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Lossy Compression of Noisy Sparse Sources Based

on Syndrome Encoding
Ahmed Elzanaty, Member, IEEE, Andrea Giorgetti, Senior Member, IEEE, and Marco Chiani, Fellow, IEEE

Abstract—Data originating from devices and sensors in Inter-
net of Things scenarios can often be modeled as sparse signals.
In this paper, we provide new source compression schemes for
noisy sparse and non-strictly sparse sources, based on channel
coding theory. Specifically, nonlinear excision filtering by means
of model order selection or thresholding is first used to detect
the support of the non-zero elements of sparse vectors in noise.
Then, the sparse sources are quantized and compressed using
syndrome based encoders. The theoretical performance of the
schemes is provided, accounting for the uncertainty in the support
estimation. In particular, we derive the operational distortion-
rate and operational distortion-energy of the encoders for noisy

Bernoulli-uniform and Bernoulli-Gaussian sparse sources. It is
found that the performance of the proposed encoders approaches
the information-theoretic bounds for sources with low sparsity
order. As a case study, the proposed encoders are used to
compress signals gathered from a real wireless sensor network
for environmental monitoring.

Index Terms—Internet of Things, source coding, sparse and
compressible sources, error correcting codes, syndrome encoding,
compressed sensing, rate-distortion.

I. INTRODUCTION

The classic problem of designing efficient lossy com-

pression schemes for sources is gaining increasing interest,

supported by the tremendous increase of data generated by

the Internet of Things (IoT) [1], [2]. The data size can be

significantly decreased by exploiting some of their structures.

One of these structures is the sparsity/compressibility, i.e., the

ability to describe/approximate signals with a fewer number

of coefficients compared to their dimension in some domains,

e.g., time, frequency, discrete cosine transform (DCT), and

Wavelet. Most of the signals of interest such as image,

audio, video, and IoT data are compressible [3]–[6]. The key

objectives regarding the compression of sparse sources in IoT

scenarios are the design of energy-efficient source encoders

with low computational complexity, and their performance

analysis in terms of operational distortion-rate (ODR) and

operational distortion-energy (ODE) in the presence of noise

[2], [5]–[8].
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To illustrate the problem, let us start by considering a simple

model for strictly sparse signals in noise-free environments,

where a signal x ∈ R
N is emitted by a discrete-time

continuous-valued source such that only k0 elements of x are

non-zero, i.e., x is a sparse vector with sparsity order k0.

The locations of the non-zero elements are chosen uniformly

at random among all the
(
N
k0

)
subsets of {1, 2, · · · , N} with

cardinality k0. The target is to encode x at the minimum

rate which still guarantees a predefined distortion. The first

intuitive approach, which we name address coding (AC), is

to quantize separately the k0 non-zero components using a

uniform scalar quantizer with b bits/sample, then encode each

of their locations (addresses) with a fixed number of bits

⌈log2 N⌉. The total number of required bits per sample (i.e.,

the rate) is calculated as rAC =
(
k0 ⌈log2 N⌉+ k0 b

)
/N . This

approach is simple, and it requires the transmission of both

the values and addresses separately. However, there are more

efficient ways to encode the signal support. One is to assign

a binary codeword to each possible support configuration

using a Huffman code. Nevertheless, this would require all

codewords to be stored along with their associated support

in a look-up table with
(
N
k0

)
rows. This approach becomes

impractical with increasing complexity for values of N and

k0 of interest, because the number of possible configurations(
N
k0

)
is exponentially large in N .

Another method is based on compressed sensing (CS),

where M < N linear real-valued observations are collected

from x, i.e., y = Ax, through an M×N measurement matrix

A [9], [10]. Then, in order to transmit the information with

a finite rate, a quantization for the measurement vector y is

needed, introducing a distortion [6]. One important advantage

of CS is that the knowledge about the domain at which the

signal is sparse is required only at the decoder side and not

at the encoder. Moreover, CS has been proved to be stable

with respect to non-strictly sparse (compressible) signals, and

robust to noise [9]–[13]. On the other hand, the number of

required measurements for sparse recovery is still considerably

higher than the signal sparsity, e.g., M ≥ 2 k0 log(eN/k0) is

a sufficient condition for perfect recovery of a k0-sparse vector

from y with high probability [14, (9.24)]. Also, it is not easy

to implement multiplication in the analog domain between

the random measurement matrix and the signal, except for

Rademacher and Bernoulli matrices [15], [16].

The research directions regarding the compression of sparse

sources can be divided into three main categories as follows.

1) Information distortion-rate (IDR) of sparse sources:

Several works address the problem of deriving information

theoretic bounds in terms of the IDR for directly observed
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sparse sources, i.e., when x is known at the source encoder.

In particular, upper and lower bounds on the IDR for a class

of sparse signals (i.e., Bernoulli-Gaussian (BG) sources) are

provided in [5], [17], [18]. These bounds are asymptotically

tight in the high-rate low-distortion region. Nevertheless, ex-

pressing the IDR of BG sources in closed-form is still an open

problem.

2) Remote IDR of sparse sources: The remote source

coding problem appears when the encoder does not have direct

access to the source [19], [20]. This is the case when the

encoder observes a noisy source, or when linear measurements

of the signal are available as in CS. Lower and upper bounds

on the remote IDR for noisy continuous distributed (not-

sparse) sources were given in [21]. A lower bound on the

remote IDR for CS has been derived in [22], assuming that

both the encoder and decoder have the signal support as a

side information. A numerical approximation and single letter

formulas of the remote IDR for CS have been given in [22]–

[24].

3) Practical encoders of sparse sources: In order to design

source coding schemes with ODR close to the IDR, long

sequences of the signal should be discretized using vector

quantization methods with jointly-optimized quantization re-

gions and codebooks. This process is usually computationally

heavy, introducing significant complexity, power consumption,

and latency, which may not fit many IoT applications. Instead,

a simpler scheme for source encoders involves a scalar uniform

quantizer followed by an efficient lossless encoder [25, Section

5.8]. In this regard, the ODR of scalar quantizers has been

analyzed for non-sparse sources with uniform, generalized

Gaussian, and exponential distributions [26]–[29]. For sparse

generalized BG sources, an approximation for the optimal

ODR of uniform quantizers without considering the saturation

effect was provided in [30], while asymptotic formulas have

been given in [31].

Source encoders based on channel coding theory have been

utilized for the compression of discrete non-sparse sources.

Specifically, syndrome based encoders for binary sources

using block and polar channel codes have been proposed in

[32] and [33], respectively. In [34], a lossy source encoder

for discrete memoryless sources was proposed based on a

nonlinear channel code constructed from a sparse graph. In

a quite different context, syndrome encoding has been used

to approach the Slepian-Wolf/Wyner-Ziv bounds with loss-

less/lossy distributed source coding, assuming side information

at the receiver [35]–[37]. For example, a compression scheme

for continuous sources considering that the decoder has side

information, i.e., a noisy version of the source, is proposed

in [38]. Several works have discussed designing codes for

similar problems, e.g., multi-terminal source coding [39]–

[42], successive refinement source compression [43], and joint

source channel coding [44], [45].

Regarding CS, the ODR with scalar uniform quantization

was analyzed in the high rate region in [46], considering that

the support is known at the decoder and that the measurements

are noise-free. The ODR of a CS based encoder for wireless

sensor network (WSN) has been numerically investigated in

[47], while prototypes for the encoder have been designed in

[15]. Quantized CS based encoders and recovery algorithms

have been investigated in several works, e.g., [48]–[52]. The

connection between CS and syndrome channel coding over

real fields has been discussed in [53]–[55].

In this paper, we provide two practical approaches for source

compression of noisy sparse sources. Our contribution can be

summarized as follows:

• We provide two alternatives for nonlinear excision fil-

tering to estimate the signal support at the encoder, i.e.,

a blind estimator based on model order selection theory

and a thresholding estimator. After support estimation,

the signal is denoised and quantized.

