseline dietary and microbiome profiles, 

Permutational Analysis of Variance (PERMANOVA) was performed on the PCoA objects 

using the adonis function of the vegan R package. Procrustes analysis was performed to 

quantify the relationships between the baseline diet and microbiome profiles using the 

procrustes function of the vegan package. The Shannon diversities of the samples were 

obtained using the diversity function of the vegan R package.  

 

Machine Learning-based identification of microbiome taxa associated with the dietary 

intervention 

The Machine learning based Random Forest (RF) approach (implemented in the randomForest 

package of R) was used to identify microbiome taxa significantly associated with NU-AGE 

FBDG adherence scores. We first divided individuals into three equal tertiles, namely ‘High 

Adherence’, ‘Medium Adherence’ and ‘Low Adherence’ in decreasing order of the change in 

adherence across time-points and the samples from each into two cohorts corresponding to the 

baseline and final time-points. Two separate models were created for the baseline and the final 

time points. The performance of the models was measured by calculating the correlation 
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between the actual and the predicted food scores obtained using the models. The RF approach 

provided the feature score importance scores for each microbiome component (OTUs) 

(indicating the extent of association of these with the dietary adherence scores). For identifying 

the most-predictive features, iterative random forest models (n=100, sample subset-size=100) 

with varying number of features (selected in decreasing order of their feature importance 

scores) were obtained using the randomForest package (two-fold cross validation) and their 

performances compared. Finally, to identify the OTUs associated with dietary adherence, a 

Reboot approach (using Spearman correlations) was used to identify OTUs that were 

significantly associated with adherence scores with an FDR corrected P-value < 1e-5 (30). 

OTUs positively and negatively associated with diet were classified as DietPositive and 

DietNegative, respectively. A pictorial representation of the workflow adopted for this entire 

step is provided in Supplementary figure 1. 

 

Overview: iBBiG is based on the detection profile of the taxonomic units (in this case, the 

Operational Taxonomic Units (OTUs)). It then utilizes an iterative, heuristic, genetic-algorithm 

based methodology to identify modules of taxa within a microbial community that tend to show 

strong co-occurrence relationships across a given population of microbiomes. The primary 

advantage of this strategy is its flexibility, as it allows identification of over-lapping modules 

such that certain taxonomic units can be part of multiple modules. Such a partitioning strategy 

makes more biological sense as certain taxa (or species) can be part of multiple guilds because 

of their functional versatility or may be functionally specialized (i.e. belonging to specific 

guilds).  

 

Method: For identifying modules within the gut microbiome, we used the iterative Binary Bi-

clustering of Gene-sets (iBBiG) approach (38). Rather than profiling abundances or 

proportions, iBBiG investigates the detection profile of the taxonomic units or OTUs. 

Subsequently, an iterative, heuristic, genetic-algorithm based methodology is used to identify 

taxonomic modules that tend to show strong co-occurrence relationships across a given 

population of microbiomes. For performing the iBBiG based clustering, we used the iBBig 

function available within the Bioconductor package of R. While OTUs belonging to the 

different modules were then classified based on their clustering patterns, samples were 

classified based on the occurrence of the different iBBiG modules within them. The taxonomic 

compositional pattern of each module was then obtained by collating the RDP-based genus 

classification of each OTU and subsequently rank-normalizing these based on the abundance 
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of each genus (in terms of the number of OTUs) across a module. To associate the modules 

with frailty, we first obtained the frailty status of each individual at each time-point (0: Non 

Frail; 1: Pre Frail; 2: Frail). Subsequently based on the changes across time-points, individuals 

across the cohorts were classified as ‘Reduced Frailty’, ‘No Change’ and ‘Increased Frailty’. 

The representation of each of the modules were obtained at both the time-points for each of 

three groups of individuals. The occurrence changes of each module (the number of samples 

in which a module is present at follow-up divided by the number of samples the module is 

present in at the baseline) were computed for each group. The log fold changes in these ratios 

in the Reduced Frailty with respect to the Increased frailty groups would provide the 

enrichment or depletion of the modules in individuals with reduced frailty as compared to those 

showing an increase in frailty across time-points. A positive change would indicate enrichment, 

and a negative value would indicate depletion. To compare the patterns across modules X and 

Y, Chi-square tests (using the chisq.test function of R) were then performed on the contingency 

tables containing four values, namely occurrence at baseline and follow-up of reduced frailty 

and occurrence at baseline and follow-up of increased frailty, corresponding to the two 

modules. To check for the significance of the differences of the occurrences across modules in 

terms of their diet association, we obtained number of times a module was present in the list of 

DietPositive and the DietNegative OTUs, and subsequently compared them using the Fishers’ 

Exact test (fisher.test function of R).  

 

Associating dietary adherence and microbiome changes with frailty and inflammation 

For associating the abundances of the adherence associated marker OTUs with the different 

measures of frailty, cognitive function and cytokine profiles, we computed Spearman 

correlations using the corr.test function of the psych package in R (along with the Benjamini-

Hochberg corrected p-values).  

