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Abstract. Solving inverse problems with sparsity promoting regularizing penalties can

be recast in the Bayesian framework as finding a maximum a posteriori (MAP) estimate

with sparsity promoting priors. In the latter context, a computationally convenient choice

of prior is the family of conditionally Gaussian hierarchical models for which the prior

variances of the components of the unknown are independent and follow a hyperprior from

a generalized gamma family. In this paper, we analyze the optimization problem behind the

MAP estimation and identify hyperparameter combinations that lead to a globally or locally

convex optimization problem. The MAP estimation problem is solved using a computationally

efficient alternating iterative algorithm. Its properties in the context of the generalized gamma

hypermodel and its connections with some known sparsity promoting penalty methods are

analyzed. Computed examples elucidate the convergence and sparsity promoting properties of

the algorithm.

Efficient algorithms promoting sparsity of the solution of inverse problems have been, and

continue to be actively pursued. Sparsity-promoting regularization has been known for a long

time in geophysics, statistics and signal processing, see, e.g., [29, 30, 15, 16, 27], and [4]

for further references. Interest in the topic was revived a little over a decade ago with the

recovery of compressed sensing, because it was shown that under certain conditions about the

underlying signal and the observation model, ℓ1-regularization could recover exactly a sparse

solution [19, 5]. While the regularizing properties of Tikhonov regularization with ℓp penalty,

for 1 ≤ p ≤ 2, are quite well understood from the theoretical and computational point of

view, the design of efficient methods for computing the corresponding regularized solution

when p < 1 continues to pose significant challenges due to the non-convexity of the Tikhonov

functional.
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Recently many classical regularization questions have been recast in probabilistic terms and

efficient numerical schemes for their solutions have been proposed in the literature. In the

Bayesian framework, where all unknowns are modeled as random variables, the prior density

encodes what is believed about the solution before taking the data into account. Therefore,

the prior plays a role similar to that of the penalty term in classical regularization. The

connection between the classical Tikhonov regularized solution and the Bayesian maximum

a posteriori (MAP) estimate is well established, relating classes of penalty functionals and

priors favoring similar types of solutions. The philosophically correct way to promote

sparsity in the Bayesian framework is by designing suitable priors. Gaussian priors, while

computationally very convenient when seeking MAP estimates, are not well suited to promote

sparsity unless the support of the underlying array is known. One possible way to retain the

computational convenience while promoting sparsity is via conditionally Gaussian priors,

with diagonal covariance matrices with unknown positive diagonal entries. In line with

the Bayesian paradigm, the unknown diagonal entries of the prior covariance are modeled

as random variables, and their estimation becomes part of the problem. In order for the

hierarchical prior model to promote sparsity, the variances of the components of the sought

solution should be independent of each other, and all but few of them should be close to

zero. Thus, the prior model for the variances, usually referred to as hyperprior, should have

mean close to zero and favor few outliers, implying that a suitable choice must be a fat tailed,

or leptokurtic distribution. An example of such hyperprior is the gamma distribution, and a

computationally efficient globally convergent algorithm for the corresponding MAP estimate

can be found, referred to as the iterated alternating sequential (IAS) algorithm. Recently it has

been shown that the shape parameter of the gamma distribution controls the sparsity of the

solution, and in an appropriate limit, the computed solution converges to the ℓ1 regularized

solution [14, 10]. Moreover, an approximation of the MAP estimate, referred to as the qMAP

for quasi-MAP, can be computed very efficiently by incorporating a Krylov subspace least

squares solver equipped with a suitable stopping rule in the IAS algorithm [13]. The latter

is particularly efficient for the recovery of sparse solutions, because as the algorithm learns

the effective support of the underlying signal, the number of matrix-vector products with the

matrix and its transpose needed for the Krylov iterative solution approaches the cardinality

of the support. Because of this, the algorithm implicitly performs an adaptive and automatic

model reduction.

In [14, 10], the analysis of sparsity promoting hierarchical models was limited to hyperpriors

from the family of gamma distributions, a choice that guarantees the convexity of the objective

function in the MAP estimation. This work extends the analysis to the wider class of

hierarchical models with hyperpriors from the family of generalized gamma distributions

[8], some of which are shown to correspond to earlier studied regularizing penalty functions.

In particular, we identify combinations of the parameter values of the generalized gamma

distribution for which the MAP objective function is either globally or locally convex, and

find conditions guaranteeing that the approximate solutions determined by the IAS algorithm

stay in the convexity region. By analyzing the asymptotics of the penalty function, we
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show that the priors are closely related to appropriately chosen ℓp-penalties, helping to better

contextualize and interpret the sparsity promoting properties of IAS. We point out that the

ℓp-penalties represent only a limit case of the MAP estimates for hierarchical priors, which

encompass a genuinely richer class of priors. Therefore, rather than an alternative, the

proposed algorithm of computing the iterative updates for generalized gamma hyperpriors

offers a uniform computational alternative for dealing with the ℓp regularization. Furthermore,

based on ideas arising from convex optimization, we propose an extension of the IAS

algorithm that can account for bound constraints. Finally, we point out that a significant

reduction in the IAS computational effort can be achieved, in particular for large scale

underdetermined inverse problems, by solving a reduced problem via a priorconditioned

Krylov subspace solver [6, 7, 12] equipped with an early stopping criterion. Computed

examples show that the performance of the reduced model can be comparable, and even

superior to that of the full model for many choices of the hyperprior parameters. In particular,

they illustrate how the choice of hyperprior from the generalized gamma family affects the

quality of the solution in terms of sparsity promotion and accuracy, elucidating how to choose

the parameters of the hyperprior to reflect the strength of the a priori sparsity belief.

