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ABSTRACT
The rapid increase of the computing power on embedded and handheld devices has
made these devices attractive for many applications including simulation systems.
There are a number of Parallel Discrete Event Simulation (PDES) frameworks that
exists but most of these are designed for traditional cluster systems and are not suit-
able for battery operated devices where energy and power consumption are among
the major concerns. A new PDES framework is thus required that takes into account
the typical constraints of the mobile devices. However, before designing a new PDES
framework that is specifically aimed for mobile devices, it is helpful to analyze the
performance of existing frameworks. In this paper, the well-known Rensselaer’s Op-
timistic Simulation System (ROSS) framework has been instrumented for a detailed
analysis of its performance in terms of CPU usage, memory consumption, and en-
ergy and power requirements. This profiling helps in many ways. For example, we
can select the most appropriate synchronizations algorithm for running the PDES
frameworks on the mobile devices. Additionally, identification of resource intensive
modules within the framework can be extremely useful in redesign/optimization of
these frameworks while being ported to the heterogeneous environments. Based on
these observations, we propose a new simulation framework that is specifically de-
signed for running on handheld devices. The simulation framework, that is called
SEECSSim1, is the first one designed keeping in mind the characteristics and the
constraints that are typical of mobile devices. SEECSSim includes the support for
a number of state-of-the-art synchronization protocols and, thanks to its flexible
design, the users can easily integrate any other simulation model/synchronization
algorithm of their choice. The proposed framework dynamically manages simulation
on devices and also perform process migration to optimize the use of resources. The
performance of SEECSSim has been studied using a well-known simulation model
(i.e. PHOLD) for different synchronization algorithms.
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1. Introduction

The field of Parallel Discrete Event Simulation (PDES) has evolved significantly since
its inception (Fujimoto et al., 2017a). It still remains an active area of research due to
its employability in numerous applications in domains such as military, manufacturing,
communication networks, computer systems, and road traffic systems etc. Traditional
sequential simulations have the drawback of requiring a significant amount of time for
completing their execution making these unsuitable for simulating large complex sce-
narios. On the other hand, the evolution of parallel and distributed simulation systems
has permitted the usage of high-performance computing infrastructures to efficiently
execute complex simulations models (Fujimoto, 2000). In this case, the simulation
processes are executed on a parallel/distributed architecture whereby each simulation
process executes a part of the simulation model while communicating through time-
stamped messages. These messages are used for transporting the events that drive the
simulation execution. The parallel/distributed execution obtained using this kind of
architectures enables multiple simulation events to be run at the same time on multiple
computing systems.

As with many other fields, the parallel and distributed simulations has been greatly
influenced by emerging technologies. These technologies include massive parallel sys-
tems, Cloud computing, GPU computing, embedded computing systems and sensor
networks. In addition, with the inception of Internet-of-things (IoT), heterogeneous
devices have become an integral part of the grid network. Any computing device
can thus become a part of a network, share its computing resources and store data.
Consequently, the available computation platforms have changed as compared to the
conventional cluster environment. This advancement in available platforms introduces
new challenges for the PDES research community. For example, the workload on a
single node in the cloud environment, where PDES process is competing with other
CPU intensive processes, can significantly slowdown the whole simulation process that
is running on top of the distributed architecture. Moreover, the context switching and
OS process scheduling policies can also affect the performance of PDES over the Cloud
environment (Malik et al., 2010; Vanmechelen et al., 2012; Wu et al., 2011a).

The existing PDES protocols/frameworks are very well tested but designed for
cluster-based system configuration; whereas, there is a need to ascertain the suitabil-
ity of the existing frameworks/protocols on hand-held mobile devices. Most of the
sensors and smart phones being resource constrained, cannot store a large amount of
data and perform heavy computations. Further, sending and receiving data also incurs
a cost in terms of energy and network usage. The execution of large-scale distributed
simulations over mobile and embedded devices thus opens new research challenges
that need to be explored. In our view, in order to design an efficient simulation frame-
work for mobile devices, the best approach is to start with the analysis of existing
frameworks. It is imperative to accurately estimate the power and energy consump-
tion of such frameworks to identify the critical parameters and modules that needs
further redesign/optimizations. This profiling can help identify modules that require
a large amount of resources to be executed. These resource hungry modules, for ex-
ample can be hosted on Cloud/cloudlets and accessed through simulation-as-a-service
model. Therefore, a careful analysis of the traditional PDES frameworks is required
before attempting their porting on hand-held devices. This research work is divided
in two distinct parts. Firstly, we have performed profiling of a commonly used PDES
framework the Rensselaer's Optimistic Simulation System - ROSS, with the aim to
measure its resource utilization in terms of power, CPU usage, energy and memory
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consumption while using a benchmark application. To obtain simulation results that
are causally correct i.e. exactly the same as a sequential execution, synchronization
algorithms must be used. In order to synchronize the processes involved in a PDES,
the existing state-of-the-art synchronization mechanisms are categorized as (1) con-
servative or (2) optimistic approach. In the conservative approach, the causality errors
are strictly avoided by applying strategies to determine when it is safe to process an
event. Whereas, in the optimistic approach, the simulation continues until causality
error is detected and then the error is handled by using a rollback mechanism that im-
plements a state recovery and later re-execution of the rollback events. The instrumen-
tation of ROSS framework is performed and results are obtained from serial, parallel
conservative and parallel optimistic approaches when running on a desktop comput-
ing environment. The results allow us to better understand the resource utilization of
the different simulation approaches. This would eventually help in deciding what syn-
chronization approach is more appropriate for running PDES on hand-held embedded
devices. Moreover, another objective is to precisely identify the resource hungry mod-
ules that are candidates to be ported on cloudlets while the traditional frameworks
are still responsible for the core functionalities. Accurately identifying these modules
allows simulations to be adapted to hand-held devices with little modifications.

In second part of this paper, we present SEECSSim – a distributed simulation
framework designed to work on mobile and embedded devices as an extension of
PDES framework instrumentation (SEECSSim can be made available on request). The
proposed SEECSSim framework includes support for the state-of-the-art synchroniza-
tion algorithms such as Chandy−Misra−Bryant (CMB) NULL message algorithm,
Time-Stepped (TS), Tree Barrier (TB), Time Warp (TW) and Time Warp with Wolf
(TWW) algorithm. We analyze the efficiency of the proposed framework for these algo-
rithm in terms of execution time, CPU utilization, memory usage, energy consumption
and event rate. We show that a properly selected synchronization algorithm can ex-
ploit the true potential of PDES over heterogeneous networks comprising of mobile
and embedded devices. This paper will serve as a guideline for the PDES community
to help them in selecting the right algorithms for running simulations on embedded
systems while keeping in mind the resource constraints of such devices.
The rest of the paper is organized as follows. Section II covers the PDES synchroniza-
tion models, literature review and background information are provided in Section III
and IV. Section V covers the Instrumentation of the Rensselaer’s Optimistic Simula-
tion System. The motivation behind SEECSSim and proposed design is presented in
Section VI and VII. Further, Section VIII covers the results and discussions. Finally,
Section IX and X presents the limitations and conclusion.

2. PDES Synchronization Models

A brief description of the synchronization algorithms and techniques is covered in this
section.
Time-Stepped Model – In a time-stepped simulation model, the simulated time

advances at fixed time intervals (∆t). At any interval in the wall clock time, all the log-
ical processes are at the same logical time Tp in the simulation. This simulation model
requires a synchronization barrier mechanism to ensure that all processes complete
their execution in a specific timestep before going to the next one. This approach is
most appropriate where simulated events are frequent and dense. On the other hand,
in simulation models in which the simulation events are less frequent, the simulator
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performance may suffer as it might be difficult to define a correct timestep size. For
real-time interactive systems, a possible optimization is achieved by maintaining some
information about the future events. The future event list can be used to generate
time advancement requests (Shenoy, 2004).
Synchronous Conservative Model – The synchronous conservative approach can
be implemented using many different centralized and decentralized algorithms that
implement a global synchronization mechanism e.g., distributed snapshot, grid-based
approach, tree barrier, broadcast and centralized barrier algorithms. SEECSSim in-
cludes a centralized tree barrier approach, in which the LPs are organized as a binary
tree. Each LP processes the events until it reaches a barrier point. At the barrier, it
sends a signal to its parent process. At this point, the parent process forwards the
signal only if it has received a signal from both children processes (if they exist). This
processes continues until the root node receives the signal message. Once the root node
receives the signal then it knows that every LPs has reached a barrier point. Once all
the LPs are synchronized then the root node (that is a centralization point) broadcasts
a message to release the barrier (Garg et al., 2010). In this way, a centralized control
over the parallel/distributed architecture is achieved.
Asynchronous Conservative Model – In an asynchronous model, each LP main-
tains a local time and separate queue for all of its incoming channels. The time-stamped
messages guarantee that at each LP, the time-stamp of the last message received on
an incoming link is the lower bound of any event message that can be received in fu-
ture. However, deadlock can occur if the time-stamp of unprocessed events is greater
than lower bound of an empty queue. In this situation, there is no surety regarding
the safe events. Therefore, NULL messages (i.e. special control messages) need to be
sent to other LPs in order to determine which are the safe events. Receiving a NULL
message with time-stamp from a LP, the receiving LP is assured that there are no
messages with time-stamp smaller than the time-stamp of the NULL message. On re-
ceiving a NULL message, a LP can advance its local clock time but the NULL message
cannot cause a LP to change its state variables or generate new events (Chandy and
Misra, 1979). To support the Asynchronous Conservative model, SEECSSim includes
the Chandy−Misra−Bryant (CMB) algorithm.
Optimistic Model – The SEECSSim framework also includes an implementation of
the optimistic Time Warp (TW) synchronization. In the Time Warp mechanism, each
LP starts the event execution independently without any coordination with other LPs.
The LP are able to recover from causality errors using a rollback mechanism. After
the rollback to safe state, each LP re-executes all the rolled back events if these have
not been annihilated. On detecting a causality error, a LP sends the anti-messages
that are necessary to cancel or rollback the execution of event messages sent during
the out of order execution. For this reason, every LP needs to keep a list of all the
processed messages (the anti-messages that could be necessary in case of roll back).
The storage of this list can consume an excessive amount of memory. To reclaim that
memory, the Time Warp algorithm uses a Global Virtual Time (GVT) mechanism.
The goal of the GVT computation is to compute a floor to the virtual times. After
each GVT calculation, each LP reclaims the memory used to store processed events
having a time-stamp that is smaller than the time-stamp of GVT (Jefferson, 1985).
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3. Literature Review