To account for various confounders, we used Partial Correlations (partial.r and the 

corr.p functions of the psych R package). Partial correlations measure the strength and the 

direction of the association between two variables considering the effect of confounding 

variable (s). Partial Correlations are like multiple regressions with confounders but not limited 

to specific distributions of the response and predictor variables. Further, one can compute rank-

based non-parametric measures of association like the Spearman rho (which we have used in 

this study), after considering the confounding effect of other factors like adherence scores or 

age/BMI/gender.  
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Computation of Microbiome Indices 

A pictorial representation of the methodology for this purpose is described in Supplementary 

figure 2. This scoring scheme ‘rewards’ samples with higher abundances of Marker OTUs 

with increasingly positive association with adherence scores and taxes those which have higher 

abundances of Marker OTUs with negative associations with adherence scores. 

For each sample, the diet-modulated microbiome score was computed using the 

following formula: 

∑across all marker OTUs (OTU correlation with Diet adherence scores) * Abundance of the OTU 

To avoid over-fitting, leave-one out strategy was applied where for computing the microbiome 

index for a given sample, the sample was not considered while calculating the OTU correlations 

(with Diet Adherence scores).  

 

Obtaining Inferred Microbial Metabolite Profiles based on Species Abundance Profiles 

Literature annotated Species-to-Metabolite consumption/production associations were already 

available as part of the Virtual Metabolic Human database as well as those obtained in a recent 

meta-analysis by Sung et al (32, 33). These were parsed to create a present/absence information 

map of around 300 metabolite production and consumption profiles in greater than 900 species 

in a 0 (absent) and 1 (present) notation. Given the SPINGO-based species abundance profile, 

from the 16S amplicon data, the inferred metabolite profile was then obtained as an inner 

product of the species abundance profile and the species-to-metabolite map.  

 

Generation of co-occurrence networks and computation of centrality measures 

We used the Reboot Approach for generating the inter-microbial co-occurrence/co-inhibition 

networks (30) (described in Supplementary text 4). The co-occurrence networks obtained 

were visualized using Cytoscape (34). For any network, two different centrality measures were 

calculated for the nodes, namely degree centrality and betweenness centrality using the igraph 

R package. The relative co-occurrence propensities between any two groups of taxa were 

calculated as the log of the number of positive edges divided by the number of negative edges.  

Given any two features (in this case, the OTUs), the Reboot approach computes the 

association between the two features using two different distributions of association measures 

obtained using repeated iterations as described below(52). The association measure can be any 

score, like the Pearson correlation, Spearman correlation, the Regression coefficients, or even 

the effect size measures. The first distribution (bootstrap distribution) was obtained by taking 

the repeated sub-samples of randomly selected observations and then computing the 
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association between the two features. This profiled the association values across an entire 

observation landscape, thereby removing biases which could be present because of specific 

samples. The second distribution (null distribution) was obtained by performing an equal 

number of iterations, where in each iteration, a fixed set of values (which in this case was 50%) 

are swapped across samples for both the features. The profiles were then re-normalized and the 

associations computed for the two features. The distribution of the values obtained in the two 

distributions were then compared using any comparative tests (which in this case was Mann-

Whitney). The p-values thus obtained were then False Discovery Rate (FDR) corrected 

(Benjamini-Hochberg) and those pairs of features having FDR-corrected associations of less 

than 1e-5 (threshold used in this study) were inferred to be significant and an edge drawn 

between them in the network. The directionality of the association was taken as the sign of the 

median value of the bootstrap distribution. While pairs of features with significant positive 

associations were used to create the co-occurrence network, those with negative associations 

were used to create the co-inhibition network. 

 

*Please refer to the main document for the corresponding reference numbers. 
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Baseline Follow-up Genus Species Final

OTU_4560 0.99412752 0.5041946 Unclassified Unclassified Unclassified

OTU_3114 0.98993289 0.9798658 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_147 0.86996644 0.9941275 Unclassified Unclassified Unclassified

OTU_1205 0.95721477 0.9530201 Unclassified Unclassified Unclassified

OTU_300 0.96224832 0.9102349 Unclassified Unclassified Unclassified

OTU_584 0.98573826 0.9916107 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_69 0.99832215 0.6526846 Unclassified Unclassified Unclassified

OTU_336 0.97986577 0.9781879 Roseburia Unclassified Roseburia_Unclassified

OTU_207 0.98238255 0.2332215 Unclassified Unclassified Unclassified

OTU_11233 0.2307047 0.9983221 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_67 0.97651007 0.9974832 Unclassified Unclassified Unclassified

OTU_5978 0.98909396 0.658557 Unclassified Unclassified Unclassified

OTU_79 0.85151007 0.9899329 Eubacterium Eubacterium_xylanophilum Eubacterium_xylanophilum

OTU_131 0.90855705 0.9639262 Unclassified Unclassified Unclassified

OTU_1093 0.99496644 0.9211409 Anaerostipes Unclassified Anaerostipes_Unclassified

OTU_24 0.93875839 0.8557047 Unclassified Unclassified Unclassified

OTU_36 0.79026846 0.9630872 Prevotella Prevotella_copri Prevotella_copri

OTU_364 0.8909396 0.9513423 Clostridium Clostridium_lactatifermentans Clostridium_lactatifermentans

OTU_12121 0.95553691 0.8842282 Eubacterium Eubacterium_eligens Eubacterium_eligens