The paper is organized as follows: in Section 1, the Bayesian parametric model and the

algorithm for computing the MAP estimate is introduced. Section 2 discusses the model

scaling and sensitivity analysis. The computation of the updating of the hyperparameters

for values when no closed form formula exist is discussed in Section 3. Moreover, the

connection of the model to previously discussed models such as the ℓp penalized regularization

is discussed. Chapter 4 contains the convexity analysis of the objective function with various

model parameter values. In Section 5, the IAS algorithm is extended to cases with box

constraints on parameters, and computed examples are presented in Section 6, followed by

Discussion.

1. Hierarchical Bayesian Models

Consider the linear observation model with additive Gaussian noise,

b = Ax+ e , e ∼ N (0,Σ), (1)

where A ∈ R
m×n, m ≤ n, Σ ∈ R

m×m is a symmetric positive definite covariance matrix that

we assume to be known, and x ∈ R
n is the unknown that we are interested in recovering.

Without loss of generality, we may assume that Σ = I, since by defining a symmetric

factorization Σ−1 = STS, we may whiten the noise through a redefinition of A → SA and

b → Sb. Then the likelihood distribution is of the form

π(b | x) ∝ exp
(
− 1

2
‖Ax− b‖2

)
. (2)

We assume that, possibly after a change of variables, the unknown is represented in a

basis where the generative vector x is sparse. The a priori belief that x is sparse is
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encoded by modeling its components as independent random variables following a zero mean

conditionally Gaussian distribution, i.e.,

xj ∼ N (0, θj) , θj > 0 , 1 ≤ j ≤ n, (3)

with unknown prior variances θj . According to the Bayesian paradigm, the unknown

variances are also modeled as random variables, hence the expression for the conditional

Gaussian prior must take into account the portion of the normalizing factor that depends on

the variances,

π(x | θ) ∝ 1∏n
j=1

√
θj

exp
(
−1

2
‖D−1/2

θ x‖2
)
, Dθ = diag(θ1, . . . , θn). (4)

In this manner, the a priori believed sparsity of x can be formulated as a property of the

variances of the components, with smaller variances promoting values closer to zero. In turn,

the a priori beliefs about the variance are encoded in the hyperprior πhyper(θ). In the Bayesian

setting, where all unknowns are modeled as random variables, solving (1) is tantamount to

estimating x and θ, or more generally, to exploring their joint posterior distribution conditional

on b. The joint prior distribution πprior(x, θ) is the product of the conditional prior and the

hyperprior. It follows from Bayes’ formula that the posterior distribution π(x, θ | b) is

π(x, θ | b) ∝ πprior(x, θ) π(b | x) = π(x | θ) πhyper(θ) π(b | x). (5)

To promote sparsity of the signal, we select the hyperprior from the parametric family of

generalized gamma distributions,

πhyper(θ) = πhyper(θ | r, β, ϑ) = |r|n
Γ(β)n

n∏

j=1

1

ϑj

(
θj
ϑj

)rβ−1

exp
(
−
(
θj
ϑj

)r )
,(6)

where r ∈ R \ {0}, β > 0, ϑj > 0; further restrictions on the parameters of the generalized

gamma may be necessary to guarantee finite mean and variance. Observe that the generalized

gamma hyperprior family could be generalized further by letting each component θj have its

own hyperparameter r and β. This generalization is not considered here.

The Maximum A Posteriori (MAP) estimate of (1) is the maximizer of the posterior density,

thus the minimizer of the negative logarithm of the posterior,

(x∗, θ∗) = argminx,θ{ − log π(x, θ | b)} = argminx,θ{F(x, θ)}. (7)

With our choices of prior, hyperprior, and likelihood,

F(x, θ) = F(x, θ | r, β, ϑ)

=
1

2
‖Ax− b‖2 + 1

2
‖D−1/2

θ x‖2 −
(
rβ − 3

2

) n∑

j=1

log
θj
ϑj

+
n∑

j=1

(
θj
ϑj

)r

(8)

=
1

2
‖Ax− b‖2 + P(x, θ | r, β, ϑ).
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In the following, we will refer to P(x, θ | r, β, ϑ) as the penalty term in the MAP objective

function. Our aim in this work is to analyze hierarchical Bayesian models with generalized

gamma hyperpriors for different choices of the hyperparameters. In particular, we are

interested in shedding some light on

(i) how the sparsity of the MAP estimate depends on the hyperparameters;

(ii) how, for some choices of the hyperparameters, the MAP penalty term approaches

classical penalty terms;

(iii) the dependency of the convexity - or lack thereof - of the MAP objective function on the

hyperparameters;

(iv) the performance of the iterative alternating sequential minimization algorithm, reviewed

in the next subsection, with various generalized gamma hyperpriors for the reconstruction

of sparse signals from underdetermined noisy data.