There exists substantial literature work related to energy-aware computing in the
domain of High-Performance Computing (HPC), mobile computing platforms and
Wireless Sensor Networks (WSN). Moreover, different profiling methods, techniques,
and tools have been proposed over the years. In this section we discuss some related
contributions for performance analysis and energy-aware simulation on HPC systems
as well as mobile and embedded systems.

Over the years, many profiling tools have been developed to gauge the power con-
sumption at a functional level. Tuning and analysis utilities, such as (Zhukov et al.,
2015), (Knüpfer et al., 2008), (Malony and Shende, 2000), (Malony et al., 2004) and
(Shende and Malony, 2006) provide support for instrumentation and performance vi-
sualization of parallel applications. Isci et al. (Isci and Martonosi, 2003) presented an
approach to estimate the power consumption using performance logs. Similarly, the
authors of (Ge et al., 2010) provided a framework called PowerPack that can be used
for energy profiling and analysis of parallel applications on multi-core processors. The
authors of (Feng et al., 2005a) show that power profiles always correspond to the char-
acteristics of the application and increasing number of nodes results in more power
consumption; however, it does not always result in better performance. The authors
of (Procaccianti et al., 2011) analyze the power consumption related to software com-
ponents. Their analysis shows that in different software scenarios, power consumption
on a general-purpose computer system can vary from 12% to 20%. The authors of
(Stanisic et al., 2013) and (Rajovic et al., 2013) focus on low power embedded systems
to analyze and benchmark HPC applications for their energy consumption.

There is substantial amount of work that is available in power-aware computing;
various techniques have been deployed to reduce the power consumption such as (Hua
and Qu, 2003a), (Curtis-Maury et al., 2008a) and (Lively et al., 2014a). Computing
the energy consumed by every machine instruction is an approach that can be followed
to profile the energy consumption of all the functional components. For example, (Ti-
wari et al., 1996) discuss the functional level profiles for energy consumption that
can be obtained through computing the energy consumed by each machine instruc-
tion. However, the proposed work is only limited to function level energy marking.
Whereas, communication between processes is a major contributor in a parallel and
distributed simulation. In a distributed simulation, different techniques are used to
reduce the communication delay between processes (Yoo et al., 2013a). One of such
approaches is to utilize the different cores available in a physical system (Kumar et al.,
2014). However, the synchronization algorithms generate an amount of overhead that
is difficult to reduce.

Most of the existing work on energy-efficient computing is related to the HPC
environment (Curtis-Maury et al., 2008b; Feng et al., 2005b; Hua and Qu, 2003b;
Lively et al., 2014b); where different techniques are used for optimizing the energy
usage, e.g. Dynamic Voltage and Frequency Scaling (DVFS), process migration, task
consolidation and Dynamic Power Management (DPM). R. Child et al. (Child and
Wilsey, 2012) explored the features of DVFS to enhance the the performance while
reducing the power consumption by repeatedly reducing the operating frequencies of
the CPU cores. The authors investigate energy efficiency through DVFS while the
Time Warp simulation algorithm is being executed. The proposed study is conducted
over physical systems using a MPI version of the TW simulator.

Similarly, G. Tom et al. (Guérout et al., 2013) describe the integration of an energy-
aware module to simulate the energy consumption of distributed systems. The authors
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provide an overview on energy-aware simulation and described the DVFS simulation
tools used for obtaining simulations results in terms of power consumptions. This work
is mostly related to the energy of cloud systems; therefore, authors have explored
the DVFS and cloud simulators in detail. Moreover, they have integrated the DVFS
features in one of the cloud simulators.

The communication is a common performance bottleneck for fine-grained parallel
applications (Yoo et al., 2013b). The authors in (Pusukuri et al., 2014) discuss the tech-
niques used for improving the network performance by reducing lock contention and
overlapping communications. In (Jagtap et al., 2012) are analyzed the performance of
the ROSS simulation framework on different platforms and the multi-threaded imple-
mentation is compared with the MPI-based version. (Erazo and Pereira, 2010) present
a case study used for profiling the energy consumption of distributed simulation, in
this case tested on the PRIME simulator (Liu, 2007). The authors conclude that us-
ing more nodes to achieve parallelism results in a significant increase in the energy
consumption.

In (Fujimoto, 2016), Fujimoto describes the main future research challenges in
PDES. Among them large-scale simulation of complex networks, exploiting GPU’s,
Cloud computing exploitation, composable simulation and energy consumption of
PDES are the latest research areas. In PDES, the energy consumption has not been
widely investigated. The minimization of power consumption through a change in clock
rate (DVFS) can eventually increase the overall energy required to complete the task.
In fact, schemes such as DVFS are best for data centers and supercomputers. For
embedded systems, the power-aware and energy-aware techniques are more important
for design consideration.

Traditional simulations are designed to run on cluster environments. With the ad-
vancement of technology, the availability of infrastructure-as-a-service has provided
flexible computing environments following a pay-as-you-go model. As a consequence,
new PDES techniques have been proposed for such cloud architectures. In (Vanmeche-
len et al., 2012), the authors studied the execution of conservative synchronization
algorithms over various configurations of Amazon EC2. The objective is to verify
the suitability of cloud platforms for running distributed discrete event simulations.
More specifically, the NULL messages that are part of the conservative algorithms
play a significant role in the performance of the whole simulation system. For this
reason, the authors tested various variations of synchronization algorithms such as
Chandy−Misra−Bryant, time-out based NULL message sending, deadlock avoidance
based on NULL messages, on-demand NULL messages, timeout protocols etc. The
results show that the timeout and blocking protocol has the best performance in a
cloud environment.

The Cloud is based on a multi-tenant paradigm, the effect on the execution of opti-
mistic PDES is often a large number of rollbacks. This happens because the different
nodes that are running the PDES are not equally loaded (e.g. number of running jobs).
Moreover, some tasks require more computation whereas other need a large amount
of communication. On these aspects, (Malik et al., 2010) proposed a PDES model
for cloud environment for improving the performance of optimistic parallel simulation
through dynamically defining the barrier points and there reducing the total number
of rollbacks. The reported results show a significant gain in terms of performance over
traditional optimistic simulation. Similarly, (Wu et al., 2011b) presented a BOINC
based system for Cloud environment to execute parallel and distributed simulation
over private cloud infrastructures. BOINC is a middleware developed for volunteer
and grid computing. It is an open-source framework designed to support task distri-
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bution and result gathering in a client-server model.
In the context of distributed simulation over mobile and embedded devices, (Biswas

and Fujimoto, 2016) discuss an approach based on power profiles. The energy consump-
tion of simulation model, engine, computations, and communications is separated with
the aim to measure the energy consumption of each aspect of the simulation. More
in detail, the authors have presented a comparative analysis of the energy consumed
by the Chandy-Misra-Bryant and the YAWNS algorithms. Similarly, (Malik et al.,
2016) have analyzed the energy consumption of the Time Warp protocol when run on
smartphones. Online distributed simulations (e.g. traffic prediction systems) requires
a significant amount of energy. (Neal et al., 2016) analyze the energy consumption of
data-driven traffic simulations on mobile devices. Since the online traffic prediction
requires a significant amount of energy then understanding the energy consumption
at various levels, helps in optimizing the use of resources. On this aspect, the authors
presented an empirical investigation of modules such as data transmission, gather-
ing and traffic computations. In (Fujimoto et al., 2017b), Fujimoto et al. presented a
detailed work on power-efficient distributed simulation. The authors covered few con-
servative and optimistic synchronization algorithms along with a discussion on energy
efficient distributed simulations. The main objective of their work is to analyze the
power consumption of various distributed simulation techniques along with profiling of
simulation engine, application, and communication. The experiments have been con-
ducted on multiple configurations such as the Jetson TK1 development board and a
quad-core LG Nexus 5 smartphone.

In this paper, we present the instrumentation of an existing simulation framework
ROSS. Based on the results obtained from this instrumentation, we have designed a
new framework for distributed simulation running on mobile devices. The next section
provides some background on our work, the description of the experimental setup for
both the desktop and mobile configurations, the results that have been obtained and
their discussion.

