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Abstract—The paper focuses on the day-ahead operational 

planning of a grid-connected local energy community (LEC) 

consisting of an internal low-voltage network and several 

prosumers including generation units, battery storage systems, 

and local loads. In order to preserve, as much as possible, the 

confidentiality of the features of prosumers’ equipment and the 

production and load forecasts, the problem is addressed by 

designing a specific distributed procedure based on the alternating 

direction method of multipliers (ADMM). The distributed 

procedure calculates the scheduling of the available energy 

resources to limit the balancing action of the external grid and 

allocates the internal network losses to the various power 

transactions. Results obtained for various case studies are 

compared with those obtained by a centralized optimization 

approach. The results confirm that, in the considered LEC 

framework, each of the prosumers achieves a reduction in costs or 

increases revenues in case it participates to the LEC with respect 

to the case in which it can only transact with an external energy 

provider.  

 

Index Terms— alternating direction method of multipliers, 

distributed optimization, energy management system, local energy 

community, mixed integer linear programming, mixed integer 

quadratic programming. 

I. INTRODUCTION 

E consider a local energy community (LEC), i.e., a set of 

residential or small industrial sites, each acting as a 

prosumer and generally including generation and battery energy 

storage (BES) units as well as loads. The LEC has an internal 

low voltage (LV) distribution network, which is connected to 

the external utility grid. In a LEC, each prosumer uses the 

available energy resources in cooperation with the other 

prosumers to minimize the energy procurement cost of the 

entire LEC.  

The LEC definition adopted in this paper is characterized by 

being local and cooperative: all the prosumers are connected to 

the same low voltage distribution network and they collaborate 

without any competitive strategy (i.e., without exploiting their 

market power) for the common goal of minimizing the costs 

due to the exchanges with the utility grid. These characteristics 

makes the studied framework quite different from those dealt 

with in, e.g., [1], [2], and references therein, which consider 

competitive markets where the various operators act with 

different objectives in a noncooperative scheme. The 

community concept can be more general, particularly if there is 

the possibility for a prosumer to join another local trading 

platform, a possibility that is not considered in this paper. 

In the literature, there are several studies regarding real 

implementations of the LEC concept, e.g. the Brooklyn 

microgrid project [3]. The economic justification for the 

formation of a LEC is mainly due to the difference between the 

price of the energy supplied by the external energy provider and 

the price sold by the LEC to the utility grid. This difference can 

be significant, e.g., due to the costs of the ancillary services. 

The operation of a LEC requires the implementation of an 

energy management system (EMS) for the optimal exploitation 

of the available resources [4]. This paper focuses on the EMS 

function that provides the day-ahead scheduling of the BES 

units, under the assumption that all the generation units of the 

LEC are photovoltaic (PV) systems. The scheduling function is 

structured as a distributed optimization algorithm based on the 

alternating direction method of multipliers (ADMM). The main 

inputs of the plans of each prosumer are the forecasts of the 

photovoltaic production and the load. The prosumers’ decisions 

are coordinated by the procedure that iteratively updates the 

multipliers. This paper does not address the issues of the 

uncertainty associated with the forecasts, as accomplished, for 

instance, in [5]. 

The scheduling function can be also structured as a 

centralized optimization problem, in which a control unit 

collects and keeps updated all the characteristics of the 

prosumers’ equipment and all the load and PV production 

forecasts. Compared to a centralized approach, the use of a 

distributed approach, like ADMM, limits the information that 

every prosumer needs to communicate. Indeed, the procedure 

for the update of multipliers only requires the knowledge of the 

energy exchange between prosumers. Furthermore, a 

distributed procedure is more appropriate for the 
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implementation of new transaction methods based, e.g., on 

blockchain [6], [7], or, more generally, on distributed ledger 

technologies.  
This paper describes first the centralized optimization 

approach based on a mixed integer linear programming (MILP) 

model and then it focuses on the ADMM-based one. 

ADMM is one of the most frequently adopted consensus 

algorithms (see, e.g., [8]–[11], and references therein) and it has 

been recently investigated for the solution of scheduling 

problems in microgrids and for the more general problem of the 

optimal operation of multi-microgrids and active distribution 

networks. Both [12] and [13] deal systems similar to the one 

considered in this paper, with the presence of local generation 

and BES units and with the possibility of exchanging energy 

with an external utility grid, but they neglect line-losses in the 

optimization procedure. In [13] the uncertainty of renewable 

energy production, load consumption, and energy prices is 

addressed through a robust optimization approach, whilst [14] 

applies a regret minimization. 

In [15] the use of a primal Benders decomposition approach 

instead of Lagrangian-based dual decomposition, such as the 

ADMM, has been presented. Other approaches adopt 

hierarchical architectures with a central controller or 

community manager that coordinates the power transaction 

among prosumers or microgrids and the trading with the utility 

grid, as described in, e.g., [16], [17] and references therein. 