1.1. IAS Algorithm

The algorithm that we employ for the solution of the minimization problem (7) is the

iterative alternating sequential scheme, whose properties and performance for some choices

of hyperparameters have been analyzed in [11, 10, 13]. Given an initial θ0, the IAS algorithm

proceeds through a sequence of simple alternating updates of the form

xt+1 = argmin{F(x, θt)}, θt+1 = argmin{F(xt+1, θ)},

until a convergence criterion is met. In practice, two natural convergence criteria can be

introduced: Either, the relative change of the objective function value is below a given

threshold, or the relative change in the variable updates is below a threshold. In the computed

examples, both criteria are used.

Among the appealing features of the IAS scheme, we mention the fact that both updating

steps are particularly simple to implement, and that the algorithm has been shown to converge

[11], with a convergence rate at least linear [10] for some classes of problems. We point out

that the minimization can be pursued by standard optimization schemes such as the Newton

method, however, the proposed algorithm is found to often lead to faster convergence. For

completeness, we review the updating steps below.

1.1.1. Step 1: Updating x Due to the structure of the objective function (9), the updating of

x given θ reduces to solving a quadratic optimization problem,

xt+1 = argminx{‖Ax− b‖22 + ‖D−1/2
θ x‖22}, θ = θt (9)

or, equivalently, to finding the solution of the linear system

[
A

D
−1/2
θ

]
x =

[
b

0

]
(10)
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in the least squares sense. The latter is a well posed problem because θ ∈ R
n
+; if x is of large

dimensions or A is not explicitly available, an iterative least squares solver may be the method

of choice to solve (10). Due to the well-posedness of the problem, the iteration will continue

until a sufficient reduction of the residual norm has been achieved. A computationally efficient

way to compute an approximation of the MAP solution that is particularly appealing when the

data vector is much lower dimensional than x, has been proposed in the cited articles on IAS

and further analyzed in [12]. After the change of variable,

D
−1/2
θ x = w ∼ N (0, I), (11)

which is equivalent to whitening x via a Mahalanobis transformation, the linear system (10)

becomes

[
Aθ

I

]
w =

[
b

0

]
, Aθ = AD

1/2
θ . (12)

It has been pointed out repeatedly in the literature that the Tikhonov regularized solution is

close to the approximate solution obtained by solving the linear system

Aθw = b (13)

with an iterative linear solvers, equipped with a suitable early termination rule discussed

below.

When the iterative solver selected is the Conjugate Gradient for Least Squares (CGLS) method

[23], the kth iterate satisfies

wk = argmin{‖b− Aθw‖ | w ∈ Kk(A
T

θ b,A
T

θ Aθ)}, xk = D
1/2
θ wk, (14)

where

Kk(A
T

θ b,A
T

θ Aθ) = span{(AT

θ Aθ)
ℓ
A
T

θ b | 0 ≤ ℓ ≤ k − 1},

is the kth Krylov subspace associated with the vector AT

θ b and the matrix AT

θ Aθ. The quantity

b − Aθwk whose norm is minimized is the discrepancy vector corresponding to wk. In the

traditional inverse problems literature, the Morozov discrepancy principle states that the

iterations should be stopped right before the norm of the discrepancy falls below the noise

level. Recalling that the standard deviation of the m-variate white noise is
√
m, the Morozov

stopping criterion can be written as

‖b− Aθwk‖ ≤ √
m.

On the other hand, letting

G(w) =

∥∥∥∥∥

[
AD

1/2
θ

I

]
w −

[
b

0

]∥∥∥∥∥

2

= ‖b− AD
1/2
θ w‖2 + ‖w‖2, (15)
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denote the norm of the discrepancy of the original linear system (12), it follows that the least

squares solution of the original problem minimizes the functional G. It is therefore natural to

monitor the behavior of G(xk) as the iterations proceed, and continue iterating only as long as

G(wk) keeps decreasing. While it is known that the norm of the discrepancy of (13) decreases

and ‖wk‖ increases with the number of CGLS iterations, we do not know a priori how the

increase/decrease rates are related to each other, so without further analysis, it is not clear if a

minimum is reached before the maximum allowed number of iterations.

In light of these observations, we propose the following approximation to the squares solution

of (12).

Definition 1.1. The reduced Krylov subspace (RKS) solution for the problem (12) is wk0

defined by (14), with k0 chosen to be the first index k satisfying the criterion

(C ) : ‖b− Aθwk+1‖ ≤ √
m, or G(wk+1) > τG(wk),

where τ − 1 = ǫ > 0 is a small safeguard parameter.

Finding an optimal stopping criterion for CGLS is not a simple task. In [13], an alternative,

statistically motivated stopping rule based on the χ2-error of discrepancy was suggested.

In the following, we refer to the IAS algorithm as approximate IAS when the minimization of

(15) is replaced by the RKS solution, as opposed to the original exact IAS.

1.1.2. Step 2: Updating θ The update of the prior variance θ is based on the first order

optimality condition. Since the parameters θj are mutually independent, the update can be

carried out separately for each component. It follows from the form of the MAP objective

function that the updated jth component of θ must satisfy the algebraic equation

∂F
∂θj

= −1

2

x2
j

θ2j
−
(
rβ − 3

2

)
1

θj
+ r

θr−1
j

ϑr
j

= 0, xj = xt+1
j . (16)

There are combinations of the hyperparameter values for which the solution is available in

closed form, as will be discussed in detail later. We derive a computationally efficient form

for the general case in the ensuing discussion.