4. Background

In Table 1, we have listed some of the commonly used PDES frameworks. For this work,
we have chosen to instrument Rensselaer's Optimistic Simulation System (ROSS) since
it is well-known and widely used in the PDES community. A brief description of ROSS
is provided in this section. Moreover, the software tools and the main techniques used
for performing instrumentation and power consumption analysis are also discussed in
this section.

Rensselaer's Optimistic Simulation System (ROSS) – ROSS is a high per-
formance and extremely modular PDES system (Carothers et al., 2002) that is im-
plemented using the Message Passing Interface (MPI). Its modular implementation,
ability to use reverse computation, Kernel processes and implementation of Fujimoto's
GVT (Global Virtual Time) algorithm makes it a state-of-the-art simulation system
to perform experimental studies. In this study, we analyze the performance and the
power consumption of the sequential, optimistic, and conservative synchronization ap-
proaches supported in ROSS simulations.

PHOLD: PHOLD is one of the commonly used benchmark models used to analyze
the performance of synchronization algorithms designed for parallel and distributed
simulations. It is the parallel version of HOLD model, initially used for the performance
analysis of sequential event list algorithms. PHOLD model consists of N connected
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Table 1. Commonly Used PDES Frameworks

S. No.
OS PDES
Frameworks

Language
Simulation
Model

Description

1
GloMoSim
(Qualnet)

C-based
PARSEC

Hybrid

Developed at the University of California, Los Angeles, Global
Mobile system Simulator (GloMoSim) is a set of library
modules, developed for parallel execution of wireless network
simulations (Bajaj et al., 1999). It is an extensible simulator
implemented on shared memory and distributed memory system.

2 DaSSF
C++
Java

Conservative

DaSSF (Dartmouth Scalable Simulation Framework) is a
Scalable Simulation Framework (SSF) for discrete-event
simulation (Cowie et al., 1999).The SSF is designed to achieve
interoperability with other SSF compliant frameworks. DaSSF
is capable of simulating very large-scale network with tens of
thousands of complex nodes.

3
ARTIS+
GAIA

C with
Java
bindings

Hybrid

ARTIS (Advanced RTI System) is a middle-ware for Parallel
and Distributed Simulation (PADS) that can simulate complex
systems (Bononi et al., 2004). It provides a set of simple services
to simulate massively populated system models. ARTIS uses an
adaptive approach and makes use of physical allocation of LPs
for efficient execution and communication. It supports different
communication systems such as shared memory, MPI and
network communication. GAIA (Generic Adaptive Interaction
Architecture), built on th top of ARTIS, is also an adaptive
middleware that dynamically reallocates the LPs to optimize
the simulation execution (D’Angelo, 2017). GAIA uses a migration policy
to partition and allocate the interacting components over many
LPs dynamically.

4 LUNES C Conservative

LUNES (Large Unstructured NEtwork Simulator) is an agent-
based simulator to model complex large-scale networks
(D’Angelo and Ferretti, 2011). Its modular approach
separates the phases of topology creation, protocol simulation
and performance analysis. LUNES uses dynamic model
partitioning and simulation middle-ware services provided by
GAIA and ARTIS frameworks respectively.

5 ScipySim Python Conservative

ScipySim is a distributed simulator to simulate heterogeneous
systems developed using SciPy scientific computing platform
(McInnes and Thorne, 2011). It is based on the generalized
Kahn theory of heterogeneous system semantics. It was
designed to provide basic simulation capability to develop
simulations using Python.

6 ROOT-Sim C Optimistic

ROOT-Sim (The ROme OpTimistic Simulator) is a MPI
based parallel simulation platform developed using C/POSIX
technology (Pellegrini et al., 2011). To achieve high scalability
and performance it uses a set of optimized protocols to
minimize the run-time overhead.

7 Spades/JAVA Java Optimistic

SPaDES/Java (Structured Parallel Discrete-event Simulation
in Java) is a process oriented parallel simulation
(Teo and Ng, 2002). It was designed to isolate the
synchronization and parallelization implementation details. It
supports both sequential and parallel simulations.

8 ErlangTW Erlang Optimistic

ErlangTW is a parallel and distributed simulator based on
Time Warp synchronization (Toscano et al., 2012). Erlang is
a concurrent programming language specifically designed to
build distributed systems. ErlangTW simulation model can
be executed on single-core processors, shared memory
multiprocessors and distributed memory clusters.

9 GO-Warp GO Optimistic

GO-Warp simulator, implemented using GO programming
language, is also based on Time Warp synchronization
(D’Angelo et al., 2012). It uses Samadi's algorithm for
Global Virtual Time (GVT) computation Using concurrent
execution and inter-process communication mechanisms of
GO, LPs are allowed to proceed execution without blocking.
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logical processes (LPs). On receiving and processing an event message, LPs sends an
event to its neighboring LP, thus a fixed message population circulates throughout
the model. The message size, message population size, timestamp increment and the
message routing probabilities can be varied to test the simulation.

Instrumentation Tools: We have employed various tools for carrying out an ex-
tensive analysis of the PDES frameworks. These include tools developed by Intel such
as PIN-based tool, Vtune Amplifier and SoC Watch (Intel, 2017) as well as profiling
tool Allinea Forge Map (renamed as Arm Map) from Arm (Allinea, 2017) and Trepn.
A more detailed description of each tool along with its usage follows.

4.0.1. Performance Profiling – Intel PIN tool

PIN-tools provide a dynamic memory instrumentation framework to perform instru-
mentation on both IA-32 and x86-64 architectures. The PIN framework can be used
to analyze applications running in the user-space and to perform instrumentation on
compiled binary files.

4.0.2. CPU Usage – Intel Vtune Amplifier

Intel® VTune™ Amplifier is a profiling tool used for analyzing the code for better
performance by profiling the system CPU usage. It provides a user-friendly interface to
analyze and obtain results using enriched performance insights. It helps the application
developers to write code that is more threaded, scalable, vectorized and tuned. We have
used VTune™ amplifier to check the average CPU usage and the amount of time that
ROSS spends on locks and waits in a parallel setup. The results are used to estimate the
speedup that can be obtained by parallel version with respect to the serial execution.

4.0.3. CPU Cores Temperature – Intel® SoC Watch

Intel SoC is a command-line utility designed by Intel (Intel, 2017) to study the tem-
perature profiles of CPU cores. We used SoC to study the behavior of ROSS with an
increasing load on each LP.

4.0.4. Energy, Memory Consumption – Allinea MAP

Allinea MAP is a profiling tool designed for a wide range of applications including
parallel, single threaded and multi-threaded (Pthread, OpenMP, and MPI) applica-
tions that are based on Fortran, C, and C++ (Allinea, 2017). It performs a thorough
analysis of any target application, pinpoints the bottlenecks in the execution code and
keeps logs for power, energy and memory consumption traces. The Allinea forge MAP
tool is used to get insight of the power, energy and memory consumption of ROSS
while running the PHOLD bench-marking model (Bauer Jr et al., 2009; Perumalla,
2007) with a variable number of logical processes (LPs).

4.0.5. Energy, Memory Consumption for Android – Trepn Profiler

Profiler2, a product of Qualcomm, is a diagnostic tool that lets the developers profile
the performance of Android applications running on mobile devices. It is a hardware
sensor-based power profiler that can help in optimizing code for CPU usage, frequency,

2https://developer.qualcomm.com/software/trepn-power-profiler
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Table 2. Results - Serial Execution of PHOLD with Varying Number of LPs
LPs

1024 2048 4096 8192 16348 32768 65536 131072 262144 524288
Running Time (seconds) 34.827 72.272 148.343 303.874 658.453 1556.235 3516.398 7768.777 3730.151 31381.415
Event Rate (million events/sec) 2.94 2.83 2.76 2.70 2.49 2.11 1.86 1.69 1.76 1.67
Memory Allocated (MB) 12080 12816 14288 17232 23120 34896 58448 105552 258448 388176
Memory Wasted (MB) 533 341 469 213 213 213 213 212 213 210
Total Events Processed (billions) 0.102 0.205 0.410 0.819 1.638 3.277 6.554 13.107 6.554 52.428
Efficiency (%) 100 100 100 100 100 100 100 100 100 100

memory statistics, energy consumption and network usage. It can display data in real-
time or store it in a log file for a later off-line analysis. Trepn can analyze one particular
application, or the device as a whole.

Table 3. Results - Parallel Conservative Execution of PHOLD with Varying Number
of LPs

LPs
1024 2048 4096 8192 16348 32768 65536 131072 262144 524288

Running Time (seconds) 21.432 42.233 83.687 169.071 375.403 770.323 1598.350 3513.903 7212.069 14542.773
Event Rate (millions events/sec) 4.78 4.85 4.89 4.85 4.36 4.25 4.100 3.73 3.63 3.60
Memory Allocated (MB) 11528 11712 12080 12816 12873 17232 23120 34896 58448 105552
Memory Wasted (MB) 677 629 533 341 469 213 213 213 213 212
Total Events Processed (billions) 0.102 0.205 0.410 0.819 1.638 3.277 6.554 13.107 26.214 52.428
Total LBTS Computations (millions) 0.200 0.300 0.500 0.900 1.700 3.300 6.504 12.920 25.751 51.394
Efficiency (%) 100 100 100 100 100 100 100 100 100 100

5. Instrumentation of the Rensselaer's Optimistic Simulation System
(ROSS)

This section presents an in-depth discussions of the results obtained from the analysis
of the ROSS framework. The results reported in this section are obtained averaging
multiple independent simulations runs over the specified system while using the profil-
ing tools discussed in Section 4. The PHOLD simulation model is used to benchmark
the ROSS framework. In order to determine the adaptability of the different syn-
chronization algorithms (serial, conservative and parallel) to mobile devices, we have
compared these algorithms in terms of their CPU usage, memory consumption, total
execution time, and energy and power consumption.