The specific characteristics of the distributed procedure 

proposed in this paper are: 

- it aims at minimizing the energy procurement cost of the 

LEC considering the power loss in the internal network; 

- the internal network losses are allocated to each energy 

transaction between two prosumers or between a prosumer 

and the utility grid; 

- the results obtained by the distributed algorithm are 

compared with those given by a centralized model that 

includes the same constraints and power loss allocation; 

- the structure of the proposed scheduling procedure is 

consistent with the billing procedure and the metering 

systems typically installed in a LEC. 

The structure of the paper is the following. Section II is 

devoted to the formulation of the problem and the description 

of a centralized approach based on a MILP model. Section III 

presents the formulation of the proposed distributed procedure 

based on an ADMM algorithm. Section IV compares the results 

of numerical tests provided by both the above-mentioned 

approaches. Section V concludes the paper. 

II. PROBLEM FORMULATION – CENTRALIZED APPROACH 

Fig. 1 illustrates the scheme of the LEC. The grid meter Mg, 

positioned at the point of common coupling with the external 

utility grid, is bidirectional and measures the energy exchanged 

in each time interval. 

For the implementation of the distributed optimization 

approach, each prosumer i is equipped with a local bidirectional 

meter Mi that measures the energy that the specific prosumer 

exchanges with the internal network in each time interval. 

Given the collaborative characteristic of the LEC, a prosumer 

cannot act as producer and as consumer in the same time 

interval. 

The day ahead scheduling dealt with in this paper provides a 

plan of the optimal use of the LEC energy resources during the 

following day, with particular reference to the BES units, and 

calculates the prices of the energy transactions between 

prosumers. It is assumed that the prices of exchanges with the 

utility grid are predefined, although they vary according to the 

time of day. 

The electricity billing procedure can be described as follows:  

a) In each time interval, if the LEC buys energy from the 

utility grid (measured by Mg), the relevant cost is allocated 

to each consumer i (i.e., to each prosumer who consumes 

energy in excess of the local generation in that time 

interval) proportionally to the ratio between its 

consumption measured by Mi and the total consumption in 

the LEC, i.e., the sum of the measured energies by all the 

prosumers acting as consumers.  

b) If the LEC sells energy to the utility grid (measured by Mg), 

the corresponding revenue is allocated to each producer j 

(i.e., to each prosumer that produces energy in excess of 

the local load in that time interval) proportionally to the 

contribution of j to the total LEC production, i.e., to the 

ratio between the energy measured by Mj and the sum of 

the measurements of all the prosumers acting as producers. 

c) Each consumer i is also charged for the energy bought from 

the producers of the LEC, i.e., for the difference between 

the measurement of Mi and the energy allocated to 

consumer i in step a). The corresponding revenue of 

producer j is estimated proportionally to the contribution of 

j to the total LEC production as in step b). The day ahead 

scheduling procedure calculates the energy prices of each 

producer j in each time interval.    

Both the centralized and distributed approach are divided in 

two stages. Initially, the optimization is performed by using a 

first estimation of the power loss separately for each prosumer. 

Then, in the second stage, the network power loss due to all 

transactions is recalculated and allocated to each power 

transaction to perform a second optimization. 

 
Fig. 1. Scheme of a LEC with the internal network, prosumers, and meters 

(adapted from [25]). 
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A. First stage 

By denoting as Ω = {1, 2, …, N} the set of prosumers i,  

Τ = {1, 2, …, tend} the set of intervals t of the time horizon, and 

B = {1, 2, …, bend} the set of branches of the network, the 

centralized LEC scheduling is described by the following MILP 

model. 

Objective function OF (1) minimizes the total cost due to the 

power transactions with the utility grid during the following 

day: parameters 
t

buy  and 
t

sell   are the prices (in €/kWh) of the 

energy that the LEC buys from and sells to the utility grid, 

respectively; buy_Grid 

t

iP  and sell_Grid 

t

iP  are the power (in kW) 

bought from and sold to the utility grid, respectively; parameter 

t is the time step (in h). 

 ( )
buy_Grid sell_Grid

buy , sell ,

buy_Grid buy sell_Grid sell
, ,

,

min
t t

i i

t t
j i i j

t t t t

i i
P P

t T
iP P

OF P P t 



= −    (1) 

The constraints are: 

 sell , buy , = 0   , ,t t

i j j iP P t T i j−    (2) 

G BES_dis buy_Grid buy , D BES_ch 

1
 sell_Grid sell , ,2

,

t t t t t t

i i i i j i i

j
j i

t t t

i i j b i

j b B
j i

P P P P P P

t T i
P P L




+

 


+ + + = +

 
+ +



 
  (3) 

 
 buy_Grid buy ,

sell_Grid sell ,

0 and 0 if 0   1,0

and 0 and 0 if 1

t t t t
i i j i i

t t t

i i j i

P P u u

i jP P u

 = = = 


= = =

 (4) 

 
max max

buy_Grid buy sell_Grid sell 0   0 ,t t

i i i iP P P P t T i       (5) 

 
max max

buy , buy sell , sell 0   0 , and t t

i j i i j iP P P P t T i j       (6) 