The IAS algorithm has a similarity to a class of a reweighted least squares methods [22, 17],

or fixed point iterative methods with lagged diffusivity [18], providing iterative algorithms

to compute ℓ1-regularized solutions to inverse problems. For similar alternating iterative

methods in the Bayesian framework, we refer to [2, 3] applied to compressed sensing and

imaging.

2. Scaling

The analyses of the IAS algorithm previously published were limited to some specific

hyperpriors from the generalized gamma family. Before extending the analysis to the family
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of generalized gamma hyperpriors, we reformulate the problem in non-dimensional form. To

that end we introduce non-dimensional parameters zj and ξj such that

xj = ϑ
1/2
j zj, θj = ϑjξj,

and express the objective function in terms of these variables as

Φ(z, ξ) =
1

2
‖Âz − b‖2 + 1

2

n∑

j=1

z2j
ξj

−
(
rβ − 3

2

) n∑

j=1

log ξj +
n∑

j=1

ξrj , (17)

where Â is a column-scaled version of A, that is,

Â =
[
ϑ
1/2
1 a(1), · · · , ϑ1/2

n a(n)
]
= A diag(ϑ

1/2
1 , · · · , ϑ1/2

n ).

Column scaling the forward map is a common practice in some geophysics and biomedical

imaging applications, where it has been motivated by sensitivity considerations. Define the

sensitivity of the forward map x 7→ Ax with respect to the jth component xj as

sj =

∥∥∥∥
∂(Ax)

∂xj

∥∥∥∥ = ‖Aej‖ = ‖a(j)‖,

where ej is the jth canonical unit vector in R
n and a(j) is the jth column of the matrix

A. Then, weighting the component xj by the corresponding sensitivity scalar can be seen

as a way to avoid favoring solutions with support concentrated near the receiver locations.

This observation can be used as a guidance for selecting the value of the hyperparameters

ϑj; however, in the Bayesian framework this reasoning was considered problematic, as

canonically, the selection of the prior should not depend on the observation model. Recently,

however, a Bayesian justification for such choice of ϑ in the case where r = 1 has been

given in [10, 14]. The following theorem generalizes the result to the case of general gamma

hyperpriors. The result is formulated in terms of the signal-to-noise ratio (SNR) of the inverse

problem (1),

SNR =
E{‖b‖2}
E{‖ε‖2} .

Theorem 2.1. (a) Assuming that a support set S ⊂ {1, 2, . . . , n} is given, the SNR

conditional to the unknown x being supported on S, denoted by SNRS , is given by

SNRS =

∑
j∈S ν(r, β)ϑj

trace(Σ)
+ 1, ν(r, β) =

Γ(β + 1/r)

Γ(β)
,

provided that β > −1/r.

(b) Let pk = P{‖x‖0 = k} denote the probability that the support of the signal has

cardinality k, for k = 1, 2, . . . , n. Then the exchangeability condition (E ),

(E ) : SNRS = SNRS′ whenever S and S ′ are of the same cardinality,

is satisfied if and only if ϑj is chosen as

ϑj =
C

‖a(j)‖2 , C =
(SNR− 1)trace(Σ)

ν(r, β)

n∑

k=1

pk
k
.
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Proof: The proof is a slight modification of that for the gamma hyperprior (r = 1, β > 3/2)

in [10] to account for the fact that if θj follows the generalized gamma distribution, then

E{θj} = ν(r, β)ϑj.

✷

An important corollary of the above theorem is that, under the stated assumptions, scaling

the columns a(j) by ϑ
1/2
j is tantamount to making them all of the same norm

√
C. From

the point of view of linear inverse problems, this scaling renders the data equally sensitive

to each component of the unknown x. While this sensitivity scaling has been used for

decades in geophysics and biomedical imaging applications to compensate for the tendency of

regularized variational methods to favor solutions concentrated near the receivers or solutions

parametrized by components with maximal sensitivity, to the best of our knowledge this is the

first proper Bayesian interpretation of sensitivity scaling.

Furthermore, as already pointed out in [10], the theorem provides a Bayesian argument to

choose the value of Tikhonov regularization parameter in linear inverse problems from an

estimated SNR and a priori belief about the cardinality of the support. The effect of the

sensitivity scaling has been demonstrated in [10] by computed examples.

3. Variance updating: a closer look

In this section, we analyze in detail the process of updating the variance vector given an

updated estimate of the signal. After scaling the variables as described in the previous section

to arrive at a non-dimensional formulation, the algebraic relation (16) for the non-dimensional

variance ξj given the non-dimensional signal zj becomes

−1

2
z2 − ηξ + rξr+1 = 0, η = rβ − 3

2
, (18)

where we dropped the subscript j to simplify the notation. Since the expression depends only

on the square of z, we restrict our discussion to the case where z assumes non-negative values,

the negative values being covered by symmetry

The following result characterizes the variance as the solution of an initial value problem.