• We propose novel schemes for the lossless compression

of this quantized sparse signal. The basic idea is to

consider a sparse signal as an error vector summed to

an all-zeros codeword, for a chosen error correcting code

(e.g., RS). The compressed version of the sparse vector,

computed at the encoder, is here the associated syndrome.

From the syndrome, the decoder can reconstruct the

sparse signal as the smallest weight (sparsest) error vector

compatible with the syndrome.

• We provide the end-to-end performance analysis of the

proposed schemes in terms of the ODR, for noisy

Bernoulli-uniform and Bernoulli-Gaussian sources. In

particular, closed-form expression for the ODR is derived

accounting for finite rates, additive noise, quantization

error, and imperfect support estimation.

• We derive operational distortion-energy design curves,

considering a typical power profile for an implementation

of the proposed encoders.

• As a case study, we address the compression of sig-

nals gathered from a real WSN, deployed to monitor

landslides. When compared to a CS based encoder, it is

found that syndrome based compression can increase the

network lifetime and the accuracy of the recovered data.

Throughout this paper, we denote the ℓ0 quasi-norm with

‖ · ‖0, the ℓ2 norm with ‖ · ‖, the Dirac-delta function with

δ(·), vectors with bold small letters, matrices with bold cap-

ital letters, the N -dimensional identity matrix with IN , the

Galois field of order q with Fq, the multivariate Gaussian

distribution having mean µ and covariance matrix C with

N (µ,C), the univariate Gaussian distribution having mean µ
and variance σ2 truncated between a and b and renormalized

with N (µ, σ2, a, b), the uniform distribution between a and b
with U(a, b), random variables (r.v.s) with calligraphic letters,

e.g., S, the probability density function (PDF) of S with

fS(s), random vectors with bold calligraphic letters, the error

function with erf(·), the complementary error function with

erfc(·), and the indicator function that equals one when the

condition A is satisfied and zero otherwise with 1{A}.

II. MIXED DISTRIBUTED SPARSE SOURCES

Let us consider a memoryless sparse source that emits

independent, identically distributed (i.i.d.) symbols arranged

into a vector S ∈ R
N . Each source symbol S is generated as

a multiplication of two r.v.s, i.e., S = Z Y , where Z ∈ {0, 1}
is a Bernoulli r.v. with P{Z = 1} = p, while Y is drawn
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(a) RS based source encoder.
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(b) BCH based source encoder.

Fig. 1: The block diagrams of the proposed compression

schemes for noisy sparse sources.

Source + CS Analog Encoder Quantizer
s x y = Ax

w

Q(y)

Fig. 2: The block diagram of the CS based source encoder [6],

[15].

from some continuous distribution fY(y).1 The corresponding

PDF of the mixed distributed source is given by fS(s) =
p fY(s) + (1 − p)δ(s). This model is referred as Bernoulli-

Gaussian (BG) and Bernoulli-uniform (BU), considering the

continuous distribution as Gaussian and uniform, respectively.

The acquisition device may add noise to the input signal,

thus the acquired noisy vector can be represented as

X = S +W (1)

where W ∼ N (0, σ2
n IN ) represents the additive noise. This

model fits also the case of compressible sources, as the vector

W can account for the negligible components [5]. Moreover,

it is usually adopted within the framework of sparse repre-

sentation for images, sounds, medical data, and sensor signals

in appropriate transform domains [5], [56], [57], facilitating

the design and analysis of several statistical signal processing

algorithms for various applications, e.g., the compression and

denoising of images, videos, and speech signals [58]–[60].

III. COMPRESSION SCHEMES BASED ON SYNDROME

ENCODING

In this section, we describe two novel schemes for efficient

lossy compression of sparse sources, shown in Fig. 1, which

will be compared to CS (Fig. 2). Let us consider a random

realization of the noiseless source, s, with k0 non-zero el-

ements. At first, the locations of the non-zero elements is

estimated from x. Then, the data is compressed by calculating

the syndromes using the parity-check matrix of a RS or BCH

code.

In the following, we will separately illustrate each part of

the proposed scheme.

1Note that p represents the average sparsity ratio of the source.

A. Support Detection and Signal Denoising

We propose two methods that can be used for support esti-

mation. In particular, the first approach exploits model order

selection based on generalized information criterion (GIC),

while the second method relies on an excision thresholding

filter. The GIC does not require the knowledge of the statistical

distribution of the source nor the noise power (i.e., it is

universal), and its theoretical performance analysis is quite

involved [61]. On the contrary, the excision filter needs the

statistical distributions of the source and the noise to be known;

however, the design and analysis of this filter is easier. In the

following these techniques are discussed in detail.

1) Support Detection by Model Order Selection: A novel

estimator is derived for the number and locations of the non-

zero elements in the noisy sparse signal, based on model

order selection theory [61]–[64]. A powerful solution to model

estimation is based on information-theoretic criterion, where

the model order is determined by minimizing a penalized

likelihood [62], [65]. In particular, we consider the GIC

because of its versatility in controlling the estimation accuracy

[61], [62], [64].

Given a realization of the sparse signal, s, considered

unknown, let us define a family of models to fit the measured

data, with the kth model representing the case where the vector

s has k non-zero elements, with locations identified by the set

π = {π1, π2, · · · , πk}.2 The positions of the zero elements are

thus given by the complement set πc , {1, 2, · · · , N} \ π.

The PDF of the vector X can be expressed as

f(x;Θ(k)) =
(
2πσ2

n

)−N/2
e
−

∑
i∈π

(xi−si)
2+

∑
i∈π

c x2
i

2σ2
n (2)

where Θ
(k) , (σ2

n , sπ,π) is the vector of the 2k+1 unknown

parameters, and sπ , {sπ1 , sπ2 , · · · , sπk
}. A common solu-

tion for the estimation of the parameters is by maximizing the

likelihood function as Θ̂
(k) = argmaxΘ(k) log f(x;Θ(k)).

However, a direct likelihood maximization would yield biased

and inconsistent estimator for the noise variance, because of

the incidental parameter problem [66], [67]. More precisely,

the likelihood function depends on two types of parameters:

the incidental (nuisance) parameters sπ that appear only in k
samples; and the structural parameters σ2

n and π, common to

all samples. Hence, the observations are partially consistent,

leading to inconsistent estimation of the common parameters

[66], [67]. In order to find consistent estimators for the

parameters, following the procedure indicated in [66], we

factorize the PDF in (2) as

f(x;Θ(k)) =
(
2πσ2

n

) k−N
2 exp

(
−
∑

i∈π
c x2

i

2σ2
n

)

︸ ︷︷ ︸
f1(x|xπ;σ2

n ;π
c)

×
(
2πσ2

n

)−k/2
exp

(
−
∑

i∈π
(xi − si)

2

2σ2
n

)

︸ ︷︷ ︸
f2(xπ;Θ(k))

(3)

2To keep light the notation we will avoid to explicitly write the dependence
of this and the following sets on k.
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where the distribution of the observations conditional on xπ

does not depend on the incidental parameters. Thus, the loca-

tions of the zero elements and the variance can be estimated for

the kth model by maximizing the partial likelihood function

[66] (
σ̂2, π̂c

)
= arg max

σ2
n ,π

c
f1
(
x|xπ;σ

2
n ;π

c
)
. (4)

From (3), we see that the maximum in (4) is obtained for the

locations π̂c corresponding to the N − k elements in x with

the smallest square values, and for σ̂2 = 1
N−k

∑
i∈π̂

c x2
i . The

values of the non-zero elements are estimated by maximizing

f2
(
xπ;Θ

(k)
)
, resulting in ŝπ = x

π̂
, where π̂, which is the

complement of the set π̂c, contains the positions of the k
samples with the largest modulus. In other words, the estimate

of the support in the kth model implies that the smallest (in

module) N − k samples are due to noise only.