 
1

BES BES BES_ch ch BES_dis dis ( / )   
, 1

t t t t

i i i i i i

i
E E P P t

t T t
 −


= + − 

   
(7) 

 
end

1 max 1 1

BES BES BES_ch ch BES_dis 

max

BES BES 

dis     

    

( / )t t t

i i i i i

t

i i

iE E P P t i

E E i

= = = = +  


= 

−

 

(8) 

 
 BES_ch BES BES 

BES_dis BES 

0  if   0    1,0

0  if   1    

t t t

i i i

t t

i i

P u u

P u i

 = = 


= = 

 (9) 

 
max max

BES_dis BES BES_ch BES0   0 ,t t

i i i iP P P P t T i       (10) 

 
min max

BES BES BES ,t

i i iE E E t T i    . (11) 

Constraint (2) represents the equilibrium between non-

negative variable buy ,

t

j iP , which is the power (in kW) bought by 

j from i in time period t, and non-negative variable sell ,

t

i jP , 

which is the power (in kW) sold by i to j. Constraint (2) couples 

all the sales transactions between  prosumer i and the other 

prosumers so that the price is the same for all the sale 

transaction of prosumer i in time interval t.  

Constraint (3) represents the power balance for the i-th 

prosumer in time interval t: parameters G 

t

iP  and D 

t

iP  are the 

forecasts of PV generation and load demand (in kW), 

respectively; non-negative variables 
BES_ch 

t

iP  and 
BES_dis 

t

iP  are 

the charge and discharge power of the BES (in kW), 

respectively. 
,

t

b iL  are the losses in branch b due to transactions 

involving prosumer i, as described later in this subsection. 

Indicator constraints (4), with binary variable i

tu , are used to 

avoid simultaneous purchases and sales by the same prosumer. 

In each time interval t, purchases and sales are limited by 

constraints (5) and (6), where max

sell iP  is the largest value between 

0 and 
max

G D BES 

t t

i i iP P P− + ; 
max

buy iP  is the largest value between 0 and 

max

D G BES 

t t

i i iP P P− + ; max

BES iP  is the maximum power output of the 

BES of prosumer i.  

The state of the energy (SoE) of the i-th BES unit is defined 

by (7) and (8), where BES 

t

iE  is the SoE at time t (in kWh); max

BES iE  

is the capacity; ch i  and dis i  are positive numbers lower than 

1 and represent the efficiencies during charge and discharge, 

respectively. In (8) we assume that BES units are fully charged 

at the beginning and at the end of the day. Constraint (10) limits 

the discharge and charge power within the maximum value 
max

BES iP . The SoE is bounded between minimum level min

BES iE  and 

maximum one max

BES iE  by constraint (11). Indicator constraints 

(9), with binary variable BES 

t

iu , prevent the simultaneous 

charging and discharging of the batteries. 

 In the literature, more accurate MILP models of the BES are 

described (e.g., in [5], [18], [19] and [20]) that can replace the 

simple model represented by (7)-(11). 

Both indicator constraints (4) and (9), with the associated 

binary variables i

tu  and BES 

t

iu , are used to improve the 

convergence and to obtain the most easily applicable solution, 

but do not increase the value of the objective function. Indeed, 

in the considered model, there is no prosumer who can benefit 

from the purchase and resale of energy in the same time 

interval, since no prosumer has restrictions to buy directly from 

those who sell at the lowest price. Furthermore, a simultaneous 

charging and discharging of the battery would have the sole 

effect of increasing the losses due to ch i  and dis i .  

Due to the cooperative behavior of the prosumers, each 

producer tends to fulfill as much as possible the needs of nearby 

consumers in the network with radial configuration, so to 

minimize the losses. In this context, the presence of counter-

flows, i.e., transaction in opposite direction in the same branch, 

is not reasonable. This justifies the approximate evaluation of 

the power losses carried out separately for each prosumer in the 

first stage, to preserve the uncoupled structure of the problem 

needed by the ADMM approach. The evaluation of the losses is 

refined in the second stage after the losses allocation. 

According to this approach, ,

t

b iL  in (3) is defined by the 

following constraints 

 ( )
2

, ,2
   , ,
3

t tb

b i b i

n

L F t T b B i
V

R
=     (12) 

 
, Grid , buy_Grid Grid , sell_Grid

, , buy , , , sell ,

, ,

t t t

b i b i i b i i

t t

b i j i j b i j i j

j j

F A P A P

t T b B i
A P A P

 

= −

  
+ − 

 (13) 
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In (12), bR  is the resistance of branch b, Vn is the line-to-line 

rated voltage value and ,

t

b iF  is the three-phase power flow in 

branch b, only due to the transaction that involves i, considered 

to be positive when directed from the substation to the end of 

the feeder. Constraint (12) assumes that the rms bus voltage 

values are equal to the rated value, reactive power flows are 

neglected, and the LV network is balanced. 

