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Abstract—The crisis of Moore’s law and new dominant Ma-
chine Learning workloads require a paradigm shift towards
finely tunable-precision (a.k.a. transprecision) computing. More
specifically, we need floating-point circuits that are capable to
operate on many formats with high flexibility. We present the
first silicon implementation of a 64-bit transprecision floating-
point unit. It fully supports the standard double, single, and half
precision, alongside custom bfloat and 8 bit formats. Operations
occur on scalars or 2, 4, or 8-way SIMD vectors. We have
integrated the 247 kGE unit into a 64 bit application-class
RISC-V processor core, where the added transprecision support
accounts for an energy and area overhead of merely 11% and
9%, respectively; yet achieving speedups and per-datum energy
gains of 7.3x and 7.94x. We implemented the design in a 22 nm
FD-SOI technology. The unit achieves energy efficiencies between
75 Gflop/sW and 1.24 Tflop/sW, and a performance between 1.85
Gflop/s and 14.83 Gflop/s, across formats.

I. INTRODUCTION

The demand for new computing architectures and systems
has grown exponentially in the last decade. The crisis of
Moore’s law marks the end of an era of CMOS technology
driven constant exponential improvement of computing effi-
ciency. The power wall requires a shift towards computing
paradigms where energy efficiency is the de-facto metric
by which hardware designs are measured. Meanwhile new
workloads such as Machine Learning dominate the industry’s
focus and ask for ever increasing compute capabilities both at
the Internet of Things (IoT) and High Performance Computing
(HPC) scale. Designers are pushed to develop new architec-
tures and circuits for numerical computation where precision
can be fine-tuned with great agility to match application
requirements and minimize the energy cost per operation. This
new trend has been called “transprecision computing” [1].
Such precision modulation in modern CPUs and GPUs has
been limited to the “double” and “float” formats specified in
IEEE-754 thus far. However, the recent “Cambrian explosion”
of numerical formats, e.g. Intel Nervana’s Flexpoint [2], Mi-
crosoft Brainwave’s 9 bit floats [3], the Google TPU’s 16 bit
“bfloats” [4], or NVIDIA’s Tensor Cores [5], shows that new
architectures with extreme transprecision flexibility are needed
for floating-point (FP) computation.
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Fig. 1. Top level datapath of the transprecision FPU.

In this paper we present the first silicon implementation
of a transprecision floating-point unit (FPU). Our architecture
supports a wide range of data formats including IEEE-754
double (FP64), single (FP32), and half precision floats (FP16),
as well as 16 bit bfloats (FP16alt) and a custom 8 bit format
(FP8), introduced in [6]. The unit fully supports single instruc-
tion multiple data (SIMD) vectorization and agile data con-
version and vector packing. Fully layout in a 22 nm FD-SOI
technology, our unit achieves a compute performance between
1.85 Gflop/s to 14.83 Gflop/s and energy efficiencies between
75 Gflop/s W to 1245 Gflop/s W (at nominal voltage) across
its range of formats.

II. ARCHITECTURE

A. Floating-Point Unit for Transprecision

To achieve high energy proportionality, the architecture is
based on strong clock- and data-gating of mutually exclusive
sub-blocks, as opposed to fine-grained sharing of arithmetic
building blocks. The top level block diagram of the transpreci-
sion FPU is shown in Fig. 1. Up to three 64 bit input operands
are directed towards one of four operation groups which
are each dedicated to a class of instructions. These include
fused multiply-add (FMA), division/square root, comparisons
and bit manipulations, and conversions between formats and
integers. Each group is either divided into format-specific
slices (parallel) or acts as a multi-format block (merged),
as shown in Fig. 2. A merged slice can lower area cost by
sharing datapath hardware among formats, which may come
at potential energy and latency overheads due to all formats
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slices (left, in the ADDMUL block for FP16) or merged multi-format slices
(right, in the CONV block for all formats)

sharing one pipeline. We opted for a parallel implementation
of the ADDMUL block to allow for different per-format
latencies, avoiding unnecessary overheads for narrow formats.
As only one slice can receive new data in any given clock
cycle, we use clock and datapath gating to silence unused
branches of the FPU. Slices are further partitioned into vector
lanes to facilitate SIMD execution. Depending on whether
the current operation is scalar or vectored, either one or all
lanes are used to compute the result while unused lanes are
silenced. The operational units within a slice can either be fully
pipelined or use a blocking (i.e. iterative) implementation.