For this study, a 4th generation Intel® Core™ i7-4790 processor (Intel Haswell fam-
ily) 3.6 GHz (Hyper-Threading) with 4 cores, 8 threads, 8 MB Cache, 8 GB RAM, 5
GT/s DMI2 and Ubuntu 14.04.3 operating system with kernel version 3.19 is used.

Table 4. Results - Parallel Optimistic Execution of PHOLD with Varying Number of
LPs

LPs
1024 2048 4096 8192 16348 32768 65536 131072 262144 524288

Running Time (seconds) 24.727 50.468 100.051 216.820 510.869 1197.870 2287.070 5065.395 10401.267 21598.115
Event Rate (millions events/sec) 4.141 4.058 4.094 3.778 3.207 2.735 2.760 2.588 2.520 2.427
Memory Allocated (MB) 29768 29952 30320 31056 32528 35472 35472 53136 76688 123792
Memory Wasted (MB) 869 821 725 533 149 405 405 405 405 404
Fossil Collect Attempts (millions) 0.408 0.808 1.609 3.210 6.410 12.811 25.611 51.212 102.410 204.811
Total Events Processed (billions) 0.104 0.207 0.412 0.822 1.641 3.280 3.280 13.110 26.217 52.432
Total GVT Computations (millions) 0.102 0.202 0.402 0.802 1.603 3.203 3.203 12.803 25.603 51.203
Total Roll Backs 133218 79114 45681 23980 12143 5983 5970 1665 716 421
PrimaryRoll Backs 105890 63101 35860 19571 10561 5541 5448 1578 681 398
SecondaryRoll Backs 27328 16013 9821 4409 1582 442 522 87 35 23
Efficiency (%) 98.13 98.96 99.43 99.69 99.84 99.90 99.92 99.98 99.99 99.99
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5.0.1. Execution Time

Results for the PHOLD benchmark for serial/sequential, conservative and optimistic
approaches running on top of the ROSS framework are presented in Tables 2, 3 and 4
respectively. In all simulations, a linear mapping between the Logical Processes (LPs)
and the physical processors has been used. The total number of events is kept con-
stant while also works as stopping condition for the simulation. Results show that
as expected, the serial execution takes more time as compared with parallel conser-
vative and parallel optimistic approaches. Using 1024 LPs, the sequential simulation
took 34.827 seconds to complete whereas the conservative and optimistic parallel ap-
proaches took 21.4 and 24.7 seconds respectively. Further increasing the number of
LPs to 524288, the sequential execution took 8.72 hours whereas parallel conservative
took 4.04 hours and parallel optimistic execution 5.99 hours. Results shows that the
conservative simulation execution outperforms the other techniques across the range
of LPs. As discussed earlier, in optimistic simulation, there are out of order event
executions that cause some events to rollback and then re-executed. Thus the total
number of events is larger than the number of committed events and that results in
performance reduction when compared to the conservative approach. Moreover, func-
tions such as GVT computations, fossil collection and reverse computation that are
required by the optimistic simulator are among the reasons of the increased execution
time.

5.0.2. Memory Consumption

1 2 4 8 16 32 64 131 262 524
0

100

200

300

400

Logical Processes (K, 1K=1024)

M
e
m

o
r
y

c
o
n
s
u
m

p
t
io

n
(
M

B
s
)

Serial Approach Conservative Approach Optimistic Approach

Figure 1.: Memory usage analysis

In this section, the memory usage results for the PHOLD execution on the ROSS
framework are presented. Using 1024 LPs, the parallel conservative used 11,528 MBs
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and the optimistic used 29,768 MBs. The memory usage with 524,288 LPs, the par-
allel conservative used 105,552 MBs and the optimistic 123,792 MBs to complete a
simulation run.

Comparing the conservative and optimistic approaches in Figure 1, we observe a
similar trend in memory usage with conservative approach requiring the least amount
of memory. Optimistic approach requires more memory as every LP must implement
the rollback mechanism, therefore, the LPs need to maintain the history of all the
processed events to be able to handle transient and anti-messages. The memory usage
is also based on execution time. The serial execution is taking the maximum execution
time as reported in Table 2, thus, the memory usage reported for serial is more for
large number of LPs e.g. for 524288 LPs the memory usage is around 388176 MBs.

5.0.3. Efficiency, GVT computation, Fossil Collection and Rollbacks

These important metrics for simulation synchronization schemes are reported in Ta-
bles 2, 3 and 4. The term efficiency is defined as the ratio between the number of
committed events to the total number of events. Since there is no rollback mecha-
nism in serial and parallel conservative approaches, both approaches show a 100%
efficiency. On the other hand, in the optimistic approach, the committed events are
always less than the total number of events (due to the rollback mechanism); there-
fore, the efficiency of parallel optimistic synchronization is always lower than 100%.
The total amount of events processed in all three approaches ranged from 0.102 to
52,432 billion events with an increasing number of LPs. Another important factor to
measure the performance efficiency of the simulation system is the processing rate of
events. As specified by the PHOLD model, increasing the number of LPs leads to an
increase in the number of events to be processed and thus the communication overhead
increases, resulting in decreased event rate. The event rate (measured as number of
events per second) is the lowest in serial execution (ranging from 2.94 to 1.67 millions
events/second) and the highest for the conservative approach (ranging from 4.78 to
3.60 millions events/second), while optimistic lies in the middle (ranging from 4.14 to
2.42 millions events/second). The reason behind this decreasing of the event rate while
increasing the total number of LPs is due to the scheduling and communication over-
head between the LPs. Comparison results for above-mentioned parameters suggests
that the conservative approach outperforms the other options.

In parallel optimistic simulation, the Global Virtual Time (GVT) acts as a barrier
point in the past for rollback guaranteeing that no process can rollback to a timestamp
that is smaller than the current GVT value. The GVT used in optimistic simulation is
similar to the Lower Bound Timestamp (LBTS) in the conservative approach (Rouse,
2005). The results show that the total number of GVT computations in optimistic
(ranging from 0.10 up to 51.20 millions of computations) are slightly less than in the
conservative approach (ranging from 0.20 up to 51.40 millions of computations). This
due to the fact that in the conservative approach a large number of LBTS computa-
tions is performed to avoid causality errors. Moreover, for optimistic synchronization,
the simulation frameworks typically store event histories to proactively resolve issues
due to the causality errors. Storing the event histories increases the memory usage over
time and therefore the memory must be reclaimed periodically (to reduce the runtime
memory requirements of the simulation framework). This reclamation process is com-
monly known as fossil collection and its add a relevant overhead to the simulation
execution. The high memory wastage is also made evident by a large number of fossil
collection attempts in optimistic execution to reclaim memory.
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A mechanism called rollback is necessary in the optimistic simulation approach
whenever a causality error is detected. Extensive rollbacks affect the efficiency of the
simulation engine. More in detail, there are two different types of rollbacks, the primary
rollbacks and secondary ones. A primary rollback occurs whenever a LP receives an
event with a time-stamp that is lower than its local time. The primary rollbacks
transitively propagate secondary rollbacks to other LPs to revert the effects of the
previously sent messages (Perumalla, 2013). The results of the optimistic setup show
that, as the number of LPs increases, there is a considerable decrease in rollbacks
(ranging from 133,218 to only 421 rollbacks for 1024 LPs and 524,288 LPs respectively).
This is due to the fact that the executions slow down caused by the increased number
of LPs also decreases the number of causality errors and therefore the number of
rollback invocations.

5.0.4. Wait Time

The wait time is another interesting metric that can be used for studying the perfor-
mance of a system. It is defined as the time spent on locks and waits in a parallel
execution. Wait time for the serial simulation execution is negligible as the maximum
wait time is 0.007 secs. This is due to the fact that the sequential execution do not
have to wait for the completion of other processes. For parallel approaches, the results
show that the optimistic execution spends more time on locks and waits than the con-
servative techniques as shown in the Figure 2. This increase in the wait time for the
optimistic execution (as the number of LPs is increased), is caused by the rollbacks
that increase with the number of total events to be processed. Greater is the number
of pending events, higher is the synchronization and scheduling overhead. It is worth
noting that the difference between the wait time for parallel conservative and parallel
optimistic approaches is less than 80 secs.
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Figure 2.: Wait Time Analysis for PHOLD model
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Figure 3.: Average CPU usage for PHOLD model

5.0.5. Average CPU Usage

The average CPU usage defines the CPU utilization that depends on the total number
of processor cores being used for running the simulation. Moreover, it gives some
information on the concurrency level of the code being executed. In the case of the
serial execution the average CPU usage is constant as only one processor core is used;
whereas the results for parallel versions are presented in Figure 3. The results indicate
that the average CPU usage for optimistic simulation is higher as compared with the
conservative approach. This is exactly what the optimistic approach aims for, due
to the optimism that allows the LPs to execute events on availability. Moreover, the
optimistic approach also utilizes more CPU due to the fossil collection mechanism and
the need of dealing with straggler and anti-messages.