In (13), GridA  and A  are a 2-D matrix and a 3-D array, 

respectively, that describe the position of each branch with 

respect to the buses where the prosumers are connected, 

assuming a radial configuration:  

- 
Grid ,b iA  is the b,i element of matrix 

GridA . It is equal to 0 if 

branch b cannot be crossed by a power flow due to the 
transaction between prosumer i and the external network, whilst 
it is 1 otherwise. 

- 
, ,b i jA  is the b,i,j element of array A . It is equal to 1 if  branch 

b is crossed in the assumed positive direction by the power flow 
created when i buys from j, it is -1 if branch b is crossed in the 
negative direction by the flow created when i buys from j, and 
it is 0 if branch b is not crossed by the flow created when i buys 
from j. 

In the implemented MILP model, constraint (12) is replaced 

by a its piecewise linear approximation described in, e.g., [21]. 

A set L of segments is created for the linearization. Each 

segment is defined by breakpoints 
Flow ,

t

b lH , obtained by 

dividing the allowed range of t

bF  in |L| intervals. Each 

breakpoint 
Flow ,

t

b lH  defines a breakpoint 
Loss ,

t

b lH  of the 

piecewise representation of t

bL , which is given by 

 , Flow ,     ,  t t t

b b l b l

l L

F a H t T b B


=     (14) 

 , Loss ,     ,  t t t

b b l b l

l L

L a H t T b B


=     (15) 

 , 1    ,  t

b l

l L

a t T l L


=     (16) 

where 
,

t

b la are SOS2 variables, i.e., they are linked with a 

special ordered set of type 2 constraints so that at most two and 

consecutive variables can be non-zero. Since in the first stage 

the losses are calculated separately for each transaction, the 

model (14)-(16) is applied for each prosumer i by using power 

flow ,

t

b iF  defined by (13). 

B. Second stage 

The second stage refines the estimation of the power loss in 

the internal network by considering the concurrent presence of 

the flows of all the transactions in each branch. Moreover, the 

second stage allocates the losses to each transaction.  

 By using the results of the first stage flow t

bF  in each branch 

due to all the transactions is calculated as 

 

Grid , buy_Grid

Grid , sell_Grid , , buy ,

t t

b b i i

i

t t

b i i b i j i j

i i j

F A P

A P A P



  

= −

+



 
 (17) 

The total value of power loss t

bL  in branch b at time t is 

calculated by replacing 
,

t

b iF with t

bF  in (12). Following a 

typical approach [22], the losses in each branch b are 
proportionally attributed to the transactions that create flows in 

branch b by using coefficients 
buy_Grid ,

t

b iK , 
sell_Grid ,

t

b iK , 
buy , ,

t

b i jK  

(if t

bF ≠0): 

 
buy_Grid , Grid , buy_Grid /t t t

b i b i i bK A P F=  (18) 

 
sell_Grid , Grid , sell_Grid /t t t

b i b i i bK A P F= −    (19) 

 
buy , , , , buy , /t t t

b i j b i j i j bK A P F= . (20) 

The optimization is then repeated, by using a MILP model of 

the second stage in which constraints (3) are replaced by 

 

G BES_dis buy_Grid buy_Grid , buy , D

BES_ch, sell_Grid sell_Grid , sell , buy , ,

                                                   

t t t t t t

i i i b i i j i
jb B
j i

t t t t t

i i b i i j b j i

b B j j b B
j i j i

P P P L P P

P P L P L




   
 

+ + − + = +

+ + + +



  

                   ,t T i 

  (21) 

where 
buy_Grid ,

t

b iL , 
sell_Grid ,

t

b iL , and 
buy , ,

t

b j iL  are the losses in 

branch b attributed to the power bought by i from the utility 

grid, to the power sold by i to the utility grid, and to the power 

sold by i to j, respectively. The losses attributed to each 

transaction are obtained by the product of the corresponding 

coefficient, given by (18), (19), and (20), and the total value of 

power loss t

bL  in branch b: 

      buy_Grid , buy_Grid , , ,t t t

b i b i bL K L t T i b B  =  (22) 

     sell_Grid , sell_Grid , , ,t t t

b i b i bL K L t T i b B  =  (23) 

      buy , , buy , , , ,t t t

b i j b i j bL K L t T t T i b B   = . (24) 

According to (21), each prosumer i compensates for losses 

due to its transactions with the utility grid and sale transactions 

with other prosumers. In fact, we assume that both 
buy ,

t

i jP  and 

sell ,

t

i jP  (which corresponds to 
buy ,

t

j iP ) are measured at the 

buyer’s connection. 

Constraints (17) are included in the second stage model of 

the centralized approach for each branch b and time interval t  

and the corresponding power loss, namely t

bL , is represented by 

using the piecewise linear approximation of (12) given by (14)

-(16).  