OTU_2352 0.95302013 0.1082215 Blautia Unclassified Blautia_Unclassified

OTU_1569 0.97902685 0.8213087 Clostridium Unclassified Clostridium_Unclassified

OTU_139 0.96979866 0.9991611 Clostridium Unclassified Clostridium_Unclassified

OTU_1006 0.41694631 0.9714765 Prevotella Prevotella_copri Prevotella_copri

OTU_1740 0.97147651 0.8708054 Unclassified Unclassified Unclassified

OTU_103 0.9295302 0.9437919 Unclassified Unclassified Unclassified

OTU_9966 0.97315436 0.7709732 Unclassified Unclassified Unclassified

OTU_8631 0.14177852 0.9446309 Prevotella Prevotella_copri Prevotella_copri

OTU_3603 0.68959732 0.9865772 Unclassified Unclassified Unclassified

Ranked Feature Correlation

OTU

Supplementary Table 2: List of top 129 OTU markers obtained using the Random Forest approach for the prediction of dietary compliance scores, along with 

their SPINGO classifications, association with food scores as well as the ranked feature importance scores for the baseline and followup time points
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OTU_1594 0.94211409 0.8011745 Eubacterium Eubacterium_rectale Eubacterium_rectale

OTU_32 0.98741611 0.9505034 Eubacterium Eubacterium_eligens Eubacterium_eligens

OTU_124 0.56459732 0.9731544 Unclassified Unclassified Unclassified

OTU_11498 0.23238255 0.989094 Anaerostipes Anaerostipes_hadrus Anaerostipes_hadrus

OTU_250 0.76090604 0.9790268 Unclassified Unclassified Unclassified

OTU_1221 0.95385906 0.9236577 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_306 0.7533557 0.977349 Clostridium Unclassified Clostridium_Unclassified

OTU_120 0.9488255 0.4697987 Unclassified Unclassified Unclassified

OTU_1069 0.9647651 0.9966443 Clostridium Clostridium_disporicum Clostridium_disporicum

OTU_30 0.93791946 0.9127517 Clostridium Clostridium_ruminantium Clostridium_ruminantium

OTU_11429 0.97399329 0.7927852 Blautia Unclassified Blautia_Unclassified

OTU_8606 0.50838926 0.9572148 Unclassified Unclassified Unclassified

OTU_233 0.84563758 0.9463087 Eggerthella Eggerthella_lenta Eggerthella_lenta

OTU_6577 0.88255034 0.9488255 Blautia Blautia_faecis Blautia_faecis

OTU_64 0.77097315 0.9924497 Clostridium Unclassified Clostridium_Unclassified

OTU_86 0.92785235 0.9412752 Bacteroides Bacteroides_thetaiotaomicron Bacteroides_thetaiotaomicron

OTU_273 0.59647651 0.9689597 Clostridium Unclassified Clostridium_Unclassified

OTU_1280 0.94295302 0.2944631 Coprococcus Coprococcus_catus Coprococcus_catus

OTU_144 0.51677852 0.9521812 Parabacteroides Unclassified Unclassified

OTU_3372 0.70469799 0.9555369 Ruminococcus Ruminococcus_bromii Ruminococcus_bromii

OTU_12119 0.98322148 0.6417785 Unclassified Unclassified Unclassified

OTU_4016 0.94798658 0.3011745 Unclassified Unclassified Unclassified

OTU_6257 0.89597315 0.9379195 Roseburia Roseburia_hominis Roseburia_hominis

OTU_2604 0.96057047 0.8808725 Blautia Blautia_faecis Blautia_faecis

OTU_3860 0.94043624 0.817953 Blautia Ruminococcus_obeum Ruminococcus_obeum

OTU_470 0.97231544 0.4010067 Unclassified Unclassified Unclassified

OTU_21 0.96560403 0.965604 Anaerostipes Anaerostipes_hadrus Anaerostipes_hadrus

OTU_109 0.97483221 0.8372483 Clostridium Clostridium_leptum Clostridium_leptum

OTU_105 0.95637584 0.909396 Barnesiella Barnesiella_intestinihominis Barnesiella_intestinihominis

OTU_195 0.94379195 0.8833893 Unclassified Unclassified Unclassified

OTU_3501 0.55201342 0.9932886 Clostridium Unclassified Clostridium_Unclassified

OTU_9359 0.87248322 0.9387584 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_168 0.87332215 0.9706376 Unclassified Unclassified Unclassified
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OTU_3985 0.97063758 0.9110738 Faecalibacterium Faecalibacterium_prausnitzii Faecalibacterium_prausnitzii

OTU_34 0.9614094 0.8598993 Eubacterium Eubacterium_hallii Eubacterium_hallii

OTU_1356 0.73657718 0.9681208 Unclassified Unclassified Unclassified

OTU_5591 0.95050336 0.7063758 Unclassified Unclassified Unclassified

OTU_704 0.88422819 0.9404362 Unclassified Unclassified Unclassified

OTU_57 0.93959732 0.9244966 Eubacterium Eubacterium_desmolans Eubacterium_desmolans

OTU_16 0.96895973 0.9312081 Bifidobacterium Bifidobacterium_longum Bifidobacterium_longum