In the ADDMUL block, a set of pipelined FMA units
implemented using a single-path architecture [7], [8] are used
for each format. They are pipelined using 4, 3, 3, 3, and
2 register stages for FP64, FP32, FP16, FP16alt, and FP8,
respectively. Divisions and square roots are computed using
an iterative non-restoring divider unit shared by all formats
(DIVSQRT), computing 3 mantissa bits of the result per cycle.
Latency is format-dependent and both division and square root
take 21, 11, 7, 6, and 4 clock cycles, which is acceptable due
to the relative rarity of the operation in performance-optimized
code. SIMD is not supported in this unit to conserve area. The
COMP block performs comparisons, sign manipulation and FP
classification with 1 cycle of latency for all formats.

Flexible conversions amongst FP types are crucial for
efficient on-the-fly precision adjustment [9]. To this end the
merged conversion block converts between any two FP for-
mats, as well as from and to integer formats.

While only one datum per cycle may enter the FPU,
multiple results may be produced simultaneously due to dif-
ferent sub-block latencies. Thus, the order of FPU outputs
is determined using fair round-robin arbitration. Fine-grained
clock gating based on handshakes can occur within individual
pipeline stages, silencing unused parts and allowing pipeline
bubbles to “pop” by allowing data to catch up to the stalled
head of a pipeline. Coarse-grained clock gating is used to
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disable operation groups or the entire FPU if no valid data
is present in the pipeline.

B. Ariane with Transprecision FPU

Ariane is an open-source 64 bit, six stage, partially in-order
RISC-V processor. It has full hardware support for running an
operating system as well as parameterizable private instruction
and data caches. To speed up sequential code it features a
return address stack, a branch history table and a branch
target buffer [10]. Besides the official RISC-V “F” and “D”
ISA extensions for FP32 and FP64 we also implement the
additional “Xf16”, “Xf16alt”, and “Xf8” extensions proposed
in [11]. We furthermore support the “Xfvec” extension that
adds SIMD operations for all formats narrower than 64 bit. We
extend the processor’s instruction decoder accordingly and to
handle these extensions. These modifications have negligible
timing and area cost.

The total area of the core is 742 kGE (1.4 MGE with
caches), as shown in Fig. 3. The FPU accounts for 247 kGE,
of which 160 kGE are the FMA, 19 kGE the iterative divider
and square root (DIVSQRT), and 47 kGE the conversion unit
(CONV). Compared to an Ariane core with support for only
scalar FP32 and FP64 (F and D extensions), area and static
energy is increased by 9.3% and 11.1%, respectively. The
higher increase in energy w.r.t. the added area stems from
the FPU utilizing relatively more short-gate cells than the rest
of the processor due to areas of high timing pressure.

III. IMPLEMENTATION IN 22FDX

We have implemented the architecture outlined in Section II
in GLOBALFOUNDRIES 22FDX technology, a 22 nm FD-SOI
node. It contains two Ariane cores enhanced with our FPU,
paired with additional memory and debugging infrastructure
for testing. Synthesis was performed in Synopsys Design
Compiler against a 1 GHz worst-case constraint (SSG, 0.72 V,
125 ◦C). Place and route was done in Cadence Innovus with
a 1 GHz constraint in a Multi-Mode Multi-Corner flow that
included all temperature and mask misalignment corners, eight
in total. The design was closed in the backend at 0.96 GHz
worst (SSG, 0.72 V, ±0.8 V bias, −40/125 ◦C), 1.29 GHz
typical (TT, 0.8 V, ±0.45 V bias, 25 ◦C), and 1.76 GHz best
(FFG, 0.88 V, 0 V bias, −40/125 ◦C) case.

We make extensive use of automated clock gate insertion
during synthesis (> 96% of FPU registers gated) and support
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Fig. 4. FPU energy cost per operation for the fully pipelined scalar operations
(left), and vectorial operations (right), grouped by FMA, multiply, add, and
comparison.

architectural clock gating, as highlighted in the previous sec-
tion. Ungated registers comprise only handshaking tokens and
the finite-state machine controlling division and square root.