The results of power and energy consumption are reported in Figure 4 and 5.
The power and energy are related concepts; however, the energy consumption and
power consumption are not the same. It is possible to simply define the power as the
energy consumed per unit of time (rate of energy consumption) as given in Equation 1.

Power = Energy/T ime (1)

Desktop systems and similar devices have a constant power supply, while the mobile
devices and the other battery operated devices are energy constrainted. For this reason,
the results for both energy and power consumption have been collected and reported
with a varying number of LPs.

The results collected by the Allinea forge’s Map utility in terms of CPU energy
consumption are reported while the PHOLD model was running. Figure 5 shows the
energy consumption results for sequential, parallel conservative and optimistic execu-
tions (varying number of LPs ranging from 1024 to 524,288). The optimistic execution
results show the highest energy consumption due to its usage of all the available phys-
ical cores and the extra computations that are needed with respect to the conservative
approach. Interestingly, the results show that the sequential execution uses a single
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Figure 4.: Power consumption analysis

CPU but still consumes a large amount of energy due to its longer execution time
(with respect to the other approaches).

5.0.6. Power Consumption

The CPU power consumption (measured in Watts) is a significant portion of the over-
all power consumed. It is a combination of the electrical energy used by CPU while
performing various tasks per unit time and the energy dissipated in the form of heat
during the course of execution. Figure 4 shows that for a low number of LPs in the sim-
ulation, the CPU power consumption for both conservative and optimistic approaches
are almost similar while the optimistic approach showing slightly better performance
for higher numbers of LP. On the other hand, the CPU power consumption of serial
is very low as compared with both parallel versions. This is due to the fact it uses a
single CPU core instead of multiple cores.

5.0.7. CPU Temperature

The average temperature statistics for each CPU core, while the PHOLD simulation
model is being executed, are presented in Figure 6. For serial execution, the temper-
ature of the specific CPU core is higher with respect to the another cores. This is
obvious, since the serial approach is able to use only a single core. In the parallel
executions (both conservative and optimistic) the temperature increases on all the
four CPU cores that are available. This is due to the parallelism in conservative and
optimistic execution since both approaches are able to utilize all the available CPU
cores. In conservative, the minimum and maximum average temperature are 54.4°C
and 71.8°C respectively. Similarly, in optimistic they are 55.5°C and 79.9°C.

It is evident from the temperature results that increasing the number of CPU cores
in use, more energy is dissipated as heat and thus the average CPU temperature
increases. The maximum average temperature of the serial version is comparable to the
minimum average temperature of parallel versions. The maximum average temperature
of parallel versions was 18.8°C higher than the serial one. The reason behind the high
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Table 5. Functional Level Execution Time for the Serial Version of ROSS

LP’s

Functions (% Time) 1024 2048 32768 262144 524288

tw run

tw scheduler sequential

phold event handler

tw rand exponential

tw event new

rng gen val

tw event send

Others

Others

Others

100

100

89

35

21

14

12

7

11

0

99.9

99.9

86

33

21

14

11

7

14

0.1

99.9

99.9

76

23

20

15

13

5

24

0.1

100

100

77

22

19

19

11

6

23

0

99.9

99.9

80

21

20

18

15

6

20

0.1

Execution Time (sec) 34.8 72.3 1556.2 3730.2 31381.4

energy consumption for optimistic and conservative execution is that a significant part
of the energy is dissipated in the form of heat.

5.0.8. Functional Level Execution Time

The execution time of the core functions for the serial, parallel conservative and opti-
mistic simulation execution has been measured and is reported in Tables 5, 6 and 7.
These tables list the functional hierarchy and the time spent on the execution of the
main functions and their corresponding individual sub-functions. In all three simula-
tion approaches, the total number of events is kept constant.

The functional level percentage time for each sequential simulation execution (for
different numbers of LPs) is reported in Table 5. The results show that the serial simu-
lation with 1024 LPs took 34.8 seconds while increasing the number of LPs to 524,288
it required 8.72 hours to complete. The texitittw scheduler sequential is the main ex-
ecuting function since it responsible for the event processing, memory management
and virtual time computation.

Table 6 reports the execution time for the simulation functions in case of parallel
conservative approach. The functional time reported in Table is in percentage of total
execution time. The total execution time of the simulation run with 1024 LPs was 21.4
seconds out of which the parallel execution part was of 9.2 seconds. Similarly, when
the number of LPs increases, the total execution time was about 4.04 hours with a
parallel execution part of 1.09 hours. This gives an idea on the degree of parallelism
that MPI based ROSS provides when compared to the sequential execution – the
execution time is decreased to half with the use of a parallel conservative executions.
It is worth noting that for the parallel version, the degree of parallelism tends to
decrease as the number of LPs is increased. This can be attributed to the earliest
time tag GVT or (LBTS in the case of conservative synchronization) associated to
the unprocessed pending events. The GVT/LBTS computations need to be done in a
sequential fashion essentially for rollbacks, as no process can rollback to a timestamp
smaller than the GVT value (Rouse, 2005). This trend can be seen in the Tables 6
and 7, as the number of LPs increases there is decrease in the parallel execution time
of GVT calculation function thus spending more time in sequential GVT calculation
due to rollbacks.

Table 7 contains the functional level percentage execution time results for the par-
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Table 6. Functional Level Execution Time for the Parallel Conservative Version of
ROSS

LP’s

1024 2048 32768 262144 524288

Functions (% Time) Total MPI Total MPI Total MPI Total MPI Total MPI

tw run

tw scheduler conservative

phold event handler

tw event send

tw rand exponential

tw event new

rng gen val

Others

tw net read

service queues

Others

tw gvt step2

MPI Allreduce

Others

Others

Others

99.7

99.5

59

21

15

14

6

3

17

17

0

14

13

1

9.5

0.3

43

43

14

14

-

-

-

-

15

15

-

14

13

1

-

-

99.8

99.8

64

22

16

15

8

3

17

17

0

9

8

1

9.8

0.2

40

40

14

14

-

-

-

-

14

14

0

12

11

1

-

-

99.9

99.9

55

18

13

14

8

2

16

16

0

10

10

0

18.9

0.1

32

32

12

12

-

-

-

-

12

12

0

8

8

-

-

-

100

100

58

19

12

11

13

3

16

16

0

6

5

1

20

0

27

27

10

10

-

-

-

-

11

11

0

6

5

1

-

-

100

100

58

21

11

12

12

2

16

16

0

6

5

1

20

0

27

27

11

11

-

-

-

-

11

11

0

5

5

-

-

-

Execution Time (sec) 21.4 42.2 770.3 7212.1 14542.8

Table 7. Functional Level Execution Time for the Parallel Optimistic Version of ROSS

LP’s

1024 2048 32768 262144 524288

Functions (% Time) Total MPI Total MPI Total MPI Total MPI Total MPI

tw run

tw scheduler optimistic

tw sched batch

phold event handler

tw event send

tw event new

rng gen val

tw rand exponential

Others

tw gvt step2

tw pe fossil collect

MPI Allreduce

Others

tw net read

service queues

test q

recv begin

Others

tw kp rollback to

tw event rollback

Others

Others

Others

Others

99.8

99.6

60

52

18

11

7

13

3

18

7

10

1

20

20

9

11

0

1.4

1.2

0.2

0

1.6

0.2

37

37

13

13

13

-

-

-

-

11

0

10

1

12

12

2

10

-

0.6

0.6

-

-

-

0

99.9

99.7

58

51

18

11

5

14

3

20

8

11

1

21

21

9

12

0

0.8

0.8

0

0

0.7

0.1

38

38

13

13

13

-

-

-

-

12

0

11

1

13

13

2

11

-

0.2

0.2

-

-

-

0

99.9

99.9

54

39

13

9

7

9

1

28

19

8

1

17

17

9

9

0

<0.1

<0.1

0

0

0.9

0.1

26

26

8

8

8

-

-

-

-

8

-

8

0

9

9

0.8

8

0.2

<0.1

<0.1

0

0

1

0

99.9

99.9

52

37

13

8

7

8

0

28

20

7

0

20

20

12

8

0

<0.1

<0.1

0

0

0

0.1

23

23

7

7

7

-

-

-

-

7

0

7

0

8

8

1.2

7.1

0

<0.1

<0.1

0

0

1

0

99.9

99.9

50

38

13

8

8

7

1

29

20

7

2

21

21

13

8

0

<0.1

<0.1

0

0

0

0.1

23

23

7

7

7

-

-

-

-

8

0

7

1

9

9

1

7

1

<0.1

<0.1

0

1

0

0

Execution Time (sec) 24.7 50.5 1197.9 10401.3 21598.1
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allel optimistic simulation with a different numbers of LPs. The total execution time
of the simulation model with 1024 LPs was 24.7 seconds out of which the parallel
execution part was 9.14 seconds. Similarly, for 524,288 LPs, the total execution time
was about 6 hours with parallel execution part near to 1.38 hours. Similarly, the GVT
computations (that need to be performed in a sequential manner) are used to find a
time in the past for which it is guaranteed that there will be no rollbacks. For this
reason, in Tables 6 – 7, it can be seen that there is a considerable increase in the com-
putation time of the tw gvt step function as the number of LPs increases. Increasing
the frequency of rollbacks increases the amount of overhead due to reverse computa-
tion. In parallel discrete event simulation, the reverse computation is used for reducing
the amount of state saving (that is very memory consuming). For energy constrained
systems, the excessive amount of rollbacks can cause a longer execution time. Some-
times, it results in a cascading effect – the primary rollbacks cause secondary rollbacks
transitively, to reverse the effect of previously sent messages (Perumalla, 2013). On the
other hand, in conservative simulation, the causality errors are avoided by performing
more LBTS computations and this is the reason for a better execution time in the
conservative approach.