OTU_4302 0.96812081 0.8364094 Bifidobacterium Bifidobacterium_longum Bifidobacterium_longum

OTU_952 0.97567114 0.7206376 Eubacterium Unclassified Eubacterium_Unclassified

OTU_179 0.96644295 0.1635906 Unclassified Unclassified Unclassified

OTU_263 0.84647651 0.9614094 Veillonella Veillonella_dispar Veillonella_dispar

OTU_789 0.9840604 0.4572148 Parabacteroides Parabacteroides_distasonis Parabacteroides_distasonis

OTU_695 0.94714765 0.7986577 Blautia Unclassified Blautia_Unclassified

OTU_49 0.64765101 0.9395973 Eubacterium Eubacterium_siraeum Eubacterium_siraeum

OTU_178 0.9454698 0.9723154 Unclassified Unclassified Unclassified

OTU_152 0.9807047 0.738255 Unclassified Unclassified Unclassified

OTU_7093 0.55033557 0.9597315 Unclassified Unclassified Unclassified

OTU_2056 0.88842282 0.9823826 Unclassified Unclassified Unclassified

OTU_6936 0.01510067 0.9907718 Unclassified Unclassified Unclassified

OTU_1034 0.57969799 0.9496644 Unclassified Unclassified Unclassified

OTU_2345 0.65604027 0.9739933 Unclassified Unclassified Unclassified

OTU_1 0.85234899 0.942953 Eubacterium Eubacterium_rectale Eubacterium_rectale

OTU_4661 0.95889262 0.8473154 Clostridium Unclassified Clostridium_Unclassified

OTU_1914 0.36577181 0.9647651 Clostridium Unclassified Clostridium_Unclassified

OTU_98 0.86157718 0.9471477 Clostridium Unclassified Clostridium_Unclassified

OTU_1621 1 0.9169463 Unclassified Unclassified Unclassified

OTU_7618 0.96728188 0.7994966 Blautia Blautia_faecis Blautia_faecis

OTU_89 0.9135906 0.9538591 Eubacterium Eubacterium_ventriosum Eubacterium_ventriosum

OTU_162 0.89848993 0.9848993 Flavonifractor Flavonifractor_plautii Flavonifractor_plautii

OTU_45 0.94630872 0.9840604 Clostridium Unclassified Clostridium_Unclassified

OTU_287 0.94966443 0.7718121 Unclassified Unclassified Unclassified

OTU_23 0.90520134 0.9672819 Clostridium Clostridium_ramosum Clostridium_ramosum

OTU_11 0.87080537 0.9421141 Blautia Blautia_luti Blautia_luti
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OTU_10307 0.96308725 0.7583893 Clostridium Unclassified Clostridium_Unclassified

OTU_22 0.89765101 0.9765101 Ruminococcus Unclassified Ruminococcus_Unclassified

OTU_1582 0.8716443 0.9454698 Unclassified Unclassified Unclassified

OTU_9740 0.38926174 0.954698 Unclassified Unclassified Unclassified

OTU_307 0.74412752 0.9479866 Clostridium Unclassified Clostridium_Unclassified

OTU_384 0.60067114 0.9815436 Unclassified Unclassified Unclassified

OTU_347 0.87416107 0.9857383 Clostridium Unclassified Clostridium_Unclassified

OTU_84 0.86493289 0.9832215 Unclassified Unclassified Unclassified

OTU_2336 0.95973154 0.7625839 Blautia Unclassified Blautia_Unclassified

OTU_4369 0.60151007 0.9563758 Clostridium Clostridium_aldenense Clostridium_aldenense

OTU_65 0.88674497 0.9580537 Unclassified Unclassified Unclassified

OTU_719 0.94127517 0.7365772 Clostridium Unclassified Clostridium_Unclassified

OTU_414 0.34312081 0.9605705 Mogibacterium Unclassified Mogibacterium_Unclassified

OTU_5014 0.98489933 0.9697987 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_5819 0.94463087 0.7197987 Clostridium Clostridium_sporosphaeroides Clostridium_sporosphaeroides

OTU_125 0.9966443 0.454698 Unclassified Unclassified Unclassified

OTU_10029 0.76677852 0.9622483 Unclassified Unclassified Unclassified

OTU_5862 0.97734899 0.579698 Actinomyces Actinomyces_lingnae Actinomyces_lingnae

OTU_945 0.85067114 0.9807047 Unclassified Unclassified Unclassified

OTU_447 0.99580537 0.9152685 Unclassified Unclassified Unclassified

OTU_375 0.95469799 0.7919463 Clostridium Clostridium_methylpentosum Clostridium_methylpentosum

OTU_1637 0.99244966 0.8733221 Unclassified Unclassified Unclassified

OTU_11425 0.96392617 0.3833893 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_8952 0.98825503 0.9874161 Coprococcus Coprococcus_comes Coprococcus_comes

OTU_291 0.95134228 0.9958054 Collinsella Collinsella_aerofaciens Collinsella_aerofaciens