Therefore, the log-likelihood function of the kth model can

be written from (2) by substituting the parameters with their

estimates as

log f
(
x; Θ̂(k)

)
= −N

2
log

(
2π

N − k

N∑

i=k+1

x2
[i]

)
− N − k

2

where x[1], x[2], . . . , x[N ] are the signal samples sorted accord-

ing to their absolute values, i.e., |x[1]| ≥ |x[2]| . . . ≥ |x[N ]|.
Finally, the estimated sparsity order can be found by the GIC

[62, (75)] as

k̂0 = argmin
k∈[0,kmax]

{
N log

(
N∑

i=k+1

x2
[i]

)

−N log(N − k) + k (2 ν − 1)}

where kmax < N is the maximum sparsity order, ν is the

GIC penalty factor, and all terms that do not depend on k are

omitted. Once we have k̂0, the estimated support is then the

position of the k̂0 largest (in modulus) samples. Indicating this

set as π̂(k̂0), the corresponding filtered sparse signal is

x∗
i =

{
xi, i ∈ π̂(k̂0)
0, otherwise.

(5)

We will show in Section VII that this blind estimator performs

well for high signal-to-noise ratio (SNR). As for most algo-

rithms based on model selection, its theoretical performance

analysis is quite complex, and the parameter ν can be opti-

mized numerically, as investigated in Section VII.

2) Support Detection using Excision Filter: Here we

present an alternative method for support recovery, useful

when the distributions of S and W along with their parameters

are known a-priori. To this aim, the support detection problem

of the embedded signal in noise is reformulated as a hypothesis

testing problem. At first, the detector goal is to discriminate,

for each noisy source sample x, between two hypothesis:

H0 : x = w and H1 : x = y + w.3 The PDFs of the noisy

source, X , given the hypothesis H1 and H0 are fX|H1
(x|H1)

and fX|H0
(x|H0), respectively.

3Since the source is i.i.d., the subscript i is dropped here.

Regarding BG sources with Y ∼ N (0, σ2
s ), the log-

likelihood ratio test can be written as

log Λ(x) = log

(
σn

σx

)
+ x2 σ2

x − σ2
n

2 σ2
x σ

2
n

D1

≷
D0

λ

with σx ,
√
σ2

n + σ2
s , leading to

x2
D1

≷
D0

η (6)

where the threshold η is chosen to minimize the ODR, as will

be illustrated later. Therefore, the support estimation turns into

an energy detection problem to declare the presence/absence

of the non-zero elements. Then, as illustrated before, the

encoder nulls out the samples declared as D0 to obtain the

denoised signal x∗. The two important metrics that determine

the performance of such detector are the probability of miss-

detection, PMD, and the probability of false-alarm, PFA, given

by

PMD(η) = P
{
X 2 < η| H1

}
= erf

(√
η

2σ2
x

)
(7)

PFA(η) = P
{
X 2 ≥ η| H0

}
= erfc

(√
η

2σ2
n

)
. (8)

For BU sources with Y ∼ U(−A,A), we have

fX|H1
(x|H1)=

[
erf

(
A− x√
2σn

)
+ erf

(
A+ x√
2σn

)]
/4A,

leading to the log-likelihood ratio test

log Λ(x) = log

√
2π

4A
σn +

x2

2σ2
n

+ log

[
erf

(
A− x√
2σn

)
+ erf

(
A+ x√
2σn

)] D1

≷
D0

η . (9)

This test metric can be approximated using the Taylor series

expansion around x = 0 as

log Λ(x) ≃ log

[
σn√
2A

erf

(
A√
2σn

)]

+ x2


 1

2σ2
n

− Ae
− A2

2σ2
n

√
2πσn

3 erf
(

A√
2σn

)




which is equivalent to the energy detection in (6) with the same

false-alarm (8). The probability of miss-detection is given as

PMD(η) = 2

∫ √
η

0

fX|H1
(x|H1)dx =

σn√
2πA

e
− (A+

√
η)2

2σ2
n

×
(
1− e

2A
√

η

σ2
n

)
+

1

2A

[(√
η −A

)
erf

(
A−√

η√
2σn

)

+
(
A+

√
η
)

erf

(
A+

√
η√

2σn

)]
. (10)

B. Scalar Uniform Quantizer

Due to the large number of zero elements in x∗, we consider

a scalar mid-tread uniform quantizer, whose zero-valued level

prevents the introduction of additional quantization noise out

of the signal support [68]. This quantizer maps each element
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x∗
i of x∗ to an integer from a discrete set, Q : R →

{0, 1, · · · , 2b−2}, where b is the quantization depth indicating

the number of bits per sample, and the step size between levels

is

∆ =
2A

2b − 1
. (11)

Note that the number of levels, 2b − 1, is odd in mid-

tread uniform quantizers and [−A,A] is the supported range

beyond which the output is saturated.4 Considering q , 2b,
the vector of the quantized signal is g , Q(x∗) =
(Q(x∗

1), Q(x∗
2), · · · , Q(x∗

N )) ∈ F
N
q .

C. Syndrome Based Source Encoder

We propose two source encoders for the quantized sparse

signal g, based on the syndromes of RS (Fig. 1a) and BCH

(Fig. 1b) codes.

Let us first consider the dual channel coding problem where

the transmitter sends a codeword, c ∈ F
N
q , from the k0-

error-correcting RS code. If the channel changes k0 symbols,

then the received vector can be represented as r = c + g,

where g ∈ F
N
q is the error vector with sparsity order k0 (i.e.,

‖g‖0 = k0), and the summation is in Fq. Since the number of

introduced errors is equal to the correcting capability of the

code, the receiver can estimate the error vector g from the

syndromes of the received signal, computed at the decoder.

Regarding our source coding problem, the main idea is to

interpret the sparse signal as an error vector summed to the

all-zeros codeword from a RS code. The quantized k0-sparse

source that is required to be encoded (i.e., g) is compressed

by calculating its syndrome vector at the encoder, through

the parity check matrix of the k0-error-correcting RS code.

Consequently, the decoder can perfectly reconstruct g from the

syndromes, because the sparsity order is equal to the correcting

capability of the code. In particular, g corresponds to the

smallest weight (sparsest) vector satisfying the syndromes.

More precisely, the syndrome (i.e., the compressed vector),

z ∈ F
2k̂0
q , is computed by the source encoder as z = gHT

where all the operations are performed in Fq, and

H =




1 α α2 · · · αN−1

1 α2 (α2)2 · · · (α2)N−1

...
...

...
...

...

1 α2k̂0 (α2k̂0 )2 · · · (α2k̂0)N−1




is the 2 k̂0×N parity-check matrix for the k̂0-error-correcting

RS code with k̂0 ≤ N/2, N = 2b−1, and b ≥ 3, while α is a

primitive element in Fq [69], [70]. The resulting rate required

for encoding the sparse vector using RS syndrome coding is

rRS = 2 b
k̂0
N

= 2 log2(N + 1)
k̂0
N

[bits/sample]. (12)

A further compression gain can be achieved by separately

sending the k̂0 quantized non-zero elements, then compressing

the binary vector which determines their locations using the

syndrome of a BCH code (Fig. 1b). In fact, since for BCH

4For BU sources A is selected to match the support of Y , while it can be
chosen as a multiple of σs for BG [68].

code the number of parity check bits m(N, k̂0) satisfies m ≤
k̂0 log2(N + 1) [71, Section 6.1], the required rate is

rBCH =
1

N

(
m+ k̂0 b

)

≤ k̂0
N

log2(N + 1) + b
k̂0
N

[bits/sample] (13)

where m is calculated from the design table of the BCH code,

for a given sparsity order (i.e., error correcting capability) and

dimension [71, Appendix C]. Note that the right hand side

of (13) is equal to rRS for N = 2b − 1. Clearly, from (12)

and (13) the rate of this scheme is upper-bounded by the RS

based approach, but the non-zero values and the syndrome

vector should be transmitted separately.