Discussion - ROSS Framework – The in-depth instrumentation results for the
serial, parallel conservative and optimistic approaches are presented in this section.
Table 8 summarize the average results obtained for all the LPs for each technique.
The conservative approach is shown to perform better in most of the parameters. The
results can help the research community to determine what are the critical parameters
that need to be focused on while designing PDES frameworks for mobile platforms.
A serial execution of the simulation model consumed fewer resources than the other
approaches but it has a longer execution time. Thus, it is possible to conclude that this
technique is not efficient and effective for usage on mobile devices. The serial execution
model can be used effectively only for models that are less computation intensive. For
parallel conservative and optimistic simulation models, a good strategy can be to
migrate resource extensive functions (or modules) to cloudlets for their execution. On
this aspects, the execution time of core functions are reported in Tables 5, 6 and 7.
Parallel optimistic approach provides the most opportunities in this regard as there
are more modules consuming higher execution times as compared with conservative
approach.
In our view, the detailed analysis of the various PDES execution models is the first

Table 8. Summary of Results (average) for Serial, Parallel Conservative and Parallel
Optimistic Algorithms

Simulation Algorithm
Execution
Time
(Seconds)

Memory
Consumption
(MBs)

Efficiency
(%)

Wait time
(Seconds)

Average
CPU Usage
(%)

Power
Consumption
(Watt)

Energy
Consumption
(J)

CPU
Temperature
(C)

Serial Approach 4917.07 25.75 100 0.005 25 25.97 74859 45.23
Conservative Approach 2756.09 28.63 100 796.05 73.25 57.77 76785 68.21
Optimistic Approach 4035.26 29.12 99.58 1572.75 77.00 56.18 108241 68.51

step towards the design and implementation of new simulation frameworks for mobile
handheld devices. Moreover, it is also necessary to determine the migration cost of each
simulation module before moving the compute-intensive code at cloudlets. In fact, the
decision of migrating a whole or a partial module is based on a number of factors
and some of them can be unknown or unpredictable before running the simulation
or at the initial stage. For this reason, heuristic approaches for the dynamic (and
adaptive) re-allocation of these modules is an area that requires further exploration.
The different techniques used a different number of resources, after profiling ROSS,
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we have carefully designed the core modules of the proposed framework. The modular
design of core modules allows us to migrate the module to nearby cloudlets. In the
next section, we explain our motivation for adopting mobile devices for parallel and
distributed simulations. So far no such framework exists that support parallel and
distributed simulation over mobile devices.

6. Motivation behind SEECSSim

In embedded systems, the adoption of highly programmable microprocessors, easy
network connectivity features and user-friendly interface supported by the operating
system makes the embedded devices smarter compared to traditional fixed function
and disconnected systems. The embedded system market has generated over 2 trillion
dollers in revenue in 2015 which is expected to increase in next few years. Moreover,
14.5 billion microprocessor cores have been utilized by 2015 with compound annual
growth rate around 15%. Moreover, in real life, the role of embedded systems has been
increased. Embedded devices are used in crisis management systems, traffic prediction
and etc. Further, a large number of devices available in every home, and office. Thus,
the available connected devices can be used to share the resources.

Distributed simulations over embedded devices can be used to monitor physical
systems. In real life, the use of unmanned aerial vehicles (UAVs) has been increased.
The UAVs can be used to monitor or track vehicles, flood monitoring, situation after
earthquake and spread of forest fire. Usually, the UAVs are equipped with sensors
and have a wireless communication link. Let’s assume that each UAV is assigned a
particular geographical area to collect information. Through communication link, the
UAVs can form a grid where based on the received information they can execute
the distributed simulation to project the future state of the system. e.g. distributed
simulation over UAVs can be used to predict the direction of a forest fire, and location
of the fire in future. Moreover, it can also be used to reassign the areas to UAVs for
better coverage and resource optimization.

Likewise, in case of traffic congestion, more UAVs can be assigned to particular
intersection based on the future states. Moreover, there is a number of application
where embedded systems can be utilized to predict the future state based on infor-
mation received in real-time. Traditionally, sensors like UAVs are used to send the
received information to a centralized computing facility, where the states are pro-
jected. However, moving the simulation over embedded devices is still emerging area
and it offers several advantages. Such as it reduces the use of central computing re-
sources and thus, removes the single point of failure. The communication delay between
connected UAVs is lower if compared to sending the information to the central loca-
tion. Thus, such schemes are more suited to delay-tolerant applications. Moreover,
distributed implementation using embedded devices provides great scalability. The
above mentioned near real-time systems are referred to as dynamic data-driven sys-
tems (DDDAS) (Darema, 2004). The DDDAS gather information, predict future state
and reconfigure the system to optimize the resources. The DDDAS has been discussed
for a number of applications (Madey et al., 2012). However, from the above discussion,
it is clear that for such simulations, energy consumption is the most important concern
for executing simulation over battery operated devices. Here our focus is on energy,
and memory consumption over embedded mobile devices. SEECSSim ( Maqbool et al.
(2018)) is a novel framework designed to support distributed simulation on embedded
devices. More detail on SEECSSim are presented in next section.
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7. SEECSSim – Proposed Simulation Framework for Mobile Devices

Algorithm 1 SEECSSim Framework . Dynamically maintain resources and peer
information

1: PeerTablei ← null
2: Resi ← null
3: JoinNeti ← null
4: synalgo ← ConfigF ile (CMB,TS, TW, TB)
5: while (Simulation! = End) do
6: if (JoinNeti == False) then
7: JoinNeti ← call JoinNetwork()
8: JoinNeti ← True
9: PeerTablei ← build

10: end if
11: if (Resi.UpdateInterval expired) then
12: Resi ← ResourceManager(..)
13: Reset ← timer
14: end if
15: if (Resi.usage ≥ threshold.value OR null) then
16: Simulation ← pause
17: Peeri ← Inform
18: Generate ← Sharing Request
19: if (Generate Requesti.accepted == true) then
20: Send ← simulationdump

21: Peeri ← NULL
22: Resi ← reset
23: end if
24: end if
25: if (Generate Requesti.received == true) then
26: Resi ← check
27: if (Resi.isEnough == true) then
28: send ← acceptcall to Peeri
29: end if
30: end if
31: if (Simulation 6= pause) then
32: SynchronizationAlgo (synalgo, ei)
33: end if
34: end while
35: function SynchronizationAlgo(synalgo, ei)
36: Process event ← ei
37: simt ← update time
38: send ← newei to Peeri
39: end function

In this section, we present a new simulation framework specifically aimed for mo-
bile devices that include support for various synchronization algorithms. SEECSSim
is designed for running efficiently on handheld devices, more specifically SEECSSim
version 1.0 supports Android devices. The SEECSSim architecture is shown in Fig-
ure 7. At the top, there is the application layer, that supports users in building their
own applications. The application layer communicates with the core functionalities of
SEECSSim through an Application Programming Interface (APIs). The SEECSSim
framework acts as a middleware between the application and communication layer.
At present, communication through UDP and TCP is supported. The user can se-
lect the communication mechanism through the configuration module available at the
application layer. The core modules of the SEECSSim frameworks are the Resource

21



Algorithm 2 Memory Manager . Manage and allocate memory

1: Mempool ← null
2: timer ← ∆t
3: Mempool ← GetMemory (BlockS , numb)
4: function MemoryManager(Reqi, Memhandle)
5: if (Reqi == memory request And Mempool 6= null) then
6: returnMemhandle ← Mempool

7: else
8: return null
9: end if

10: if (Reqi == release memory request (Memhandle) ) then
11: Add Mempool ← Memhandle.getMemory
12: end if
13: if (timer expired or Reqi == status) then
14: Uri ← Update Resourceinfo
15: timer ← ∆t
16: if (Uri ≥ threshold.value) then
17: return ← Exception
18: end if
19: end if
20: if (Resi.usage request) then
21: return Uri

22: end if
23: end function

Algorithm 3 Resource Manager . Monitor CPU and battery usage

1: Uri ← null
2: timer ← ∆t
3: function ResourceManager(Reqi)
4: if (timer expired OR Reqi == resource status) then
5: Uri ← Acquire batteryinfo
6: Uri ← Acquire CPUinfo
7: Uri ← Acquire MemoryManager(Reqi.stat)
8: timer ← reset ∆t
9: return ← Uri

10: end if
11: end function
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Figure 7.: The SEECSSim Architecture

Manager (RM) and the Simulation Manager (SM). Algorithm 1 shows the operations
of the proposed framework. The simulation starts with processes on embedded sys-
tems join the simulation network, build the communication table. The communication
table maintains the addresses of all the processes to send and receive messages. The
resource manager keeps track of the available resources on embedded devices i.e. mem-
ory, CPU and battery. In case of any resource usage goes beyond the threshold value,
the framework pauses the simulation and informs all the other processes. At the same
time the framework sends a process migration request to all the processes. The device
with maximum resources can accept the request and thus simulation resumes. More-
over, the other devices can join the simulation and they become the candidate host
for the migration. The complete execution of the Memory and Resource Manager is
shown in Algorithm 3 and Algorithm 2. To benchmark the proposed simulation frame-
work, we rely on the PHOLD simulation model implemented at the application layer.
The Simulation Manager (SM) provides the synchronization algorithms (e.g. time-
stepped, synchronous conservative, asynchronous conservative and optimistic). The
SM includes the serial, conservative and optimistic synchronization approaches. The
users can select one of these approaches through a configuration file before launching
their application. Moreover, the modular design of SEECSSim allows users to easily
incorporate their own synchronization algorithms.