OTU_52 0.98657718 0.966443 Eubacterium Eubacterium_ramulus Eubacterium_ramulus

OTU_3602 0.95218121 0.9161074 Unclassified Unclassified Unclassified

OTU_10880 0.95805369 0.8716443 Blautia Unclassified Blautia_Unclassified

OTU_14 0.98154362 1 Collinsella Collinsella_aerofaciens Collinsella_aerofaciens

OTU_27 0.97818792 0.9756711 Coprococcus Coprococcus_comes Coprococcus_comes

OTU_9293 0.99748322 0.9144295 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_53 0.99077181 0.9949664 Blautia Ruminococcus_torques Ruminococcus_torques

OTU_1248 0.99161074 0.9588926 Unclassified Unclassified Unclassified
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OTU_76 0.99916107 0.988255 Dorea Dorea_formicigenerans Dorea_formicigenerans

OTU_7369 0.99328859 0.9748322 Dorea Dorea_formicigenerans Dorea_formicigenerans
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SUPPLEMENTARY TEXT 4 

DIET-RESPONSIVE TAXA ARE NOT SPECIFIC TO NATIONALITY 

 

We next checked if the diet-associated taxa differed across the nationalities. As noted above 

different nationalities were characterized by specific gut microbiome composition at baseline 

(figure 1b; Supplementary figure 4a-b) and different dietary adherence scores (Netherland 

and UK having significantly lower scores, followed by Italy with Poland and France having 

the highest) (Supplementary figure 7a) (as also reported by previous studies on this cohort) 

(18, 19). If nationality-specific differences in diet-associated taxa existed, the performance of 

the prediction models might vary across nationalities. However, despite differences in the 

baseline gut microbiome compositions, there was no significant difference in the performance 

of the model (mean squared errors) for the different nationalities except for Netherlands (where 

the error rate was significantly high) (Supplementary figure 7b). This indicates that the 

identified diet-associated taxa were similar across most of the nationalities. The higher error-

rate for the Netherlands could either be a consequence of lower adherence scores or a different 

set of diet-responsive taxa in these individuals. We tested the latter possibility by creating two 

different versions of iterative Random Forest models (two-fold cross validation) for Dutch 

subjects at baseline. While one version was created by using only the 129 diet-associated 

markers, the second version was built upon all OTUs besides the diet-associated markers. We 

observed that the iterative models built using only the 129 diet-associated markers had 

significantly higher correlation and significantly lower mean squared errors as compared to 

those obtained using all OTUs besides the diet-associated taxa (Supplementary figures 7c-d). 

This indicated that the diet-responsive taxa were not specific to nationality. 

Supplementary material Gut

 doi: 10.1136/gutjnl-2019-319654–11.:10 2020;Gut, et al. Ghosh TS



 

 

SUPPLEMENTARY TEXT 5 

 

VALIDATING THE ASSOCIATION OF THE DIET-RESPONSIVE TAXA WITHIN 

THE INTERVENTION AND CONTROL COHORTS AS WELL AS WITHIN 

INDIVIDUALS WITH VARYING ADHERENCE TO THE MED-DIET 

 

There were 1224 microbiota datasets corresponding to 612 individuals having matched 

microbiome profiles for both the baseline and the follow-up time points. To further verify their 

association with the MedDiet adherence, we checked the variation of the relative abundances 

of these OTU-groups across an entire adherence landscape. For this we arranged the microbiota 

data (of the individuals) from the entire intervention study in increasing order of their 

adherence to the diet, and subsequently divided them into five equally sized overlapping 

windows (of increasing adherence scores; five overlapping windows of 204 samples with an 

overlap of 102 samples). Adopting such a window approach would illustrate the gradual 

transitions of specific changes across an entire adherence landscape (after eliminating 

variations caused due to specific samples). As expected, profiling the abundance variation of 

the two taxa groups across the windows identified a progressive increase of the DietPositive 

taxa (Kruskal Wallis H-test P-value < 5e-4) and a concomitant decrease of the DietNegative 

taxa (Kruskal Wallis H-test P-value < 3.2e-7) with increasing adherence to the Mediterranean 

diet (Supplementary figure 8). Performing this window-based analysis separately within the 

baseline and final time points also revealed the same pattern (Supplementary figure 8). We 

then checked whether the positive and negative associations of the DietPositive and 

DietNegative taxa in the intervention cohort were also reflected in the across time-point (final 

to baseline) changes in dietary adherence. For each of the diet-associated markers (i.e. the 

OTUs), we computed the log fold change in the gain/loss ratios (the number of individuals in 

whom an OTU is more abundant across the time-points divided by the number of individuals 

in whom it is decreased) in the intervention cohort with respect to the control cohort. We 

observed that for the DietPositive taxa, the intervention to control log fold difference of the 

gain/loss ratios were positive (indicating that the changes were more positive in the intervention 

cohort as compared to the controls) and significantly higher (Mann-Whitney U test P < 1.3e-

4) than those obtained for the DietNegative taxa which were negative (indicating a decrease 
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across time-points in the intervention cohort as compared to the controls) (figure 2c). To 

further profile the changes in the abundance of the markers across individuals with varying 

degrees of changes in their adherence to the diet, we divided them into three equal tertiles, 

namely ‘High Adherence’, ‘Medium Adherence’ and ‘Low Adherence’ in decreasing order of 

their change in adherence across time-points. The abundance changes of the two groups of 

markers (DietPositive and DietNegative) were then profiled across the three groups separately. 