For the RS decoder, the sparse vector g can be recovered

at the receiver from the syndrome vector z using Berlekamp’s

iterative algorithm [72]. Due to the minimum distance proper-

ties of the RS code and the maximum sparsity order of g, the

vector of the quantization numbers g is exactly recovered. Fi-

nally, the mapper Q−1 : {0, 1, · · · , 2b−2} → {i∆}2b−1−1
i=−2b−1+1

reconstructs the quantized signal from its indexes, and the

reconstructed signal is x̂ = Q−1(g). For the BCH decoder, the

binary location vector can be recovered using the Berlekamp’s

algorithm, and the non-zero entries are reconstructed from

the quantized vector. The complexity of the syndrome based

compression is low, as there are efficient devices for encoding

and decoding the signal [70], [71].

We finally note that our scheme works in general with any

channel code that allows to reconstruct the error pattern from

the error syndrome, and in this regard other codes (LDPC,

Polar, etc.) can also be used. The advantage in using RS

or BCH is that we know by design their error correction

capability, therefore the decoder can perfectly reconstruct the

sparse vector from the syndrome, as long as the sparsity order

is smaller than the maximum number of errors that the code

can correct.

In the following, the proposed schemes in Fig. 1a and

Fig. 1b will be referred to as RS based source coding (RSSC)

and BCH based source coding (BCHSC), respectively.

IV. OPERATIONAL DISTORTION-RATE WITH KNOWN

SUPPORT AT THE ENCODER

In order to derive the operational distortion-rate (ODR) of

the proposed schemes in Fig. 1, we start by assuming that the

signal support is known only at the encoder, while the decoder

does not have any side information. For example, in the high

SNR regime, the excision filter can provide reliable support

information with low probabilities of miss-detection and false-

alarm. This assumption is relaxed in Section V, where the

ODR with estimated support will be analyzed.

The ODR, D(R), is a function that maps the expected rate

R at which the system is working (i.e., the average number of

bits required to describe a single source sample) to the average

distortion [73]. More precisely, the distortion at the decoder

output is

D(R) = ES,W

{(
Ŝ(S,W , R)− S

)2}
=

∫ ∞

−∞
τ2 fT (τ) dτ

(14)
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where S, W , Ŝ, and T , Ŝ − S are r.v.s representing the

source output, additive noise, decoder output, and error due

to both the quantization and the noise, respectively. Hence,

finding the PDF of the error, fT (τ), is essential for deriving

the ODR. With perfect denoising outside the signal support,

the decoder output Ŝ can be obtained from (1) and (5) as

Ŝ = Q−1(Q (X ∗)) = Q−1(Q (ZY + ZW)) = S + T (15)

where X ∗ is the r.v. representing the filtered signal, Z is

the Bernoulli r.v. defined in Section II, W ∼ N (0, σ2
n ),

and Q−1 (Q (x)) accounts for the scalar mid-tread uniform

quantizer with bounded range described in Section III-B, i.e.,

Q−1 (Q (x))=





∆
2 −A, x < −A

i∆, (i− 1
2 )∆ ≤ x < (i+ 1

2 )∆

∀i ∈ I , {imin, imin+1, ..., imax}
A− ∆

2 , x ≥ A
(16)

where imax = −imin = 2b−1 − 1 = A/∆− 1/2.

The PDF of the error T can be written as

fT (τ) = p fT |Z(τ |1) + (1− p) δ(τ) (17)

where the error vanishes for Z = 0, as mid-tread quantizers

do not introduce distortion to the zero valued source symbol.

Hence, only the non-zero elements are subject to distortion.

Given that the source symbol is non-zero and conditioned on

the noise W = w, the function g(·) which maps the source Y
into the error T can be written from (15) and (16) as

g(y) =





∆/2−A− y, y < −w −A

i∆− y,
(
i− 1

2

)
∆−w ≤ y <

(
i+ 1

2

)
∆−w

A−∆/2− y, y ≥ A− w.

The PDF of the error fT |Z,W(τ |1, w) can be represented from

[74, (5-16)] as

fT |Z,W(τ |1, w) =
∑

j

fY(ỹj)

|g′(ỹj)|

where {ỹ1, ỹ2, · · · } indicate the solutions of g(y) = τ and

g′(ỹj) is the derivative of g(y) at ỹj . Considering that the

solutions depend on the value of τ and that |g′(ỹj)| = 1, then

fT |Z,W(τ |1, w) =
imax∑

i=imin

fY (i∆− τ) rect ((τ − w)/∆)

+ fY (∆/2−A− τ) u (τ − w −∆/2)

+ fY (A−∆/2− τ) u (w − τ −∆/2) (18)

where rect(x) = 1 for x ∈ [−1/2, 1/2] and zero otherwise,

and u(x) is the unit step function. Therefore, the PDF of the

error can be derived by averaging over W , i.e.,

fT |Z(τ |1) = EW
{
fT |Z,W(τ |1, w)

}
= φ(τ)

× fY (A−∆/2− τ) + Φ(τ)

imax∑

i=imin

fY (i∆− τ)

+ φ(−τ) fY (∆/2−A− τ) (19)

where

Φ(x) ,
1

2

[
erf

(
x+∆/2√

2 σn

)
− erf

(
x−∆/2√

2σn

)]

and

φ(x) ,
1

2

[
1− erf

(
x+∆/2√

2σn

)]
.

Altogether, (17)-(19) give the error density function for an

arbitrary distribution of the non-zero elements, fY(y), as

fT (τ) = (1− p) δ(τ) + p

[
φ(τ) fY (A−∆/2− τ)︸ ︷︷ ︸

fL(τ)

+

φ(−τ) fY

(
∆

2
−A− τ

)

︸ ︷︷ ︸
fU(τ)

+Φ(τ)

imax∑

i=imin

fY (i∆− τ)

︸ ︷︷ ︸
fM(τ)

]
(20)

where the functions fL(τ), fU(τ) are related to the lower and

upper saturation errors, and fM(τ) accounts for the error in

the middle levels. We now specialize (20) for two important

distributions of the source.

For BU sources, from the definitions of fL(τ) and fU(τ) in

(20) we have

fL(τ) =

{
1
2A φ(τ), −∆

2 ≤ τ < 2A− ∆
2

0, otherwise
(21)

fU(τ) =

{
1
2A φ(−τ), −2A+ ∆

2 ≤ τ < ∆
2

0, otherwise.
(22)

Regarding fM(τ), the first step is to compute the summation

as a function of τ . We define the number of non-zero terms

as N(τ) = {# i s.t. fY (i∆− τ) 6= 0} . After some manipu-

lation, it results that

N(τ) = min {⌊(A+ τ)/∆⌋ , A/∆− 1/2}
−max {⌈(τ −A)/∆⌉ , 1/2−A/∆}+ 1.

Therefore, the function fM(τ) can be written as

fM(τ) =
Φ(τ)

2A
·





⌊
τ
∆ + 1

2

⌋
+ 2A

∆ , −2A+ ∆
2 ≤ τ < −∆

2
2A
∆ , −∆

2 ≤ τ < ∆
2⌊

1
2 − τ

∆

⌋
+ 2A

∆ , ∆
2 ≤ τ < 2A− ∆

2

0, otherwise.
(23)

By substituting (21), (22), and (23) in (20), the PDF of the

error can be written as

fBU
T (τ) = (1− p)δ(τ) +

p

2A

×





1 + Φ(τ)
(
2A
∆ − 1

)
, |τ | < ∆

2

Φ(τ)
(⌊

1
2 − |τ |

∆

⌋
+ 2A

∆

)
+ φ(|τ |), ∆

2 ≤ |τ | < 2A−∆
2

0, otherwise

(24)

where φ(−τ) + φ(τ) = 1 − Φ(τ), and fBU
T (τ) is an even

function. The PDF (24) is a mixed distribution with a Dirac

delta function at zero with weight 1−p representing a perfect

recovery of the zero elements at the decoder.
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For BG sources, the PDF of noise plus quantization error,

fBG
T (τ), can be obtained, as before, by substituting the PDF

of the Gaussian distribution into (20). For this source, further

simplification of (20) seems quite involved.