Lemma 3.1. If r < 0 and η < −3/2, or r > 0 and η > 0, formula (18) defines an implicit

function

ϕ(z) = ξ, ϕ : R+ → R+,

which is smooth and strictly increasing. Moreover, ξ is the solution of the initial value problem

ϕ′(z) =
2zϕ(z)

2r2ϕ(z)r+1 + z2
, ϕ(0) =

(η
r

)1/r
. (19)
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Proof: Starting from (18), we define the function

g(ξ) = ξ(rξr − η), 0 < ξ0 =
(η
r

)1/r
≤ ξ < ∞,

which is differentiable, with g′(ξ) = −η + r(r + 1)ξr. For r ≤ −1 and η < −3/2, the

derivative is always positive. For −1 < r < 0 and η < −3/2, the condition ξ > ξ0 implies

that ξr < η/r, and consequently, g′(ξ) > rη > 0, and for r > 0 and η > 0, we have ξr > η/r,

and therefore g′(ξ) > ηr > 0. Hence, the function g(ξ) is strictly increasing for ξ > ξ0.

Furthermore,

g(ξ0) = 0, lim
ξ→∞

g(ξ) = ∞.

Therefore the equation

g(ξ) = ξ(rξr − η) =
1

2
z2

has a unique solution ξ = ξ(z) ∈ [ξ0,∞) for every z ≥ 0, hence the mapping from z to the

solution (18) defines a strictly increasing function ξ = ϕ(z). We have ϕ(z) = g−1(z2/2) and

by the implicit function theorem, the function g−1, as an inverse of a differentiable function is

also differentiable, therefore ϕ is differentiable. Substituting ξ = ϕ(z) in (18) ,

−1

2
z2 − ηϕ(z) + rϕ(z)r+1 = 0, (20)

and differentiating with respect to z, we get

((r + 1)rϕ(z)r − η)ϕ′(z) = z,

or, equivalently,

(
r2ϕ(z)r +

1

ϕ(z)
(rϕ(z)r+1 − ηϕ(z))

)
ϕ′(z) =

(
r2ϕ(z)r +

z2

2ϕ(z)

)
ϕ′(z) = z,

yielding the differential equation (19). ✷

The characterization of ξ in terms of the differential equation (19) can be used to compute

effectively the values of the updates of the variances in the IAS algorithm, as we will show

in the computed examples. Moreover, Lemma 3.1 also makes it possible to analyze the

asymptotic behavior of the variance parameter when the corresponding value of z is either

close to zero or very large.

Lemma 3.2. The asymptotic behavior of ϕ when z is close to zero is

ϕ(z) =
(η
r

)1/r
+

1

2ηr
z2 +O(z4). (21)

whereas the asymptotics for z > 0 large is

ϕ(z) = κz2/(r+1) (1 + o(1)) , κ =

(
1

2r

)1/(r+1)

(22)
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Figure 1: Logarithmic plots of the updating functions with different values of the parameters

r, with η = 0.5 in each case. The asymptotics given by Lemma 3.2 as well as the initial values

ϕ(0) = (η/r)1/r are indicated in this figure.

when r > 0, and

ϕ(z) = κz2 (1 + o(1)) , κ =
1

2|η|

when r < 0.

Proof. The asymptotic behavior of ϕ for z near zero can be obtained from its Taylor expansion

at z = 0. It follows from (19) that ϕ(0) =
(
η
r

)1/r
, ϕ′(0) = 0, and differentiating (19) with

respect to z yields

ϕ′′(0) =
1

r2ϕ(0)r
=

1

rη
,

The asymptotic estimate follows from the observation that the third derivative of ϕ vanishes

at z = 0.

To obtain the asymptotics of ϕ for large z and r > 0, observe that (20) implies

lim
z→∞

ϕ(z) → ∞,

therefore, since (1 + o(1))−1 = 1 + o(1), for large z,

1

2
z2 = ϕ(z)r+1

(
r − η

ϕ(z)r

)
= rϕ(z)r+1 (1 + o(1)) ,

implying (22). Similarly, if r < 0, we write

1

2
z2 = ξ

(
|η| − |r|

ξ|r|

)
= |η|ξ (1 + o(1)) ,

completing the proof. ✷

Figure 1 shows the updating functions in a logarithmic scale with selected values of the

parameter r.



Sparse reconstructions with generalized gamma hyperpriors 12

The asymptotic behavior of the updating function helps us to interpret the role of the model

parameters r and β. For this interpretation, we need the following theorem establishing the

equivalence of the IAS optimization of the objective function with respect to the pair (z, ξ) in

R
2n and the optimization of the objective function along the manifold ξ = ϕ(z),with the last

equality to be understood as componentwise.

Lemma 3.3. Let (z∗, ξ∗) be a local minimizer of the objective function Φ(x, ξ) given by (17).

Then, the point z∗ is a local minimizer of Ψ(z) = Φ(z, ϕ(z)). Conversely, if z∗ is a local

minimizer of Ψ(z), then (z∗, ϕ(x∗)) is a local minimizer of Φ(x, ξ).

Proof: If (z∗, ξ∗) is a local minimizer of Φ, then it must satisfy

∂Φ

∂ξj
(z∗, ξ∗) = 0, implying that ξ∗ = ϕ(z∗).