As expected, while the DietPositive OTUs had a significantly positive change in the High 

Adherence as compared to the Low Adherence individuals, an exactly opposite trend was 

observed for the DietNegative markers (figure 2d). These findings suggest that the associations 

of the specific taxa with diet are stable across cohorts as well as across the changes between 

time-points. 
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iBBiG_Module
Number of 

OTUs
Major Genera

a 291

Lachnospiracea_incertae_sedis, Blautia, Clostridium_IV, Coprococcus, Bacteroides, 

Faecalibacterium, Roseburia, Oscillibacter, Gemmiger, Ruminococcus, Alistipes, Bifidobacterium, 

Dorea, Flavonifractor, Clostridium_XlVa, Clostridium_XI, Parabacteroides, Streptococcus

b 153

Clostridium_IV, Coprococcus, Lachnospiracea_incertae_sedis, Oscillibacter, Faecalibacterium, 

Sporobacter, Flavonifractor, Gemmiger, Prevotella, Acetanaerobacterium, Bacteroides, Blautia, 

Butyricimonas, Clostridium_XlVa, Clostridium_XlVb, Enterorhabdus, 

Erysipelotrichaceae_incertae_sedis, Haemophilus, Methanobrevibacter, Parasutterella, 

Pseudobutyrivibrio, Ruminococcus, Slackia

c 90

Clostridium_IV, Alistipes, Oscillibacter, Erysipelotrichaceae_incertae_sedis, Flavonifractor, 

Sporobacter, Gemmiger, Ruminococcus, Acetanaerobacterium, Anaerofilum, Asaccharobacter, 

Blautia, Clostridium_XlVa, Eggerthella, Gordonibacter, Pseudoflavonifractor, Roseburia

d 99

Lachnospiracea_incertae_sedis, Bacteroides, Blautia, Coprococcus, Faecalibacterium, 

Ruminococcus, Alistipes, Clostridium_XlVb, Gemmiger, Anaerostipes, Barnesiella, Butyricimonas, 

Clostridium_IV, Dorea, Haemophilus, Lactococcus, Oscillibacter, Parasutterella, Sporacetigenium

e 142

Lachnospiracea_incertae_sedis, Blautia, Roseburia, Clostridium_XlVa, Bacteroides, Dorea, 

Bifidobacterium, Actinomyces, Clostridium_IV, Coprococcus, Gemmiger, Streptococcus, 

Anaerostipes, Clostridium_XI, Clostridium_XVIII, Faecalibacterium, Flavonifractor, Ruminococcus

f 66

Lachnospiracea_incertae_sedis, Blautia, Clostridium_IV, Faecalibacterium, Ruminococcus, 

Actinomyces, Alistipes, Anaerostipes, Bacteroides, Clostridium_XlVa, Coprococcus, Dorea, 

Eggerthella, Erysipelotrichaceae_incertae_sedis, Flavonifractor, Gemmiger, Gordonibacter, 

Granulicatella, Rothia

SupplementaryTable3: Number of OTUs belonging to each iBBiG module along with the major genera (relative abundance greater than 1% after 

removing the unclassified OTUs within each module
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iBBiG Modules Number of Samples

a 1236

b 420

d 294

c 262

f 65

e 44

Supplementary Table 4: Number of samples classified to various iBBiG modules
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SUPPLEMENTARY TEXT 6 

 

RESULTS OF THE APPLICATION OF THE iBBiG APPROACH ON THE NU-AGE 

DATASET 

The application of the iBBiG approach on the NU-AGE data identified 6 overlapping 

taxonomic modules that had a high mutual co-occurrence (obtained by maximizing the internal 

entropy) within the dataset. These were referred to as modules ‘A’ to ‘F’ (Supplementary 

figure 9a). Based on their detection trends in the overlapping modules, the OTUs could be 

classified as belonging to either a single (e.g. module A) or a combination of any of the six 

modules. This resulted in 36 OTU classifications (including one ‘not classified’ group). In a 

similar manner, a given sample could be classified into one of 15 classifications (and one ‘not 

classified’ group) based on the detection of the various modules in that sample. The 

classifications of each OTU and sample obtained in the iBBiG approach is listed in 

Supplementary Tables 3 and 4. Each of the six modules were characterized by different 

number of OTUs, specific trends of prevalence across individuals, as well as distinct patterns 

of taxonomic composition (Supplementary figures 9b-c). We also identified differential 

associations of each of these modules with frailty, especially with modules B and D being 

significantly enriched in the individuals with reduced frailty from baseline to post intervention, 

as compared to the module C, which was enriched in those with increasing frailty 

(Supplementary figures 9d). This indicates module ‘C’ to be similar to the long-stay-like 

modules we identified in ELDERMET individuals using the iBBiG approach(16). However, 

module ‘C was not only associated with a significant enrichment in individuals with increased 

frailty, but also an increase in representation of the set of DietNegative OTUs (Supplementary 

figure 9d). The observation that adherence to the diet could specifically select against taxa 

associated with frailty indicates the likelihood that the Mediterranean diet successfully 

modulated the gut microbiome in a manner predicted to be negatively associated with frailty. 