After deriving the PDF of error, we now want to find the

ODR for BU and BG sources. First, the relation between the

distortion and the quantization step size, ∆, is analyzed. The

mean squared distortion from (14) is

DBU/BG(∆) =

∫ ∞

−∞
τ2 fBU/BG

T (τ) dτ. (25)

The exact distortion can be calculated by simple numerical

integration. For closed-form analysis, we report an approxi-

mation of the distortion for BU sources in Appendix A by

approximating the floor function in (24) as ⌊x⌋ ≃ x − 1/2
and calculating the integration (25). This approximation will

be used in the numerical results. A simpler but less accurate

expression valid in the low-distortion region, i.e., A ≫ σn and

∆ ≪ A or ∆ ≪ σs, is given by DBU/BG(∆) ≃
(

∆2

12 + σ2
n

)
p,

assuming the quantization error uniformly distributed and

independent from both the source and the additive noise [75].

In order to find the ODR, the distortion is expressed in terms

of the average rate. For RSSC, the expected rate is calculated

from (12) as

R = E [RRS] /N = 2 bE [K0] /N = 2 b p [bits/sample] (26)

where K0 is a binomial r.v. with mean pN representing the

number of non-zero elements. Similarly, the average rate for

BCHSC can be found from (13). Finally, the ODR can be

written from (11), (13), (25), and (26) as

DBU/BG
RS/BCH(R) = DBU/BG

(
2A

2b(R) − 1

)
(27)

where

b(R) = ⌊R/(2 p)⌋, and b(R) = ⌊(N R−m(N, pN)) /(N p)⌋

for RSSC and BCHSC.

As a benchmark for noiseless BU and BG sources, the

ODR of the uniform quantizer followed by the optimal entropy

encoder are derived in Appendix B.

V. OPERATIONAL DISTORTION-RATE WITH SUPPORT

ESTIMATION

In this section, the ODR of the proposed schemes for

BG and BU sources is analyzed when the signal support

is estimated by thresholding. The optimal threshold, η, that

minimizes the ODR is then derived. In fact, if the signal

support is not estimated perfectly, i.e., PMD > 0 and PFA > 0,

there are three causes of distortion:

1) over-estimation distortion when some noise samples are

not filtered (due to false-alarm);

2) under-estimation distortion when some signal samples are

filtered (due to miss-detection);

3) distortion due to noise and quantization error in the

correctly detected samples.

Taking into account these contributions, the overall distor-

tion for a given threshold η is

D(∆, η) =

1∑

i=0

1∑

j=0

PD|H {Dj |Hi}E
{(

S − Ŝ
)2 ∣∣∣Hi,Dj

}

× PH {Hi} = (1− p)PFA(η)E
{[

Q−1 (Q (W))
]2 ∣∣∣W2 ≥ η

}

+ p PMD(η)E
{
Y2
∣∣∣(Y +W)2 < η

}
+ p (1− PMD(η))

× E

{[
Q−1 (Q (Y +W))− Y

]2 ∣∣∣(Y +W)2 ≥ η
}

(28)

where (i = 0, j = 1), (i = 1, j = 0), and (i = 1, j = 1)
correspond to over-estimation distortion 1), under-estimation

distortion 2), and the distortion due to quantization and noise

error 3), respectively. Closed-form expressions for these quan-

tities are provided below.

Fo the over-estimation distortion, the encoder treats noise

samples as if they belong to the sparse signal. The probability

mass function of the quantized noise given that over-estimation

event occurred is

P
{
Q−1 (Q (W)) = i∆|W2 ≥ η

}
=

(
2 erfc

(√
η

2σ2
n

))−1

×





2 erfc

( √
η√
2σn

)
− 2 erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
,

for |i| = i∗min and η ≤∆2/4

erfc

( √
η√
2σn

)
− erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
,

for |i| = i∗min and ∆2/4< η <(A−∆)2

erfc

(
∆
(
|i| − 1

2

)
√
2σn

)
− erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
,

for i∗min+1 ≤ |i| < imax

erfc

(
max{A−∆,

√
η}√

2σn

)
, for |i| = imax

where i∗min ,
⌈√

η/∆− 1/2
⌉
, for each integer i such that

min {i∗min, imax} ≤ |i| ≤ imax. The over-estimation distortion

can be given now for BG and BU sources as

E

{[
Q−1 (Q (W))

]2 |W2 ≥ η
}
=

imax∑

i=min{i∗min,imax}
(i∆)2

× 2P
{
Q−1 (Q (W)) = i∆|W2 ≥ η

}
. (29)

In the low distortion region, i.e., b ≥ 6 bits/sample, A ≫
σn, and η < (A − ∆)2, equation (29) can be approxi-

mated in closed-form considering a continuous un-quantized

noise model. In fact, the distribution of |W̃|, where W̃ ,{
W|W2≥η

}
, follows that of a truncated Gaussian, i.e.,
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|W̃|∼N (0, σ2
n ,
√
η,∞); hence

E

{[
Q−1 (Q (W))

]2 ∣∣W2 ≥ η
}
≃ E

{
W̃2
}

= σ2
n + σne

− η

2σ2
n

√
2η

π

1

erfc

(√
η

2σ2
n

) .

For the under-estimation distortion, we have

E
{
Y2|(Y+W)2 <η

}
=

E
{
Y2 · 1{(y+w)2<η}

}

P
{
(Y +W)2 < η

}

=
1

PMD(η)

∫∫

S

y2fY(y)fW(w) dy dw (30)

where S ,
{
(y, w) ∈ R

2 such that (y + w)2 < η
}

. Clearly,

(30) depends on the distribution of the source. Regarding BU,

we have

E
{
Y2|(Y +W)2 < η

}
=

1

6APMD(η)

(√
2

π
σne

− (A+
√

η)2

2σ2
n

×
[
−e

2A
√

η

σ2
n

(
A2 +A

√
η + η + 2σ2

n

)
+A2−A

√
η+η+2σ2

n

]

+ erf

(
A−√

η√
2σn

)[√
η
(
η + 3 σ2

n

)
−A3

]
+ erf

(
A+

√
η√

2σn

)

×
[
A3 +

√
η
(
η + 3 σ2

n

) ]
)

(31)

where PMD(η) is given by (10). For BG, from (7) and (30) we

have

E
{
Y2|(Y +W)2 < η

}
= EW

{
1

2
σ2

s

[
erf

(√
λ+ w√
2σs

)

−erf

(
w −

√
λ√

2σs

)]
+

√
2

π
σse

−λ+w2

2σ2
s

[
w sinh

(√
λw

σ2
s

)
−
√
λ

× cosh

(√
λw

σ2
s

)]}
= σ2

s − σ4
s

σ3
x

√
2λ

π

e
− λ

2σ2
x

erf
(√

λ
2σ2

x

) . (32)

The distortion due to the noise and quantization for the

correctly detected samples can be approximated from (25)

when P
{
(Y +W)2 ≥ η

}
, 1− PMD(η) ≃ 1 as

E

{[
Q−1 (Q (Y +W))− Y

]2 ∣∣∣(Y +W)2 ≥ η
}
=

E

{[
Q−1 (Q (Y +W))− Y

]2 · 1{(y+w)2≥η}
}

P
{
(Y +W)2 ≥ η

}

≃ E

{[
Q−1 (Q (Y +W))− Y

]2}
= DBG/BU(∆)/p. (33)

The probability of miss-detection in (7) and (10) can be small

for high SNR, with the proper design of η, leading to an

increased accuracy for the approximation (33).

Finally, the distortion is approximated by substituting (29),

(33), and (31) or (32) into (28).