Let U = B1 × B2 ∈ R
2n be a neighborhood of (z∗, ξ∗) such that for any (z, ξ) ∈ U ,

Φ(z∗, ξ∗) ≤ Φ(z, ξ). Since ϕ is continuous, for each z in some neighborhood B′
1 ⊂ B1

of z∗, ϕ(z) ∈ B2, therefore Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)), that is, z∗ is a local minimizer of Ψ.

Conversely, let z∗ be a local minimizer of Ψ. Then, there is a neighborhood B of z∗ such

that for any z ∈ B, Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)). However, for each z, θ = ϕ(z) is the unique

minimizer of θ 7→ Φ(z, θ), therefore

Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)) ≤ Φ(z, θ), (z, θ) ∈ B × R
+,

implying that (z∗, ϕ(z∗)) indeed is a local minimizer of Φ.✷

It follows from the lemma that in order to understand the sparsity promoting properties of

the various hyperpriors, one can consider the objective function Ψ(z) = Φ(z, ϕ(z)), and in

particular, the scaled penalty term

Π(z) =
1

2

n∑

j=1

z2j
ϕ(zj)

− η
n∑

j=1

logϕ(zj) +
n∑

j=1

ϕ(zj)
r.

We will use this observation together with the asymptotic forms of the updating function

to elucidate how the regularization properties of the penalty functions change with the

hyperparameter values. Before addressing the general case, we consider some special choices

of the parameter values.

3.1. Special generalized gamma hyperpriors

There are hyperparameter combinations for which the updating function is available in closed

form. Some of these special cases have been used in numerical computations in earlier works

[9, 8].
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3.1.1. Gamma distribution and ℓ1 prior The most thoroughly analyzed hyperprior in the

context of the IAS algorithm is the gamma distribution, which is a generalized gamma with

r = 1 and η > 0. With that choice of parameters, equation (16) simplifies to

−1

2
z2 − ηξ + ξ2 = 0,

and can be readily solved for ξ, yielding

ξ = ϕ(z) =
1

2

(
η +

√
η2 + 2z2

)
.

As pointed out in [13, 10], substituting ξj = ϕ(zj) in the MAP penalty function and letting η

go to zero yields

Π(z) =
n∑

j=1

{1
2

z2j
ξj

− η log ξj + ξj

}
=

n∑

j=1

{ z2j

η +
√
η2 + 2z2j

− η log
1

2
(η +

√
η2 + 2z2j ) +

1

2
(η +

√
η2 + 2z2j )

}

→
√
2

n∑

j=1

|zj|, as η → 0+,

that is, in the limit, the penalty function approaches the ℓ1-penalty. In [10], it was further

shown that the unique solution of the IAS algorithm converges to the solution with the ℓ1-

penalty, thus recovering a compressible solution, if the data came from a sparse generative

model. For further results, we refer to [10].

3.1.2. Inverse gamma distribution and Student prior The second special case is that of the

inverse gamma hyperprior, corresponding to setting r = −1. In this case, equation (16)

becomes

1

2
z2 − ηξ − 1 = 0,

and the update formula is

ξ = ϕ(z) =
1

2k
(z2 + 2), k = β +

3

2
.

As for the gamma hyperprior, substituting ξj = ϕ(xj) in the MAP penalty functional yields

Π(z) =
n∑

j=1

{
1

2

z2j
ξj

+ k log ξj +
1

ξj

}
=

n∑

j=1

{
z2j + 2

2ξj
+ k log ξj

}

= n(k − log 2k) +
n∑

j=1

log(z2j + 2)k,

which corresponds to the prior model

πprior(z) ∝ exp(−Π(z)) ∝
n∏

j=1

1

(z2j + 2)k
,
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We observe that as β → 0+, k → 3/2, and the distribution of the individual components zj
approaches the Student distribution,

St(z | ν) ∝ 1
(
1 + z2

ν

)(ν+1)/2
,

with parameter ν = 2, a prominently fat tailed distribution that favors outliers, thus promoting

sparsity.

3.1.3. Generalized gamma and ℓp prior The third special case that we consider here is that

where rβ = 3/2, for which the update formula becomes

−1

2
z2 + rξr+1 = 0,

or

ξ = ϕ(z) =
|z|2/(r+1)

(2r)1/(r+1)
.

Substituting ξj = ϕ(zj) in the MAP penalty functional we get

Π(z) =
n∑

j=1

{
1

2

z2j
ξj

+ ξrj

}
=

n∑

j=1

{
(2r)1/(r+1)

2
|zj|2−2/(r+1) +

1

(2r)1/(r+1)
|zj|2r/(r+1)

}

= Cr

n∑

j=1

|zj|2r/(r+1), Cr =
r + 1

(2r)r/(r+1)
.

and letting

p =
2r

r + 1
, 0 < p < 2,

yields

Π(z) = Cr

n∑

j=1

|zj|p, 0 < p < 2

The ℓp-penalties for 0 < p < 1 are known for their sparsity promoting properties, and

have been analyzed extensively in the literature. However, since are non-convex, they pose

challenges when it comes to computing the corresponding regularized solution.

3.2. General case: asymptotics

Consider now the penalty functional Π(z) =
∑

j=1 Πj(zj) in the general case with r > 0.