In addition to the constraints of the first stage, the model of 

the second stage includes constraints that avoid transactions not 

present in the first stage solution:  

 

buy_Grid buy_Grid

sell_Grid sell_Grid

buy , buy ,

0 ,

0 ,

0 , and ,  

t t

i i

t t

i i

t t

i j i j

P T t T i

P T t T i

P T t T i j i j

 =  


=  


=   

  (25) 

where parameters 
buy_Grid

t

iT , 
sell_Grid

t

iT , and 
buy ,

t

i jT  are equal to 0 

if in the first stage solution i buys from the utility grid, i sells to 

the utility grid, and i buys from j, respectively; otherwise, these 

parameters are equal to 1, under the assumption that transaction 

decisions are not significantly affected by the losses. 
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III. PROBLEM FORMULATION – DISTRIBUTED APPROACH 

As mentioned, the distributed approach is based on the 

ADMM. The optimization is performed in an iterative way. At 

each ADMM iteration, the power bought or sold by each 

prosumer j calculated in the previous iteration is made known 

to all prosumers. These values are considered as parameters in 

the optimization problem solved by prosumer k at the current 

iteration and they are denoted by a hat in the model described 

in this section. 

A. First stage 

The objective function to minimize by prosumer k is 
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where 

 
2 2

buy , sell , buy , sell ,
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j j
j k j k

m P P P P
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Equation (26) is obtained by the decomposition of the 

Lagrangian for each prosumer k. The Lagrangian incorporates 

OF (1) and constraints (2), each multiplied by the relevant 

Lagrange multiplier t

i . According to the ADMM, the 

Lagrangian is augmented by the squared norm of the same 

constraints (2) multiplied by positive penalty parameter ρ and 

fixed scale factor m, as shown in (27). 

OFk can be seen as the summation of the costs of the energy 

purchased by k from the utility grid at price 
buy

t  and from each 

other prosumer j at price t

j , minus the sum of revenues due to 

the energy sold by k to the utility grid at price sell

t  and to the 

other prosumers at price t

k . Once the procedure converges, t

k  

is zero and the value OF for the entire system is the sum of the 

ones of each prosumer k: 

 
k

k

OF OF


=   (28) 

The optimization problem of prosumer k includes constraints 

(3)-(11) and (13)-(16) for i=k. 

Furthermore, the convergence of the ADMM procedure is 

improved by adding the following constraints, starting from the 

second iteration, as they provide a coordination between the 

sales and purchase decisions of prosumer k with respect to those 

of the other prosumers: 

 sell , buy_Grid buy ,
ˆ ˆ    ,t t t

k j j j i

i
i j

P P P t T j



 +    (29) 

 buy , sell_Grid sell ,
ˆ ˆ    ,t t t

k j j j i

i
i j

P P P t T j



 +    (30)  

At each iteration ν, after the solution of the optimization 

problem, prosumer k communicates both
buy ,

t

k jP  and 
sell ,

t

k jP  to 

every other prosumer j. When all the prosumers have solved 

their own optimization problems, they update Lagrangian 

multipliers t

k . For this purpose, let kr
  be the primal residual 

term for prosumer k, equal to the vector with |T| elements 

 buy , sell ,

t t t

k j k k j

j j
j k j k

r P P
 
 

= −  , (31) 

the |T|-dimensional vector of Lagrangian multipliers k

 , with 

elements t

k , is updated as 

 1 2k k km r    + = +   . (32) 

The procedure is iteratively repeated until the absolute value 

of all residuals t

kr  is less than tolerance ε (which is assumed to 

be equal to 10 W in all the numerical tests of this paper). At the 

beginning of the ADMM procedure, t

k  is initialized to be equal 

to ½ (
buy

t + sell

t ). 

The penalty parameters are updated as follows [8] 
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(33) 

where 
2

   is the Euclidian norm and ks  is the |T|-dimensional 

vector of the dual residual elements 
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. (34) 

To accelerate the convergence, the initial value of m, which 

is equal to 1·10 -5, is multiplied by 5 and by 1.5 when the 

maximum value of the total mismatch 
t t

k

k

r r=  becomes less 

than 20 kW and 1 kW, respectively, and further multiplied by 5 

when ( )max 100 Wt

kr  . 

The consensus activity required to coordinate the various 

prosumers may be performed by using a distributed ledger. 

As described in [8], the convergence of ADMM to a global 

optimal point is not guaranteed when it is applied to nonconvex 

problems. It will possibly have better convergence than other 

local optimization methods and it has been successfully applied 

to large-scale mixed integer problems as shown in, e.g., [11]. In 

the models considered in this paper, the binary variables are 

used only in indicator constraints (4) and (9). As already 

described in Section II, these constraints do not affect the 

optimal value of the OF but are useful for finding the solution, 

among those with the optimal value, which can be more easily 

applied, by avoiding prosumers who buy and sell energy at the 

same price without benefit. Furthermore, these constraints 

together with (29) and (30) make the ADMM convergence 

significantly faster. 