The expected rate for RSSC considering the imperfect

support estimation is

RRS(b, η) =
2 b

N
E

{
K̂0

}
(34)

where K̂0 is a r.v. representing the number of non-zero

elements at the excision filter output with

E

{
K̂0

}
= N p [1− PMD(η)] +N (1− p)PFA(η).

Similarly, the average rate for BCH can be derived as

RBCH(b, η) = E

{
b K̂0 +m(N, K̂0)

}
/N.

The corresponding ODR, accounting for imperfect support

recovery using thresholding, can be approximated accurately

from (28), (29), (33), (31), (32), and (34) as

DRS/BCH(R, η) = D

(
2A

2b(R) − 1
, η

)
(35)

where

b(R) =

⌊
R

2 p [1− PMD(η)] + 2 (1− p)PFA(η)

⌋

and

b(R) =


NR−m

(
N, E

{
K̂0

})

E

{
K̂0

}



for RSSC and BCHSC, respectively.

The threshold η is crucial for the encoder performance,

because as η increases the rate decreases, but at the same

time the distortion could increase due to missing significant

samples. Therefore, the optimal values of η and b such that

the distortion is minimized for a fixed rate R can be calculated

from (35) as

(
η̂, b̂
)
= argmin

η∈R+, b∈N+

D

(
2A

2b − 1
, η

)

subject to RRS/BCH(b, η) = R . (36)

Note that finding the optimal threshold requires simple numer-

ical optimization.

VI. OPERATIONAL DISTORTION-ENERGY PERFORMANCE

The ODR is not always sufficient to fully compare various

encoders, exhibiting different computational complexity and

power consumption, e.g., the proposed solution and the CS

scheme in Fig. 2. In fact, for many IoT applications the energy

spent during acquisition, compression, and transmission is a

critical aspect, and the operational distortion-energy (ODE)

represents another key performance indicator [76], [77].

Let us start with a typical power model similar to that in

[78] and [79, Section IV], where the total energy consumption

in the sensor node can be calculated as a sum of the compu-

tational and communication energy Et = Ecomp + Ecomm. The

computational energy Ecomp = Eacq + Esp + Ebck accounts

for the acquisition, signal processing, and background energy,

while the communication energy Ecomm = Etx+Erx represents

the consumption during transmission and reception.

For the proposed BCHSC, the signal is first sparsified: for a

concrete example we assume that the DCT is used.5 Then, it is

compressed using the encoder in Fig. 1b. The energy spent in

the acquisition is given by Eacq = NpacqTins, where pacq is the

5Real signals from WSNs may not be sparse in time, but rather in other
domains such as DCT.
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power spent for acquisition and Tins is the instruction execution

time. The energy consumed for signal processing due to vector

reading, DCT [80], support detection by thresholding, and

syndrome calculation is

Esp =

Reading︷︸︸︷
Nǫrd +

Thresholding︷ ︸︸ ︷
N(ǫcmp + ǫwr)+

DCT︷ ︸︸ ︷(
N log2(N)− 3N

2
+4

)
ǫmul+

(
3N

2
[log2(N)−1]+2

)
ǫadd+

Syndrome Calculation︷ ︸︸ ︷
m
(
N, E

{
K̂0

})[
ǫadd

(
E

{
K̂0

}
−1
)
+E

{
K̂0

}
ǫmul+ǫwr

]

(37)

with energy per instruction consumed during reading, addition,

multiplication, comparing, and writing denoted by ǫrd, ǫadd,

ǫmul, ǫcmp, and ǫwr, respectively. Similarly to [79, (6)], the

background power consumption can be calculated as

Ebck = pbck Tins

×

no︷ ︸︸ ︷[
2.5N log2(N) + 2E

{
K̂0

}
m
(
N, E

{
K̂0

})
+ 6
]

(38)

where pbck is the background power consumption, and no is

the number of operations performed. The energy consumed

during transmission can be found as

Ecomm(b) = E

{
b K̂0 +m(N, K̂0)

} [
(1 + hoh)Etx + hackErx

]

(39)

where hoh and hack represent the percentage of overhead and

acknowledgment with respect to the payload length. Then, the

overall consumed energy from (37), (38), and (39) is

EBCH(b) = Eacq + Esp + Ebck + Ecomm(b). (40)

Now, the ODE for the syndrome encoding is derived from (28)

and (40) as

DBCH(E) = D

(
2A

2b(E) − 1
, η

)
(41)

where b(E) can be found from (40). Similarly, the ODE of

RSSC can be calculated.

Regarding the CS scheme in Fig. 2, the total consumed

energy is

ECS(b) = Eacq+Nǫrd+M [(N − 1)ǫadd +Nǫmul]+Mǫwr+

pbckTins (N + 2NM) +Mb
[
(1 + hoh)Etx + hackErx

]
(42)

where it has been assumed that the power consumption of

the analog CS encoder matches its digital counterpart. For

the ODE of CS, the required energy can be calculated from

(42), and the distortion can be found through Monte Carlo

simulation, as illustrated in the numerical results.6

6Note that the analytical performance of CS encoders is beyond the scope
of this paper. For more relevant analysis, one may refer to [6], [46], [52] and
the references therein.
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Fig. 3: Average rate in bits/sample as a function of the

average sparsity ratio p, for BU sources quantized with b = 8
bits/sample.
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Fig. 4: The ODR of BCHSC (dashed) and RSSC (solid)

and the remote IDR bound, with b ∈ {4, 5, ..., 12}. The

approximation (44) is used for the distortion. The analytical

performance (∗, •) coincides with simulation (�, ⋄).

VII. NUMERICAL RESULTS

A. Performance Analysis

In this section, numerical results and Monte Carlo sim-

ulations are presented to illustrate the performance of the

proposed RSSC and BCHSC schemes. The SNR is defined

as the signal power to the additive noise power at the encoder,

i.e., SNR , E

{
S S

T
}
/E
{
W W

T
}

. In all numerical results

p = 0.15, A = 1, and N = 2b−1, unless otherwise stated.

We first compare the syndrome encoding schemes with

some classical variable length encoders like run length code

and Huffman code applied on each source sample. In Fig. 3,

we report the average rate needed to encode the noiseless
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Fig. 5: The ODR of BCHSC and RSSC along with upper bounds on the IDR, with A = 1, σs = 1/5, b ∈ {2, 3, ..., 13}, and

SNR = ∞.

quantized BU source using RSSC (12), BCHSC (13), AC,

Huffman encoder, and run length encoding, plus the Shannon’s

lower bound (45), as a function of the average sparsity ratio

p, for b = 8 bits/sample. It is noted that the rates indicated

by both RSSC and AC are coincident, while the BCHSC can

achieve a higher compression gain (up to 15% compared to

RSSC). Also, the proposed approaches are superior to run

length coding and Huffman coding for p < 0.13, with a small

gap between the entropy bound and syndrome encoders for

low sparsity ratios. As expected, both Huffman and run length

codes perform poorly for sparse sources.

Fig. 4 illustrates the ODR of RSSC and BCHSC, (27), for

BU sources. These ODRs are compared with the upper bound

on the remote IDR

D(R) ≤
(

σ2
s

σ2
s /σ

2
n + 1

+
σ2

s

σ2
n/σ

2
s + 1

2−2[R−Hbern(p)]/p

)
p,

for R > Hbern(p)

obtained by extending the upper bound on the remote IDR

for continuous non-sparse sources in [21, (10)] to account for

BG and BU sources, considering that the support is optimally

encoded with a rate indicated by the Bernoulli source entropy

Hbern(p) , −p log2(p) − (1 − p) log2(1 − p). It is clear

that DBCH(R) ≤ DRS(R), since RBCH ≤ RRS from (12) and

(13). The proposed schemes perform close to the bound on

the remote IDR for low rates. Also, the distortion tends

approximately to p σ2
n as b → ∞, exhibiting a floor at high

rates. For SNRs equal to 30 dB and 40 dB, the distortion

significantly decreases by increasing the rate from 1.2 to 2
bits/sample. On the other hand, the distortion saturates for low

SNRs where it is dominated by the additive noise component.