IV. RESULTS

A. Evaluation Methodology

A detailed breakdown of energy usage within the FPU
while executing individual instructions has been carried out
in post-layout simulations. To this end, synthetic applications
which specifically stress parts of the FPU are run on Ariane.
All operations are executed using randomly distributed legal
input values with sufficient constraints to prevent numerical
instabilities. These input patterns provide a worst-case scenario
for power dissipation as they have high switching activity.
To provide fair comparisons, the tested operations are in-
jected back-to-back so pipelines are full. Post-layout power
simulations are carried out using typical libraries at nominal
conditions (TT, VDD = 0.8 V, 25 ◦C).

B. FPU Instruction Energy Efficiency and Performance

Fig. 4 shows the average per-operation energy cost within
the FPU for arithmetic operations. For the scalar operations,
energy proportionality is especially pronounced in the AD-
DMUL block (first three groups), due to the dominance of
the multiplier therein. Executing the FP64 FMA fmadd.d con-
sumes 26.7 pJ, where its FP32 counterpart uses 65% less en-
ergy. This trend continues with continued energy decreases of
48%, 54%, and 49% for FP16, FP16alt and FP8, respectively.
Operations on FP16alt consume 12% less energy than on FP16
due to the reduced number of mantissa bits in the former case.
For the vector operations, one would intuitively expect these
operations to consume roughly equal amounts of energy as
they all operate on 64 bits of data. Nevertheless, the energy
proportionality progression from the scalar operations carries
over to the vectorial case, enabling lower energy consumption
on vectored data if the underlying format is more narrow.
The relative energy gains in the vectorial case are 20%, 31%,
and 20% for FMA; 21%, 32%, and 21% for multiplication;
20%, 31%, and 19% for addition, and 14%, 23%, and 8%
for comparisons. Thus, despite processing the same amount
of bits, operations using ever-smaller vectorial formats realize
super-proportional energy gains. This scaling would be less
easily attainable when using a merged data path.

To sum up, scalar FMA operations can be performed for
2.5 pJ to 26.7 pJ while vectorial ones cost 1.6 pJ to 10.0 pJ

per data item. At 927 MHz, this equates to a peak performance
of 1.85 Gflop/s to 14.83 Gflop/s and energy efficiency of
75 Gflop/s W to 1245 Gflop/s W for the various formats
supported.

As such, our divide-and-conquer architecture approach mak-
ing use of aggressive clock and data gating proves to be
effective at ensuring energy proportionality for both scalar and
vectorial operations.

C. Example Use of Transprecision in Applications

A common pattern in many applications is the accumulation
of point-wise array multiplications. A program loop executing
this pattern unrolled to fit the register file consists of three
integer additions for updating the source pointers as well as
the loop counter, sixteen FP load instructions, eight FMA
and a conditional branch. Static parts of the program include
the initial accumulator initialization and loading of pointers
as well as the final summation of the eight accumulator
registers and store. If SIMD is used, the final accumulator
must also be unpacked and summed before storing. For an
array length of 1024 elements the speedup when using FP32,
FP16, and FP8 instead of FP64, is 1.98x, 3.88x, and 7.30x,
respectively. Processor energy gains are 2.03x, 4.08x and
7.94x for the above cases. Stall cycles only appear in the
final addition of accumulators due to direct data dependencies
between instructions, and are reduced for FP8 due to the
shorter operation latency. Sizeable speedups can be achieved
by employing transprecision across a wide range of application
domains as shown in [6].

V. CONCLUSION AND FUTURE WORK

We have presented the first silicon implementation of a
transprecision FPU in a 22 nm FD-SOI process. It offers
rich FP arithmetic and efficient casting and packing opera-
tions, across five different data formats, in both scalar and
SIMD-vectorized variants, with high energy efficiency and
proportionality. This architecture allows for energy efficien-
cies up to 1.24 Tflop/s W and compute performance up to
14.83 Gflop/s for 8×FP8 SIMD operation. The FPU adds
tolerable overhead in terms of static energy (11.1%) and area
(9.3%) to the processor. Our results provide the necessary
evidence to quantify the gains achieved through algorithmic
optimizations using the tools offered in the transprecision
framework.

Future work comprises validation of our post-layout results,
as well as the execution of more complete transprecision-
enabled application kernels on manufactured silicon.
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