B. Second stage 

The internal network power loss allocation follows the same 

rules and criteria described for the centralized approach. 
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However, in order to avoid constraint (17) in the distributed 

approach, which would link together the purchase and sales 

decisions of all the prosumers, we introduce the efficiencies of 

each transaction (between k and the grid or between k and j):  
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buy_Grid
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(35) 
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 (37)

 

where 
buy_Grid ,

t

b iL , 
sell_Grid ,

t

b iL , and 
buy , ,

t

b k jL  are calculated at the 

end of the first stage by using (22)-(24), in which the t

bL  values 

are given by replacing 
,

t

b iF  with t

bF  in (12) and K values are 

calculated from (18)-(20). The η calculation can be carried out 

by a central coordinator that knows the topology and parameters 

of the network and collects the power exchanges of the first 

stage (i.e. the values buy ,

t

k jP , 
buy_Grid k

tP , 
sell_Grid k

tP  from each 

prosumer k). This calculation can be also done by each 

prosumer in a distributed manner (assuming that each prosumer 

knows resistance values of the branches and matrices 
Grid ,b iA , 

, ,b i jA ) provided that each prosumer k communicates its power 

exchanges to every other prosumer of the LEC. 

These efficiency parameters are included in the balance 

constraint of each prosumer k. Then constraints (21) become: 
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  (38) 

As the centralized model, the second stage models of the 

ADMM procedure include also constraints (25) for k=i. 

For a complete comparison of the ADMM procedure with the 

centralized approach, a second stage model of the centralized 

approach was implemented in which (38) replaces (21). In 

Section IV, we denote this model as centralized-η.  

IV. IMPLEMENTATION AND TEST RESULTS 

The models have been implemented in the AIMMS 

Developer modelling environment [23] and tested by using the 

Cplex V12.8 solver [24] on a 2-GHz Intel-i7 computer with 8 

GB of RAM, running 64-bit Windows 10. The MILP solver is 

used for the centralized model and the MIQP (mixed integer 

quadratic programming) solver for the ADMM model.  

All the calculations refer to a time window of 1 day, divided 

into 96 periods of 15 minutes each. 

The test system is composed of two LV feeders. Each feeder 

consists of five lines, each with resistance bR  = 189 mΩ.  Five 

prosumers are connected to each feeder: prosumers 1-5 to a 

feeder and prosumers 6-10 to the other. Each prosumer is 

equipped with a PV system and a load. We repeat the 

calculations two times: once without BES units and the other 

by assuming that each prosumer is also equipped with a BES 

unit. The total daily consumption of the LEC is 313 kWh and 

the corresponding PV production is 231 kWh (73.8% of the 

load).  The load profiles adopted for each prosumer are shown 

in Fig. 2. For all the PV units we assumed the same profile of 

the ratio between power output and panel surface shown in 

Fig. 3. The area of the PV panel of each prosumer is given in 

Table I. Fig. 3 also shows the price profile of the energy bought 

from the utility grid 
buy

t . We assume that the price of the 

energy sold by the LEC to the utility grid (i.e., sell

t ) is half of 

buy

t . Sizes max

BESE  of the BES units are shown in Table II and the 

corresponding max

BESP  values are assumed to be equal to the ratio

max

BES /E t . The total capacity of the BES units is 30 kWh (13% 

of the daily PV production). 

 
Fig. 2. Load profile for each prosumer. 

 
Fig. 3. Profile of the PV production and grid purchase price. 

TABLE I – PV PANEL SURFACE FOR EACH PROSUMER 

prosumer 1 2 3 4 5 6 7 8 9 10 

area (m2) 32 14 21 32 28 14 42 32 14 42 

TABLE II – SIZES OF THE BES UNITS  

prosumer 1 2 3 4 5 6 7 8 9 10 

size (kWh) 5 3 4 2 3 1 2 2 2 6 

A. Scenario 1: prosumers without batteries 

 Table III shows the OF values for both stages and the total 

network losses in the 24 hours, for the centralized model, the 

centralized-η model and the distributed approach without BES 

units. The results are similar. 

If the optimization problems of the prosumers are solved in 

sequence, without considering delays or limitations in the 

communication channels, the distributed model requires a 
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solution time around 60 s / 13 iterations for stage 1 and 80 s / 8 

iterations for stage 2. The solution of the centralized model 

needs around 1 s for each stage. As expected, the computational 

effort decreases if a longer Δt is adopted. For example, if Δt=30 

min, the solution of the centralized first stage model needs 

around 0.2 s, whilst the distributed model requires 25 s. If Δt=1 

h, the centralized first stage model needs around 0.1 s, whilst 

the distributed model requires 14 s. As mentioned in the 

Introduction, the purpose of adopting the distributed approach 

instead of the centralized one is not to improve the 

computational performance but to reduce the amount of shared 

information. 

TABLE III - COMPARISON BETWEEN THE RESULTS OBTAINED BY THE 

CENTRALIZED MODELS AND THE ADMM FOR SCENARIO 1 

  
OF (€) Losses (kWh) 

stage 1 stage 2 stage 2 

Centralized 26.85 27.19 3.65 

Centralized-η 26.85 27.18 3.62 

ADMM 26.87 27.18 3.63 

The reasonable accuracy of the power loss representation in 

the second stage of both the centralized and distributed 

optimization models is confirmed by the maximum percentage 

difference of a few percent between the power loss calculated 

at the end of stage 2 for each period and the corresponding 

values obtained by (12) with ,

t

b iF  replaced by t

bF . 