In Fig. 5, we compare the ODR of proposed BCHSC and

RSSC with that of the following: the optimal ODR of uniform

quantizers for BU and BG sources, derived in Appendix B; the

lower bound on the IDR for BU and BG sources in [18, (20)];

the converse upper bound on the IDR for BG sources in [17,

(6) and (7)]; the asymptotic lower bound on the ODR of a CS

based encoder with uniform quantization derived in [46, (12)],

assuming that the support is known at the decoder. In this

case, DCS(R) = p
µ−1 σ

2
s 2

−2R/(µ p) where µ , M/k0.7 We

can see that the gap between the BCHSC and optimal uniform

quantizers in (46) and (51) is small for BU and BG sources,

especially in the low-rate region. Also, the upper bound (52)

on the ODR of the optimal uniform quantizer for BG sources

is tight. Although the lower bound on the ODR of CS in [46]

does not account for the rate budget required to convey the

support information to the decoder, the proposed schemes are

superior for R > 1.2 bits/sample. It is noted also that the lower

and the upper bounds on the IDR for BG in [18] and [17] are

tight for high rates.

The ODR of RSSC for BU with estimated support, (35)),

is depicted in Fig. 6 and compared with the case of known

support only at the encoder (genie-aided), (27). The locations

of the non-zero elements are estimated by the following

methods: the excision filter (6) using the optimal threshold

η̂, (36); the excision filter (6) with a threshold designed

through the Neyman-Pearson criterion for PFA = 0.01; the

GIC (5) with ν = 5 for SNR = 15 dB, and ν = 6 for

SNR = 30 dB. The simulation results agree with the analytical

expressions for the ODR. The proposed optimal threshold

achieves a better performance compared to those based on

constant false-alarm and GIC, especially for low rate and

high SNR. For example, the optimal threshold achieves about

30% reduction in the distortion, for R = 1.8 bits/sample

and SNR = 30 dB. Moreover, the GIC performs well in the

high rate region. On this point we would like to remark that

the GIC is completely blind, while thresholding requires the

knowledge of the SNR. Note that in the low-rate region the

optimal threshold is superior to the genie-aided method with

7Note that for the bound on the ODR of CS, we used M = 2 k0 log(e/p)
[14, (9.24)].
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Fig. 6: The ODR for noisy BU sources with estimated support

through the thresholding filter (6) using the optimal threshold

(36) and Neyman-Pearson criteria (8), and through the GIC

(5), for SNR = 15 dB (solid) and SNR = 30 dB (dashed).

perfect support knowledge. The rationale behind this is that

even when the signal support is known at the encoder, it is

not optimal to spend the rate budget to encode all the non-

zero samples along with their locations. In fact, the increase

in the distortion due to missing a small source sample can

be compensated by the corresponding rate reduction. On the

contrary, the support knowledge increases the performance for

higher rates, where there is enough rate budget for coding all

source samples.

B. Case Study: IoT for Environmental Monitoring

In this section, the proposed BCHSC scheme in Fig. 1 is

utilized to encode signals acquired by a WSN for landslides

monitoring [81], and compared with the CS encoder shown

in Fig. 2. In particular, we encoded real data (temperature,

humidity, and rain level) collected for over a year with a rate

of one sample every 15min. Thus, 40 · 103 samples from

each sensor are grouped into vectors xc ∈ R
N with length

N = 127.

The signal is first represented in the DCT domain, then

the support of the significant samples is estimated using an

excision filter with a threshold designed such that a predefined

fraction, λ ∈ [0, 1], of the total signal energy is preserved. For

the humidity data, only k̂0 = 25 significant coefficients (out

of N = 127) are sufficient to guarantee that more than 99.9%
(i.e., λ = 0.999) of the signal energy, ‖xc‖2, is preserved.

The corresponding results for the temperature and rain data are

k̂0 = 17 and k̂0 = 4, respectively, indicating higher sparsity

than the humidity signal.

In this setting, the distortion is due to the sparse approxi-

mation and the quantization of the non-zero elements.8 More

8Unlike the sparse signal model in Section II, the vector w is considered
as a part of the signal.

precisely, the mean squared error distortion for the lossy

encoding of the compressible source can be written as

D(∆;λ) =
1

N
E

{∥∥X c − F−1 Q−1 (Q (M FX c))
∥∥2
}

where F ∈ R
N×N is the DCT matrix and M = diag(π̂) ∈

R
N×N is a selection matrix with π̂ ∈ {0, 1}N indicating

the estimated locations of the k̂0 significant elements. In

order to calculate the distortion, we notice that the significant

and non-significant data entries follow uniform and Gaussian

distributions, respectively, in accordance to a noisy BU source

model. The parameters of the distributions are then estimated

from the data set. Since the DCT is an orthonormal basis, and

the quantization noise, for large b, can be considered uniformly

distributed with support [−∆/2,∆/2], the distortion can be

approximated as

D(∆;λ) ≃ p̂(λ)
∆2

12
+ [1− p̂(λ)] σ̂2

n (43)

where p̂(λ) is the estimated sparsity ratio and σ̂2
n is the

estimated variance of the non-significant elements threated as

noise.

For compressed sensing, the signals are acquired through a

Rademacher measurement matrix [15], and are reconstructed

from the quantized measurements Q−1 (Q (y)) using a sparse

recovery algorithm. In particular, basis pursuit denoising al-

gorithm is used for signal reconstruction [82], [83], which

accounts for noisy measurements, e.g., due to quantization.

Then, the performance of the encoders is assessed through

the ODR and ODE, for the gathered signals. More precisely,

the distortion of the proposed scheme is approximated using

(43), and the rate is identified by (13). On the other hand,

the distortion of the CS encoder is evaluated through Monte

Carlo simulation, and the rate is rCS = M b/N . The energy

consumption of both schemes is calculated by (40) and (42) in

Section VI. In particular, we consider the power model of the

MICA2 platform which embeds the Atmega128L processor

and the CC1000 radio [78], [79]. Each data packet consists of

a payload of up to 1872 bits and 168 additional bits as header

(hoh = 9% payload), while the acknowledgment packet length

is 160 bits (hack = 8.5% payload). This platform has pacq =
15.01mW, Tins = 0.133µsec, pbck = 9.6mW, ǫadd = 3.3 nJ,

ǫmul = 9.9 nJ, ǫcmp = 3.3 nJ, ǫrd = 0.26 nJ, ǫwr = 4.3 nJ, Erx =
0.923µJ/bit, and Etx = 1.135µJ/bit, using a transmit power

corresponding to a maximum range of 52m [79, Table 1].

The performance of the proposed BCHSC and CS schemes

are depicted in Fig. 7. More precisely, the figure reports the

convex hull (minimum) of the ODR and ODE, varying λ ∈
[0.5, 0.9999] for BCHSC and M ∈ [3, N − 1] for CS. As can

be seen, the proposed encoder indicates higher performance

with respect to the CS based scheme, in terms of the required

rate and the consumed energy. For example, BCHSC provides

about 55% and 50% reduction in the required rate and con-

sumed energy, respectively, for compressing the temperature

signal with distortion D(∆;λ) = 10−3.

VIII. CONCLUSION

This paper provided two novel schemes for efficient encod-

ing of noisy sparse sources based on the syndromes associated
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Fig. 7: The ODR and ODE of the proposed BCHSC (13)

and CS for real data acquired from a WSN deployed in

Torgiovannetto (Italy), for b ∈ {3, 5, . . . , 13} and N = 127.

with channel codes. Two sparse signal denoising techniques

are proposed; the first is a blind estimator based on model

order selection, while the second is a thresholding filter

requiring prior knowledge of the signal model and of the noise

power. The theoretical performance of the proposed encoders,

derived in terms of the ODR and ODE, approaches entropy

based bounds for sources with low sparsity order. Finally, we

tested the encoders to compress real data gathered by a WSN

for environmental monitoring, obtaining significant energy

savings when compared to a compressed sensing encoder.