Causality constraint – In parallel and discrete event simulation, causality con-
straint is a highly critical factor to produce correct the results. However, using devices
to execute without a proper mechanism to ensure causality can lead to incorrect results.
In the proposed framework, SEECSSimn ensures that during processes migration from
a resource constraint device to another must fulfill the causality constraint. In SEEC-
SSim, when the device generates a request for process migration due to insufficient
resources at the same time it includes all the process related parameters in its request.
These parameters include remaining simulation execution time, GVT computation in-
terval (for optimistic model), the memory usage of state variables, event history (to
support rollback) and pending event list. These variables help the devices in decision
making. Thus, to obey causality, on acceptance, all the pending event list along with
the event history since last GVT is transferred. Similarly, in Algorithm 1 shows the
process attributes sharing mechanism. These parameters help the re-execution from
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Figure 8.: Simulation topology of the PHOLD benchmark

Table 9. Embedded System Specification used for benckmark

Parameters Values
CPU Quad-core 2.7 GHz
RAM 3GB
Storage 32GB
Operating System Android
OS version Marshmallow
Manufacturer Samsung
Chipset Qualcomm Snapdragon 805
Battery Li-lon - 3220 mAh
# of devices used 03

the same state, without effecting processes on other devices.

8. Result & Discussions

8.0.1. Experimental Setup & Benchmark Application Over Mobile Devices

For the experimental setup, three mobile devices are used with specifications listed
in Table 9. All the experiments are performed five times and average results are
reported in this section. For the result comparison, the total number of LPs are
varied to measure the total events, processed events, event rate, CPU, memory usage,
energy consumption, and execution time. The result section shows the comparison
among tree barriers, time warp, CMB Null message, and time-stepped algorithms.
In this experimental setup, devices are connected through a one-hop distance i.e.
WiFi router; therefore, the communication delay is not covered due to the controlled
environment. In order to benchmark the proposed SEECSSim framework, PHOLD
has been implemented. The simulation topology of the PHOLD model is shown in
Figure 8. All the devices have the same specifications during the benchmark. It is also
worth pointing out that the margin of error (computed with 95% confidence interval)
is very small compared with the average values; therefore, it is not reported in the
Figures for better readability.

The results of Time-Stepped synchronization algorithm on the mobile platform with
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Figure 9.: PHOLD with Time-Stepped synchronization on the mobile platform (a) To-
tal events processed, and (b) Total time-stepped with increasing LPs.

a variable number of LPs are shown in Figure 9a and Figure 9b. The timestep size
is kept fixed for all the simulation runs. The figure shows the total number of events
processed along with the total number of timesteps (∆t) that each simulation is able
to complete.

The Tree Barrier synchronization algorithm works in a different way with respect to
the Time-Stepped approach as it computes a new barrier point each time the LPs reach
a barrier point. This means that the Tree Barrier takes slightly more time to complete
execution due to all these LBTS computations that needs to be performed at each
step. We observed that the trend shown by the Tree Barrier (results not shown here)
with an increasing number of LPs is almost the same as the Time-Stepped approach.
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Figure 10.: PHOLD with CMB NULL messages synchronization on the mobile plat-
form (a) Total events processed and NULL messages generated with varying number
of logical processes, and (b) LBTS computations with increasing LPs.

The results of PHOLD with Chandy−Misra−Bryant NULL message synchroniza-
tion with a varying number of LPs are reported in Figure 10a and Figure 10b. The
figure shows the total number of events processed, total number of LBTS computa-
tions along with the total number of NULL messages. The number of NULL messages
is almost equal to the total number of events processed in the PHOLD execution. The
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total number of LBTS computations is very close to the LBTS computations in the
Tree Barrier. The CMB performed better than the Tree Barrier and the Time Stepped
approaches in terms of execution time.
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Figure 11.: PHOLD with Time Warp synchronization on the mobile platform (a) Total
events processed, and (b) shows the average GVT and Rollbacks with varying logical
processes

The results of PHOLD with Time Warp (TW) synchronization and a varying num-
ber of LPs are shown in Figure 11a and Figure 11b. The total number of events
processed, the number of rollback events and total number of GVT computations are
plotted for a varying number of LPs. With the increase of the LPs, the total number
of rollback events increases gradually. This is due to the fact that large number of LPs
generates an increasing number of events and the LP execution rate is slower than
event input rate. Thus, the rollback rate is slowed down.

The results comparison in terms of event-rate for the PHOLD benchmark when run
with all of the above-mentioned synchronization algorithms is reported in Figure 12.
The event rate is defined as the total number of events processed in a unit time.
Figure 12 shows that TW and CMB NULL message algorithm show a better event
rate as compared with the Tree Barrier and the Time-Stepped approaches. In TW, it
is due to the optimistic behavior that, for most of the execution time, continues the
processing of events without any need of synchronization. Similarly, the CMB keeps
on executing the available events except when it needs to exchanges NULL message to
get the value of the LBTS of an unknown link. In the case of Tree Barrier and Time-
Stepped, most of the computing time is consumed in defining the LBTS or processing
synchronization respectively.

8.0.2. Mobile Device Resource Utilization

This section reports the resource utilization of proposed SEECSSim framework when
run on a mobile platform. In comparison with traditional desktop or server systems,
the handheld devices provide a limited amount of computational resources. For this
reason, the completion time of simulations run on handheld devices usually increases
as compared with traditional systems. It is thus not fair to compare the traditional
execution architectures with handheld devices considering only the amount of time
that is necessary to complete the simulation runs. A more comprehensive approach
needs to take in account both the execution time and the energy consumptions of
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Figure 12.: Event rate for different synchronization algorithms

the simulations. Our goal is to analyze the CPU usage, memory consumption, energy
consumption and the amount of time spent to complete each simulation while us-
ing different supported synchronization algorithms. The results also include the total
number of events processed, the number of LBTS/GVT computations and the total
execution time. The Trepn profiler tool is used for measuring the power consumption
and the performance of the different synchronization algorithms.

CPU Usage – The average CPU usage of the different simulation synchronization
algorithms is reported in Figure 13. The Time-Stepped approach consumed the least
CPU resources as compared with the other algorithms available in SEECSSim. On
the other hand, the TW consumed a significant amount of CPU. The reason for the
excessive CPU utilization in TW is that it needs to process a larger amount of events
than the other approaches. Moreover, during the rollbacks, many events are pilled up
in the input queues and thus more CPU work is required. The GVT computations and
fossil collect attempts also contribute to higher CPU utilization. The CPU usage for
the CMB algorithm is lower as compared to TW but higher than Tree Barrier. This
is caused by the number of NULL messages that are generated for processing each
single event. Similarly, the look-ahead value, also has an impact on the performance of
CMB. The Time-Stepped approach performed better compared to others. However, it
is important to note that the concept of CPU utilization for mobile devices is different
than for desktop systems. For example, in a desktop computer a high CPU utilization
can be termed as better CPU utilization since a consistent power supply is always
available. This does not happen in mobile devices in which a high CPU usage means
more energy consumption and therefore a faster battery depletion.

Memory Consumption – Memory consumption is another important parameter
that needs to be considered in embedded or mobile devices. As discussed in the pre-
vious section, the TW algorithm executes events using an optimistic behavior (that is
without time synchronization). In order to perform rollbacks, each LP saves state vari-
ables and processed events. This state saving mechanism requires a significant amount
of memory as compared with the other techniques discussed in this paper. In fact, the
other approaches consume a lower amount of energy and are very close to each other in
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Figure 13.: Average CPU usage for different synchronization algorithms
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Figure 14.: Memory consumption for different synchronization algorithms
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Figure 15.: Energy consumption for different synchronization algorithms

terms of memory consumption. The memory usage comparison for all the algorithms
is shown in Figure 14.

Energy Consumption – Handheld devices are usually based on ARM proces-
sors that are designed for optimizing the energy consumption ((Smith and Hamilton,
2015) (Ryu and Ganis, 2012)) instead of the peak performance. These battery operated
mobile devices are energy constrained, therefore one of the main design requirements is
to minimize the total amount of energy consumption to complete a given computation
task. The energy 3 consumed by executing the PHOLD benchmark with the different
synchronization algorithms is presented in Figure 15. In the figure, the amount of con-
sumed energy is plotted using a logarithmic scale. It is important to note that reported
energy consumption of the algorithms is relative to each other rather than their indi-
vidual energy consumption. The energy is computed by multiplying power with time,
therefore, if the execution time increases then its energy consumption also increases.
Time Warp is shown to be energy intensive as compared to the other algorithms. On
the other hand, Time Stepped and Tree Barrier consume a lower amount of energy
while the energy consumption of CMB is nearly the same as the Time Stepped and
Tree Barrier approaches.