From Lemma 3.2 we see that if |zj| is large, the penalty function of the jth component can be



Sparse reconstructions with generalized gamma hyperpriors 15

Figure 2: Level set plots of the reduced penalty function Π(z) in two dimensions with different

values of r, corresponding asymptotically to ℓp-penalties with p = 2/5 (left), p = 1 (center)

and p = 8/5 (right). The corresponding ℓp-sphere is superimposed with dark blue. The

boundary of the convexity region (see Section 4) for r = 1/4 is marked by the red square.

written as

Πj(zj) =
1

2

z2j
ϕ(zj)

+ ϕ(zj)
r − η logϕ(zj)

=
1

2κ
|zj|2−2/(r+1)(1 + o(1)) + κr|zj|2r/(r+1)(1 + o(1))

− 2η

r + 1
log(|zj|(1 + o(1)))

∝ |zj|p(1 + o(1)), p =
2r

r + 1
.

Similarly, for small values of |zj|, (21) yields the asymptotic estimate

Πj(zj) =
1

2

z2j
a+ bz2j +O(z4j )

+ (a+ bz2j +O(z4j ))
r − η log(a+ bz2j +O(z4j ))

= C1 + C2z
2
j +O(z4j ))

with a = (η/r)1/r, b = 1/(2ηr), and C1 and C2 are some scalars. Therefore, for large |zj|,
the penalty behaves like an ℓp-penalty with p = 2r/(r + 1) ∈ (0, 2), while for small |zj|, the

penalty is essentially Gaussian.

Figure 2 shows the level curves of the function Π(z) in two dimensions for some parameter

choices. From these plots it is clear that for large values of ‖z‖, the level sets look like the ℓp

spheres, while for small values, the level curves become increasingly circular as predicted by

the asymptotic formulas.

4. Convexity

Our first goal in this section is to find out for which choices of the parameters (r, β) the

objective function Φ given by (17) is globally convex for all (z, ξ) ∈ R
n×R

n
+, or, alternatively,

convex in a specified subset. The following theorem summarizes the results.
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Theorem 4.1. Let β > 0 and r 6= 0, and let Φ(z, ξ) = Φ(z, ξ | r, β) be the objective function

(17) for the dimensionless formulation of the problem.

(a) If r ≥ 1 and η = rβ − 3/2 > 0, the function Φ(z, ξ) is convex everywhere.

(b) If 0 < r < 1 and η = rβ − 3/2 > 0, or, if r < 0 and β > 0, the function Φ(z, ξ) is

convex provided that

ξj < ξ =

(
η

r|r − 1|

)1/r

.

Proof: Recall that the positive definiteness of the Hessian is a sufficient condition for the

convexity of the underlying functional. Consider the block partitioning of the Hessian of Φ,

H = H(z, ξ) =

[
∇z∇zΦ(z, ξ) ∇z∇ξΦ(z, ξ)

∇ξ∇zΦ(z, ξ) ∇ξ∇ξΦ(z, ξ)

]
,

where,

∇z∇zΦ(z, ξ) = D
−1
ξ + Â

T
Â,

∇z∇ξΦ(z, ξ) = ∇ξ∇zΦ(x, θ) = diag
(
− zj

ξ2j

)
,

∇ξ∇ξΦ(z, ξ) = diag
(z2j
ξ3j

+ r(r − 1)ξr−2
j + η

1

ξ2j

)
,

For any vector q =

[
u

v

]
∈ R

2n, we have

qTHq = ‖Âu‖2 +
n∑

j=1

u2
j

ξj
+

n∑

j=1

(z2j
ξ3j
v2j + r(r − 1)ξr−2

j v2j + η
v2j
ξ2j

)
− 2

n∑

j=1

zj
ξ2j
ujvj

= ‖Âu‖2 +
n∑

j=1

1

ξj

(
uj −

zj
ξj
vj

)2
+

n∑

j=1

φj(ξj | r, β)v2j , (23)

where

φj(ξj | r, β) = r(r − 1)ξr−2
j + η

1

ξ2j
. (24)

Note that the first two terms in (23) are always non-negative, so the positivity of the quadratic

form defined by the Hessian it is guaranteed if φj(ξj | r, β) > 0 for all j, 1 ≤ j ≤ n. The

proof for the different cases follows by enforcing this condition. ✷

Figure 3 shows the regions in the r, β plane corresponding to hyperparameter choices leading

to convex or conditional convex MAP objective functions. Observe that the ℓp-penalty

corresponds to the boundary β = 3/(2r), with p = 2r/(r + 1). In particular, for p ≤ 1,

the generalized gamma family provides nearby penalty functionals that yield at least a locally

convex objective function. Similarly, for r = −1, the non-convex Student distribution penalty

corresponds to the limit β → 0+, while for β > 0, the convexity radius is positive.
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Figure 3: Convexity regions in the (r, β) plane. The red shadowing denotes parameter

choices for which the MAP objective function is convex everywhere, and the blue shadowing

parameter choices for which the MAP objective function is only locally convex. The curve

β = 3/(2r) marks the parameter pairs for which the hierarchical model is an ℓp-penalty priors,

with p = 2r/(r + 1), which are convex if p ≥ 1 or, equivalently, r ≥ 1. The vertical line

r = 1 corresponds to the family of gamma hyperpriors.

We define the convexity radius ρ = ρ(r, β) ≥ 0, by

ρ = ϕ−1(ξ),

that is, for ‖z‖∞ < ρ, we have ‖ξ‖∞ < ξ guaranteeing the convexity. If the objective function

is globally convex as in the case (a) of the Theorem 4.1, we set ρ = ∞.