APPENDIX A

QUANTIZER DISTORTION FOR NOISY BU SOURCES

In order to derive the distortion due to both the quantization

error and the additive noise for BU sources, DBU(∆), the

integration in (25) should be performed. Unfortunately, the

floor function in the error distribution (24) complicates the

analysis. Thus, a way to simplify the integral is to approximate

the PDF (24) considering that ⌊x⌋ ≃ x− 1/2, i.e.,

fBU
T (τ) ≃ f̃BU

T (τ) , (1− p)δ(τ) +
p

2A

×





1 + Φ(τ)
(
2A
∆ − 1

)
, |τ | < ∆

2

Φ(τ)
(
− |τ |

∆ + 2A
∆

)
+ φ(|τ |), ∆

2 ≤ |τ | < 2A− ∆
2

0, otherwise .

Then, the distortion can be approximated as

DBU(∆) ≃ D̂BU(∆) ,
∫ ∞

−∞
τ2 f̃BU

T (τ) dτ =
p

A

×
(∫ ∆

2

0

τ2
[
1 + Φ(τ)

(
2A

∆
− 1

)]
dτ +

∫ 2A−∆
2

∆
2

τ2

×
[
Φ(τ)

(
2A

∆
− τ

∆

)
+ φ(τ)

]
dτ

)
=

p (I1 + I2)

48
√
2π A∆

(44)

where

I1 , 2σne
− 2A2

σ2
n

[
16A3 − 32A2∆+ 18A∆2 − 4σ2

n (A− 2∆)

− 3∆3
]
− 12∆e

− ∆2

2σ2
n σ3

n + 4σne
− (∆−2A)2

2σ2
n

[
3∆σ2

n − 8A3

− 4A2∆+A
(
∆2 + 2σ2

n

) ]
+ 2

√
2πA∆ erfc

(√
2A/σn

)

×
[
32A2 − 18A∆+ 3∆2

]
+ 2∆σn

[
3∆2 − 8σ2

n

]

I2 ,
√
2π erf

(√
2A

σn

)[
32A4 + 3∆σ2

n (8A−∆) + 18σ4
n

]

−
√
2π erf

(
2A−∆√

2σn

[
32A4 + 3∆σ2

n (3∆− 8A) + 18σ4
n

])

+ 2
√
2πA∆2

[
∆− 6A

]
erfc

(
2A−∆√

2σn

)
+ 4

√
2πA∆3

− 9
√
2πσ2

n

[
∆2 + 2σ2

n

]
erf
(
∆/(

√
2σn)

)
.

This approximation is accurate as shown in the numerical

results.

APPENDIX B

ODR OF OPTIMAL UNIFORM QUANTIZERS FOR NOISELESS

BU AND BG SOURCES

In order to derive the ODR of optimal uniform quantiz-

ers (i.e., uniform quantizer followed by an encoder with a

rate equal to the entropy of the quantized source), we start

with the entropy of the quantized source. The entropy of

S̃ , Q−1 (Q (S)) at the output of the uniform quantizer is

given, from (16), as

H
(
S̃
)
= −

imax∑

i=imin

P

{
S̃ = i∆

}
log2 P

{
S̃ = i∆

}
.

For quantized BU signals, the entropy is

HBU(p, b) = −
[
1− p+

p

2b − 1

]
log2

(
1− p+

p

2b − 1

)

− p
2b − 2

2b − 1
log2

p

2b − 1
. (45)

Consequently, the rate-distortion of the optimal uniform

quantizer can be found by minimizing the entropy of the

quantized source such that the distortion is bounded below

D [31], [73]. More precisely, the ODR is given by

RBU(p,D,A) = inf
{b∈N+|DBU(2A/(2b−1))≤D}

HBU(p, b)

= HBU

(
p,

⌈
log2

(
1 +A

√
p

3D

)⌉)
(46)

where for noiseless BU sources the exact distortion, from (17)

and [25, pg. 150], is simply DBU(∆) = p∆2/12.
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For quantized BG sources, the entropy is

HBG(p, b, Ã) =

[
p erfc

(
Ã

2b − 1

)
− 1

]

× log2

(
1− p erfc

(
Ã

2b − 1

))
− p erfc

(
Ã− 2Ã

2b − 1

)

× log2

(
p erfc

(
Ã− 2Ã

2b − 1

))
− 1{b≥3}



2b−1−2∑

i=1

p

×
[

erf

(
Ã(2i+ 1)

2b − 1

)
− erf

(
Ã(2i− 1)

2b − 1

)]

log2

(
p

[
erf

(
Ã(2i+ 1)

2b − 1

)
− erf

(
Ã(2i− 1)

2b − 1

)])]
(47)

where Ã , A/(
√
2σs). The distortion, considering the satura-

tion effect, can be calculated as

DBG(∆) = 2 p

[∫ ∆/2

0

x2f(x;σ2
s ) dx

+

∫ ∞

A−∆

(x−A+∆/2)2f(x;σ2
s ) dx+ 1{A/∆≥7/2}

×
A
∆− 3

2∑

i=1

∫ (i+1/2)∆

(i−1/2)∆

|x− i∆|2f(x;σ2
s ) dx

︸ ︷︷ ︸
Ξ

]
= 2p


−∆σse

− ∆2

8σ2
s

2
√
2π

+
1

2
σ2

s erf

(
∆

2
√
2σs

)
− Aσse

− (A−∆)2

2σ2
s√

2π
+

1

8

[
(∆− 2A)2 + 4σ2

s

]

×erfc

(
A−∆√

2σs

)
+ 1{A/∆≥7/2} Ξ

]
(48)

where f(x;σ2
s ) is the PDF of a zero mean Gaussian r.v. with

variance σ2
s . The term Ξ can be bounded, since f(x;σ2

s ) is a

decreasing function for x > 0, as

Ξ <

A
∆− 3

2∑

i=1

f
(
(i− 1/2)∆;σ2

s

) ∫ (i+1/2)∆

(i−1/2)∆

|x− i∆|2 dx

=
∆3

12

A
∆− 3

2∑

i=1

f
(
(i− 1/2)∆;σ2

s

)
<

∆3

12

(
f
(
∆/2;σ2

s

)

+
1

2∆

[
erf

(
A− 2∆√

2σs

)
+ erf

(
∆

2
√
2σs

)])
(49)

where (49) is due to bounding the summation of a decreasing

function with the proper integration [31, (81)], i.e.,

∫ (i−1/2)∆

(i−3/2)∆

f
(
x;σ2

s

)
dx > ∆ f

(
[i− 1/2]∆;σ2

s

)
for i ≥ 2 .

Substituting (49) into (48) yields

DBG(∆) < D̃BG(∆) ,
p

12

[
σs

√
2

π

(
−12Ae

− (A−∆)2

2σ2
s

−6∆e
− ∆2

8σ2
s

)
+ 12 σ2

s erf

(
∆

2
√
2σs

)
+ 3

[
(∆− 2A)2 + 4σ2

s

]

× erfc

(
A−∆√

2σs

)
+ 1{A/∆≥7/2} ·

(√
2

π

∆3

σs

e
− ∆2

8σ2
s

+∆2

[
erf

(
A− 2∆√

2σs

)
− erf

(
∆

2
√
2σs

)])]
. (50)

Finally, the ODR of the optimal uniform quantizer is derived

from (47), (48), and (50) as

RBG(p,D,A) = HBG

(
p,

⌈
log2

(
1 +

2A

∆(D)

)⌉
, Ã

)
(51)

< HBG

(
p,

⌈
log2

(
1 +

2A

∆̃(D)

)⌉
, Ã

)
(52)

where ∆(D) and ∆̃(D) are the inverse of DBG(∆), (48), and

D̃BG(∆), (50), respectively.
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