The energy consumption of the TW algorithm can be improved using specific tech-
niques that help limit the number of rollbacks. One of such techniques is called Wolf
Calls (Madisetti et al., 1988) whereby when a LP detects a straggler message, it sends
a control message (Wolf Call) to all other LPs causing them to stop their message pro-
cessing until the error is removed. An even better way for improving the performance
of the Wolf Calls algorithm is to stop the processing only in LPs that would have been
affected by the propagation of the causality error. Other, more advanced techniques
such as lazy, re-lazy cancellation, and reverse computation can be employed. In the
current version, the SEECSSim simulation framework includes support for Wolf Calls
only.

The results presented in Figure 16 suggest that the energy consumption of Time
Warp with Wolf Calls enabled is improved considerably with an increasing number

3Here energy is given in milliwatt-hour, the watt-hour (Wh) is a unit of energy equivalent to one watt (1W)

of power expended for one hour (1h) of time, thus, a milliwatt hour is 1/1000 Wh (symbolized mWh).
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Figure 16.: Energy Consumption – Time Warp vs. Time Warp with Wolf Calls

of LPs. It is pertinent to note that, in this case, the improvement in terms of energy
consumption is achieved at the expense of the execution time (Figure 17). The execu-
tion time has increased when using the Wolf Calls but it is still better than the Tree
Barrier approach.

Total Execution Time – The total execution time for the different synchronization
algorithms is shown in Figure 18. Results show that Time Barrier takes the most time
to execute followed by Time Stepped while CMB NULL takes the least execution time.
The total execution time for TW is less as compared to Tree Barrier and Time Stepped
Algorithms due to its optimistic approach.

Function Level Execution Time – The objective of function level benchmark
is to identify the modules that are taking most of the execution time. The execution
time of every major module for all the mentioned algorithms is reported in Table 10–
13. It can be seen that the Event-Handler (EH) module is taking the bulk of the
execution time. Specifically, in Time-Stepped, the EH takes on average the 72.05 %
whereas the same function in TW takes the minimum amount of time (58.375%) of
all the approaches discussed in this section. Inside the EH implementation, there are
a number of submodules taking more than 10% of the total execution time.

Looking at the execution time at the submodule level, we can iden-
tify that TS Event Send for Time Stepped, TRB Event Send for Tree Barrier,
CMB Event Send for CMB NULL and TW Event Send for Time Warp consumes the
most percentage of the total execution time

Discussion – Table 14 shows comparison between different synchronization ap-
proaches supported in SEECSSim. The Time Warp is one of the most extensively used
algorithms in distributed simulations. However, it is evident from summary results that
it consumes the most of memory and energy as compared with other approaches, thus,
it is not suitable for mobile and embedded devices. Moreover, CMB NULL approach
performed better than TW on all parameters evaluated.

On the other hand, the Time-Stepped approach is the best among all the synchro-
nization algorithms (except for the execution time where the CMB NULL outperforms
all others) but with a significant issue: due to its time-advancement mechanism, it
cannot exploit true parallelism. We conclude that the CMB conservative algorithm is
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Table 10. Functional Level Execution Time for the Time Stepped Synchronization
Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TS Init

TS Scheduler

Event Handler

TS Event Send

TS Rand SEEDS

TS Event New

RNG Gen Val

Others

TS Net Read

TS Service Queue

Others

TS Event Receive

Others

TS Finalize

Initializations

97

0.3

96.2

73

19

12

13

5

9

14

13

1

15

9.2

0.5

3

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

98

0.5

97

72

20

13

11

6

9

15

13

2

13

10

0.5

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

99

0.7

97.5

73

19

12

13

5

8

14

12

2

16

10.5

0.8

1

99

0.8

97.4

73.4

18

13.3

13

4.1

10

14

13

1

16

10

0.8

1

98

0.4

97

72

19

12

13

6

9

15

14

1

13

10

0.6

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

Execution Time (sec) 14 24 48 94 185 339 651 1255

Table 11. Functional Level Execution Time for the Tree Barrier Synchronization
Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TRB Initialize

TRB Scheduler

Event handler

TRB Event Send

TRB Rand SEEDS

TRB Event New

RNG en val

Others

TRB net read

TRB Dqueue

Others

TRB event receive

Others

TRB Finalize

Initializations

96

0.7

94.5

70

17

12

13

5

8

14

12

2

16

10.5

0.8

4

97

0.3

96.2

73

19

12

13

5

9

14

13

1

15

9.2

0.5

3

98

1.2

97

73

18

13

13

4

10

14

13

1

16

10

1.8

2

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

98

0.4

97

72

19

12

13

6

9

15

14

1

13

10

0.6

2

98

0.5

97

72

20

13

11

6

9

15

13

2

13

10

0.5

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

Execution Time (sec) 16 27 63 129 224 418 734 1501
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Table 12. Functional Level Execution Time for the CMB NULL Messages Synchro-
nization Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

CMB init

CMB scheduler

Event handler

CMB event send

CMB rand SEEDS

CMB event new

rng gen val

Others

CMB net read

CMB Dqueue

Others

CMB LBTS step

CMB event receive

Others

CMB Finalize

Initializations

99

1.2

96

59

20

13

12

5

9

14

12

2

12

7

11

1.8

1

98

1.5

95

58

19

14

11

4

10

12

10

2

14

9

11

1.5

2

99

2

95

56

18

15

10

5

8

15

12

3

15

8

9

2

1

98

1

94

60

20

14

10

6

10

14

11

3

14

10

6

2

2

99

1

96

58

18

12

13

6

9

15

12

3

11

8

12

2

1

99

1

97

56

19

14

9

6

8

16

11

4

13

9

12

1

1

99

2

96

59

19

14

11

6

9

13

11

2

13

7

11

2

1

98

1.2

97

57

18

13

13

4

10

14

13

1

16

16

10

1.8

2

Execution Time (sec) 8 14 27 51 98 201 403 817

Table 13. Functional Level Execution Time for the Time Warp Synchronization Al-
gorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TW Init

TW Scheduler

Event Handler

TW Event Send

TW Rand SEEDS

TW Event New

RNG Gen Val

Others

TW Net Read

TW Dqueue

Others

TW Gvt Step

TW Event Receive

Others

TW Finalize

Initializations

99

2

96

59

19

14

11

6

9

13

11

2

13

7

11

2

1

99

1

96

58

18

12

13

6

9

15

12

3

11

8

12

2

1

98

0.5

97

59

20

13

11

6

9

15

13

2

13

13

10

0.5

2

98

0.4

97

58

19

12

13

6

9

15

14

1

14

13

10

0.6

2

96

0.7

94.5

59

17

12

13

5

8

14

12

2

11

16

10.5

0.8

4

98

1.2

97

60

18

13

13

4

10

14

13

1

13

16

10

1.8

2

97

0.3

96.2

58

19

12

13

5

9

14

13

1

15

15

9.2

0.5

3

99

2

95

56

18

15

10

5

8

15

12

3

15

8

9

2

1

Execution Time (sec) 12 20 35 62 126 243 493 1015
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Figure 17.: Total Execution Time – Tree Barrier, Time Warp and Time Warp with
Wolf Calls

Table 14. Summary of the Average Resource Utilization for synchronization algo-
rithms in SEECSSim

Simulation Algorithm
Execution
Time
(Seconds)

Memory
Consumption
(MBs)

Average
CPU Usage
(%)

Energy
Consumption
(mWh)

Synchronous Execution (Tree Barrier) 389.00 32.71 30.13 15.44
Time-Stepped 326.25 31.65 27.22 15.41
Conservative Approach (CMB NULL Message) 202.37 36.30 34.93 17.47
Optimistic Approach (Time Warp) 250.72 44.69 45.47 24.42

adequate in terms of execution time as well as energy consumption for adoption over
mobile devices.

9. SEECSSim Limitations and Future Directions

The initial version of SEECSSim v1.0 is designed to work on Andriod devices only. The
framework establishes a peer-to-peer connection between devices where the devices
maintain a communication table. The main objective of this study is to observe the
behavior of well-known distributed simulation protocols over handheld devices due to
resource constraints. In this version, the LPs are assigned in a sequential fashion i.e.
every device executes the same number of LPs; however, in the future, we are interested
to develop a more sophisticated model for LPs distributions while considering the
specification of the devices. In this version, fault tolerance is not considered. Whereas,
devices can join a simulation network at any time; however, the device departure
should be planned in order to migrate the LPs to other devices to support causality
constraints. In the future, we are interested to incorporate the fault tolerance scenario
to handle the more unreliable execution environment.
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Figure 18.: Total Execution Time for different synchronization algorithms

10. Conclusions

In this paper, we have analyzed through instrumentation a traditional distributed
simulation framework, ROSS. The profiling results have provided valuable insight into
the design and implementation of simulation frameworks for embedded and mobile
devices. Based on our findings, we proposed a new distributed simulation framework
called SEECSSim specifically designed for resource constraint devices. The simulator
framework supports a number of synchronization algorithms, out of which CMB NULL
conservative algorithm is shown to perform adequately both in terms of execution time
and energy consumption.

To the best of our knowledge, SEECSSim is the first open-source simulator frame-
work that can help researchers to build simulations that can be efficiently executed on
mobile devices. The flexible design of SEECSSim allows the researchers to incorporate
their own simulation models and synchronization algorithms.
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