To illustrate the convergence behavior of the ADMM 

procedure, Fig. 4 shows the average value of the primal 

residuals t

kr  (denoted by R) at each iteration, the corresponding 

value of the augmented OF according to (28), and the OF value 

of (1). 

 
Fig. 4. ADMM convergence in stage 1 for scenario 1: average value R of the 

primal residuals at each iteration, augmented OF, OF value corresponding to 

the exchanges with the utility grid. 

As shown in Fig. 5 the profiles of the power exchanged by 

the LEC with the utility grid calculated by using the two 

approaches are similar.  

Fig. 6 shows the profiles of the power flow from each 

prosumer when it sells to the others calculated by using the 

centralized model and the ADMM approach. 

In Fig. 7 the colored dotted lines correspond to the prices of 

the energy purchased and sold to the utility grid (i.e., 
buy

t and

sell

t ), whilst the black dots represent the prices of prosumers 

when they sell energy to any other prosumer of the LEC. For the 

case of the centralized model, the prices correspond to the 

Lagrangian multiplier associated to (2). The comparison 

between Fig. 7a) and Fig. 5 shows that the prices are equal to 

buy

t  when the LEC, as a whole, imports energy from the utility 

grid and they are equal to sell

t  when the LEC sells energy to 

the utility grid. Analogous results are obtained by using the 

ADMM procedure shown in Fig. 7b). In this case the prices are 

the values given by (32) at the last iteration. 

 
Fig. 5. Comparison of the power flow at the connection with the utility grid 

(positive if consumed by the LEC) (solid line: centralized model, dashed line: 
ADMM model). 

 
Fig. 6. Comparison of the power flows from every prosumer when it sells to the 

others (excluding the utility grid) for scenario 1 (solid line: centralized model, 

dashed line: ADMM model). 

Table IV and Table V show the individual energy 

procurement costs of each prosumer for the centralized and the 

ADMM approaches, taking into account both the exchanges 

with the external grid and the internal exchanges and the prices 

of Fig. 7. Clearly, the effect of the internal exchanges on the total 

OF value given by (1) and (28) is compensated, i.e., the sum of 

the  individual costs of Table IV and Table V is equal to the 

corresponding OF values reported in Table III.   

Moreover, Table IV and Table V show the individual 

cost/revenue values obtained by assuming that each prosumer 

can only transact with the external energy provider, preventing 
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exchanges with other prosumers (i.e., 
buy ,

t

i jP and 
,

t

sell j iP are tied 

to zero). The comparison of these results with those obtained by 

both the centralized and the ADMM procedures shows that each 

single prosumer has a lower cost or an improved revenue inside 

the LEC with respect to the case in which it exchanges only 

with the external provider. As expected, also the total 

procurement energy cost of the LEC is reduced (of about 11%) 

with respect to the total cost of the same set of prosumers when 

they operate without mutual exchanges. 

a)  

b)  
Fig. 7. Energy prices of the selling prosumers for scenario 1: a) centralized 

model, b) last iteration of the ADMM procedure. 

TABLE IV – ENERGY PROCUREMENT COST IN € (NEGATIVE VALUES INDICATE 

REVENUES) FOR EACH PROSUMER IN FEEDER 1 WITHOUT BES UNITS 

prosumer 1 2 3 4 5 

Centralized  6.81 0.87 2.09 -0.43 0.23 

Centralized-η 6.82 0.87 2.09 -0.43 0.22 

ADMM 6.83 0.89 2.08 -0.44 0.19 

without internal 

exchanges 
7.36 1.03 2.16 -0.20 0.37 

TABLE V – ENERGY PROCUREMENT COST IN € (NEGATIVE VALUES INDICATE 

REVENUES) FOR EACH PROSUMER IN FEEDER 2 WITHOUT BES UNITS 

prosumer 6 7 8 9 10 

Centralized  0.08 15.90 2.17 0.10 -0.65 

Centralized-η 0.08 15.90 2.17 0.10 -0.65 

ADMM 0.08 15.95 2.17 0.09 -0.66 

without internal 

exchanges 
0.16 17.45 2.40 0.18 -0.22 

B. Scenario 2: prosumers with batteries 

Table VI compares the OF values for both stages and the 

total network losses in the 24 hours obtained by including the 

BES units in the models. The distributed model solution time is 

around 300 s / 46 iterations for stage 1 and 180 s / 82 iterations 

for stage 2. The solution of the centralized model needs around 

10 s for stage 1 and around 8 s for stage 2. 

TABLE VI - COMPARISON BETWEEN CENTRALIZED MODEL AND ADMM 

SCENARIO 2 

  
OF (€) Losses (kWh) 

stage 1 stage 2 stage 2 

Centralized 18.06 18.35 3.41 

Centralized-η 18.06 18.36 3.35 

ADMM 18.12 18.39 3.44 

The convergence performance of the ADMM procedure is 

illustrated in Fig. 8. 