A major objective of the NU-AGE dietary intervention was the reduction of frailty and 

inflamm-ageing in the elderly. Therefore, we next investigated in detail the association of 

adherence-associated taxa with frailty as well as with the inflammation status of the 

individuals. 
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SUPPLEMENTARY TEXT 7 

ACROSS TIME-POINT CHANGES OF THE DIET-RESPONSIVE TAXA IN 

INDIVIDUALS WITH VARIED CHANGES IN THEIR FRAILTY STATUS 

Based on the changes in their frailty status across time-points, the individuals across the cohort 

could be divided into three groups, namely those with ‘Reduced Frailty’, ‘No change in frailty’ 
and ‘Increased Frailty’. We then investigated the across time-point changes in these taxa. To 

measure whether the above trends were also reflected in the across time-point changes, for each 

OTU, we computed the effect-size of the time-point changes between the individuals with 

reduced frailty as compared to the other two groups (See Methods). A positive effect size 

change would indicate that the taxa show more positive change (that is either an increase or a 

relative lower decrease) in their abundance across time-points in individuals with reduced 

frailty (as compared to those with no change or increase in frailty), and vice-versa. In this 

regard, while the diet-enriched (that is the DietPositive) taxa showed significantly positive 

changes in the individuals with reduced frailty (as compared to the other two groups), the 

DietNegative group showed the opposite trend (Supplementary figure 10b). These findings 

further affirm our earlier observation of the depletion of the specific frailty-associated iBBiG 

module ‘C’ which was observed to have a negative association with diet as well as the notable 
increase of frail individuals in the control group. In line with these observations, in the control 

group, we observed a marginally significant increase (as compared to the intervention group) 

during the intervention period in the proportion of individuals with increased frailty (Fishers’ 
Test P < 0.06; Supplementary figure 10c). 
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(A)

Category Measure Description Directionality

Hand Grip Strength Mean hand grip strength of the dominant hand (3 trials) Negatively associated with frailty

Gait Speed (Fastest time) Gait Speed Fastest Time taken (2 trials) Positively associated with frailty

Fried Score Fried Score for computing frailty Positively associated with frailty

Geriatric Depression Score
Score for measuring geriatric depression (higher 

values indicate depression)

Negatively associated with cognitive 

function

MMSE
Mini Mental State Examination (Scores range 0-30). 

Higher scores indicate better cognitive function

Positively associated with cognitive 

function

BabCok Memory Score Bab Cock Score for immediate recall
Positively associated with cognitive 

function

CAMDEX-Q Scores Cambridge Examination of Mental Disorders
Positively associated with cognitive 

function

Constructional Praxis CERAD Battery Total Score on Constructional Praxis
Positively associated with cognitive 

function

Verbal Fluency CERAD Battery Total Score on Verbal Fluency Categories
Positively associated with cognitive 

function

(B)

Cytokines

IL-13

Pentraxin-3

Adiponectin

TNF-A

G-CSF

IL-8

Ghrelin

IL-6

Resistin

hsCRP

Physical Frailty

Cognitive Functioning

Supplementary Table 5: List of A) Frailty and Cognitive Function associated measures and B) Cytokines used for performing association analysis with the 

diet modulated microbiome components.
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IL-1b

TGF-b1

IL-4

IL-17

IL-1ra

IL-2

Leptin

sTNF-R1

IFN-g

IL-7

IL-12 p70

sGP130

GM-CSF

IL-5

sIL-6ra

MIP-1b

IL-10

MCP-1-MCAF

IL-18

sTNF-R2

IL-17a
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SUPPLEMENTARY TEXT 8 

ASSOCIATION OF MICROBIOME INDEX WITH THE DIFFERENT DIETARY 

COMPONENTS 

 

Next, given that we calculated the microbiome index as a single value index providing a 

quantitative summary of the abundance patterns of the diet-associated markers (the higher the 

value, the higher the abundance of Diet-Positive taxa and the lower the abundance of 

Diet-Negative taxa, and vice-versa), as a sanity-check, it is important to validate that the 

calculated microbiome index captured the association patterns of the individual diet-associated 

marker OTUs. For this, we repeated the analysis performed earlier for the individual marker 

OTUs (Supplementary figure 12) on the overall microbiome index (after adjustment for 

confounders) (Supplementary figure 13). 
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SUPPLEMENTARY TEXT 9 

ASSOCIATION OF DIET-ASSOCIATED MICROBIOME TAXA WITH DISEASE 

PATHOPHYSIOLOGIES, POLY-PHARMACY, AND OTHER HOST-FACTORS 

The dataset included 11 diseases containing at least three (of 612) diseased subjects at the 

baseline. We first investigated the effect of these diseases on the diet-associated taxa at the 

baseline. Nine of the 11 diseases were associated with lower microbiome indices, significantly 

so for diabetes, heart attack and inflammatory disorders (P < 0.05) and marginally significant 

for Cancer (P < 0.097) (Supplementary table 6; Supplementary figure 14 a-d). Individuals 

with multiple diseases had significantly lower microbiome indices and significantly lower 

ratios of DietPositive to DietNegative taxa abundances compared to those with single or no 

disease, indicating that the diet-favoured microbiome components are negatively associated 

with disease at baseline (Supplementary figure 14e-f). However, when we examined partial 

spearman correlations at baseline, the pattern of association of microbiome index with seven 

of the 10 inflammatory markers and frailty indices (identified in figure 4) remained invariant 

even after taking into account all confounders including age, BMI, gender, poly-pharmacy and 

different disease pathophysiologies (Supplementary figure 15a). All the above associations 

were retained (except for leptin) even after considering age, gender, BMI and poly-pharmacy 