 
Fig. 8. ADMM convergence in stage 1 for scenario 2: average value R of primal 

residuals at each iteration, augmented OF, OF value corresponding to the 

exchanges with the utility grid. 

The total power flow at the connection of the LEC with the 

utility grid and the power profiles from each prosumer when it 

sells to the others are compared in Fig. 9 and Fig. 10, 

respectively.  

 
Fig. 9. Comparison of the power flow exchanged with the utility grid (positive 
if consumed by the LEC) for scenario 2 (solid line: centralized model, dashed 

line: ADMM model). 

Fig. 11 compares the profiles of the total energy contained 

in the BES units of the LEC, whilst Fig. 12 provides the detail 

of the SoE profiles of each BES unit.  
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Fig. 10. Comparison of the power flow from every prosumer when it sells to 

the others (excluding the utility grid) for scenario 2 (solid line: centralized 

model, dashed line: ADMM model). 

 
Fig. 11. Comparison of the total energy in the batteries of the LEC obtained 

by the centralized and the ADMM approach. 

TABLE VII – ENERGY PROCUREMENT COST IN € (NEGATIVE VALUES INDICATE 

REVENUES) FOR EACH PROSUMER IN FEEDER 1 WITH BES UNITS 

prosumer 1 2 3 4 5 

Centralized 5.25 0.08 0.97 -0.96 -0.62 

Centralized-η 5.25 0.09 0.98 -0.97 -0.63 

ADMM 5.26 0.10 0.99 -0.96 -0.61 

without internal 

exchanges 
5.47 0.29 1.12 -0.79 -0.43 

TABLE VIII – ENERGY PROCUREMENT COST IN € (NEGATIVE VALUES 

INDICATE REVENUES) FOR EACH PROSUMER IN FEEDER 2 WITH BES UNITS 

prosumer 6 7 8 9 10 

Centralized -0.21 14.85 1.67 -0.45 -2.25 

Centralized-η -0.21 14.86 1.66 -0.45 -2.23 

ADMM -0.20 14.85 1.66 -0.44 -2.24 

without internal 

exchanges 
-0.14 16.47 1.74 -0.29 -1.63 

Fig. 13 shows the energy prices t

i  of each prosumer i. As in 

Fig. 7 the colored dotted lines correspond to the prices of the 

energy bought from and sold to the utility grid (i.e., 
buy

t and sell

t

), while the black dots represent the transaction prices of the 

various prosumers when they sell energy to any other prosumer 

of the LEC. The comparison between Fig. 13 and Fig. 9 shows 

that the prices of the internal transactions are not equal to
buy

t

or sell

t only during the time interval (starting just after 6 am) 

when there is no power exchange with the utility grid. 

 
Fig. 12. Battery SoE for each prosumer for scenario 2 (solid line: centralized 

model, dashed line: ADMM model). 

a)  

b)  
Fig. 13. Energy prices of selling prosumers for scenario 2: a) centralized model, 

b) last iteration of the ADMM procedure. 

Table VII and Table VIII compares the individual energy 

procurement costs of each prosumers, taking into account both 
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the exchanges with the external grid and the internal exchanges 

and the prices of Fig. 13. Additionally, the tables show the 

corresponding values obtained by preventing the transactions 

between prosumers. 

Despite the differences in the individual profiles shown in 

Fig. 10 and  Fig. 12, the comparison presented in Table VII and 

Table VIII shows a reasonable match between the results given 

by the centralized and distributed approaches. The total energy 

procurement cost of the LEC is around 16% less than the 

corresponding cost without internal transaction among the 

prosumers. 

V. CONCLUSIONS 

The proposed ADMM-based distributed optimization 

procedure for the day-ahead scheduling of a local energy 

community with generation, loads and battery storage systems 

incorporates the calculation of the losses and their allocation to 

each transaction.  

A centralized approach implies that the prosumers 

communicate all the details of the equipment features as well as 

the load and production forecasts. The distributed procedure 

reduces the amount of shared information: in fact, the only 

information that every prosumer must communicate is the 

profile of the exchanges with the external grid and with the 

other prosumers for updating the multipliers at each iteration 

and for the evaluation of the transaction efficiencies.  

The results obtained by using the distributed procedure have 

been compared with those of the centralized approach based on 

a mixed integer linear programming model. Both centralized 

and distributed procedures give comparable results with an 

acceptable computation effort. The values of the objective 

function, the profiles of the power flow at the connection with 

the utility grid and the profiles of the total energy stored in the 

batteries match.  

The structure of the day-ahead scheduling procedures is 

consistent with the billing scheme and the meters of the LEC. 

Despite the different methods used to calculate the prices of the 

internal transactions in the centralized model and in the 

distributed procedure, the price profiles obtained by using the 

two approaches are similar for both the considered scenarios, 

i.e., with and without the presence of BES units. 

The results confirm that, in the considered LEC framework, 

each prosumer achieves a reduction in costs or increases 

revenues by participating in the LEC compared to the case in 

which it can only transact with an external energy provider.  
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