(as confounders) across both the baseline and follow-up time points, further supporting the 

hypothesis that it is the microbiome response that is linked to the above measures (even after 

adjusting for all host associated confounding factors) rather than dietary adherence alone 

(Supplementary figure 15b). 
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SUPPLEMENTARY TEXT 10 

 

ASSOCIATION OF CHANGES (BETWEEN THE FINAL AND BASELINE TIME-

POINTS) IN MICROBIOME INDEX WITH DIFFERENT MEASURES. 

 

To further illustrate the links between diet, microbiome, and health, we investigated the 

associations of the across time-point changes of the various measures with the change in diet 

and microbiome. The change in microbiome index was not associated with either baseline 

dietary adherence scores (linear regression R=-0.034; P < 0.31) or the 12-month dietary 

adherence scores (linear regression R = 0.05; P < 0.12) (Supplementary figure 15a, b). We 

first performed an in-depth investigation of the association of the across-time-point (follow-up 

to baseline) changes in cytokine levels for each individual with the corresponding change in 

microbiome indices. Cumulated levels of anti-inflammatory cytokines were calculated as the 

summed ranked abundances of the anti-inflammatory cytokines (IL-10, IL-4, IL-5 and IL-1ra). 

Ratio of hsCRP levels to anti-inflammatory cytokine levels was calculated as the ratio of the 

ranked abundance of hsCRP to the cumulated levels of anti-inflammatory cytokines (calculated 

as above). Then for each cytokine (or cytokine ratio), the changes were calculated as the 

differences in levels between the follow-up and the baseline time-points. For inflammatory 

markers like hsCRP, MCP1-MCAF, Resistin, positive changes in microbiome indices were 

associated with significant negative changes in the levels of these cytokines (Supplementary 

figure 15c). For other inflammatory cytokines like IL-17, IL-6, MIP-1b, etc, the associations 

were still negative, although not significant. An exact opposite trend was observed for the anti-

inflammatory cytokine IL-10, where positive changes in microbiome indices were associated 

with significant positive changes in the levels of this cytokine. As a consequence, positive 

changes in microbiome indices were associated with negative changes in the hsCRP to anti-

inflammatory cytokine levels (Supplementary figure 15c). 

Additionally, a pairwise regression approach was also used to identify associations 

between microbiome response, adherence score changes and the identified measures of frailty, 

cognitive function and inflammation. Given any two measures, we performed linear 

regressions of the measures with each of the scores using country and age as confounders. We 

did not use FDR correction at this stage as we were investigating associations with specific 

measures. Linear relationships with P-values less than 0.05 and between 0.1 and 0.05 were 

identified as being significant and trend, respectively.  
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The significant associations identified from this analysis are illustrated in Supplementary 

figure 15d) As expected, microbiome response was positively associated with dietary 

adherence changes. However, it was this increased microbiome response that displayed 

positive associations with reduced frailty (Reduced Fried Score), improved cognitive function 

(BabCock Memory Score) and negative associations with inflammation (hsCRP and another 

pro-inflammatory marker MIP-1b). The adherence score change, by itself, did not have any 

significant association (with exception of a negative association with MIP-1b). The above 

results clarify the relationships between diet, microbiome and improved life-status. Change in 

adherence (that is increasing adherence to a Mediterranean diet) is likely to modulate specific 

components of the microbiome. It is this microbiome response, when induced, that is associated 

with reduced frailty and reduced inflammation. However, at each interaction point, there may 

be exceptions. 
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(A)

Disease_Type Number of Subjects

no_disease 324

high_cholesterol 183

thyroid 61

diabetes 30

cancer 27

hypertension 21

food_allergy 15

respiratory_disease 14

swollen_ankle 10

kidney_disease 6

heart_disease 5

inflammation 3

(B)

Direction

Mann-Whitney P-

value

hypertension Lower In Disease 0.005346

diabetes Lower In Disease 0.005646

inflammation Lower In Disease 0.02727

cancer Lower In Disease 0.097

respiratory_disease Lower In Disease 0.1642

food_allergy Lower In Disease 0.2569

swollen_ankle Lower In Disease 0.3086

heart_disease Lower In Disease 0.3212

high_cholesterol Lower In Disease 0.4621

kidney_disease Higher In Disease 0.7945

thyroid Higher In Disease 0.8938

Supplementary Table 6: A. Number of subjects with gut microbiome profiles at baseline that belong to 

the different disease categories (no_disease refers to those individuals who were not identified with 

any disease symptoms). B. Results of the Mann-Whitney test based comparative analysis of the diet-

associated microbiome indices for the individuals with different diseases with control (no_disease 

type) individuals at baseline

Disease Type

Diet-Associated Microbiome Index
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