4.1. Stable convexity

Consider the IAS algorithm for computing the MAP estimate, and denote the current iterate

by (zt, ξt). The update of z requires the solution of the minimization problem

zt+1 = argmin

{
1

2
‖Âz − b‖2 + 1

2

n∑

j=1

z2j
ξtj

}
.

We say that Φ(z, ξ) is stably convex if there is a T > 0 such that, for t > T ,

‖zt‖∞ < ρ ⇒ ‖zt+1‖∞ < ρ,

in other words, stable convexity is tantamount to guaranteeing that once the IAS iterates

(zt, ξt) enter the convexity basin they do not leave it, thus keeping the optimization problem

convex.

To find a sufficient condition for stable convexity, we need an estimate of the ℓ∞-norm of the

least squares solution of the system

[
Â

D
−1/2
ξ

]
z =

[
b

0

]
, ‖ξ‖∞ < ξ.
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In the following, we assume that the columns â(j) of Â have been scaled according to the

sensitivity and satisfy ‖â(j)‖ = C1/2. The following lemma provides an estimate for the size

of the components of the updated z.

Lemma 4.2. Assume that ξj < ξ. Then the entries of the solution z of the normal equations,

(ÂT
Â+ D

−1
ξ )z = Â

Tb

satisfy

|zj| ≤
Cξj

1 + Cξj
(hCξ + 1)‖ÂTb‖2, h = max

j
{
∑

i 6=j

| cos∠(â(i), â(j))|}.

Proof: In terms of the quadratic forms associated with the symmetric positive definite

matrices, we have that

Â
T
Â+ D

−1
ξ ≥ D

−1
ξ ,

from which it follows that

(ÂT
Â+ D

−1
ξ )−1 ≤ Dξ,

establishing the following inequality for the induced ℓ2-norms,

‖(ÂT
Â+ D

−1
ξ )−1‖2 ≤ ‖Dξ‖2 ≤ ξ,

and further, the estimate

‖z‖∞ ≤ ‖z‖2 ≤ ξ‖ÂTb‖2. (25)

Next we express ÂTÂ as the sum of the two matrices CI and R containing, respectively, its

diagonal and off-diagonal entries,

Â
T
Â = CI+ R, Rij =

{
C cos∠(â(i), â(j)), i 6= j,

0, i = j.

A substitution of this expression in the normal equations gives

diag(C + 1/ξj)z + Rz = Â
Tb,

yielding the following upper bounds for the components of the solution,

|zj| ≤
ξj

Cξj + 1

(
|(Rz)j|+ |(ÂTb)j|

)
.

Furthermore, since

|(Rz)j| ≤ ‖R‖∞‖z‖∞ = maxk|
∑

i 6=k

Rik|‖z‖∞ = Ch‖z‖∞,
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replacing ‖z‖∞ with its upper bound from (25) and observing that ‖(ÂTb)j| ≤ ‖ÂTb‖2, we

have

|zj| ≤
ξj

Cξj + 1

(
Ch‖z‖∞ + ‖(ÂTb)‖2

)
≤ Cξj

1 + Cξj
(hCξ + 1)‖ÂTb‖2

thus completing the proof. ✷

While not definitive, the previous lemma points to some of the factors that contribute to the

stable convexity. First, we observe that if |ztj| ≪ 1, choosing the shape parameter η > 0 small

implies that ξtj = ϕ(|ztj|) ≪ 1. The above lemma suggests that in the IAS iterations, small

entries remain small, and therefore one can hope that they remain below the convexity bound.

On the other hand, if the columns of the matrix Â are almost orthogonal, we have h ≪ 1,

we have an upper bound close to the norm ‖ÂTb‖ for the entries |zj|. In such case, choosing

the parameters (r, β) so that ρ = τ‖ÂTb‖2 for some safeguard factor τ > 1 guarantees stable

convexity of the objective function. The quantity h is closely related to the mutual coherence

of the matrix [21], and the Welch bounds for frames, widely studied in frame theory and signal

processing literature [31].

Figure 4 shows graphically the convexity radius as a function of the parameters r and η, as

well as the evolution of the level curves in two dimensions of the reduced objective function

together with the convexity spheres. Eight selected zoomed-in tiles of the panel are shown

in Figure 5. For r > 0, the ℓp-spheres corresponding to the large norm asymptotics are also

plotted to underline the similarity between them and the contour lines.

Remark 4.3. In general, one may not have an a priori guarantee that the components of the

unknown are bounded by a constant smaller than the convexity radius. However, if we know

that a priori, |xj| < M for some M > 0, we may choose the parameters (r, η) so that ρ ≥ M ,

guaranteeing global convexity and thus the existence of a unique minimizer. However, such

parameter adjustment is a non-trivial optimization problem that is not addressed here. A

natural question that arises then is, how the IAS algorithm should be modified for a case in

which a box constraint is part of the prior. This question is addressed in the next section.

5. IAS with bound constraints

Consider the constrained optimization problem:

minimize Φ(z, ξ) subject to the constraints 0 ≤ z ≤ H ,

for some H > 0. The minimizer corresponds to the MAP estimate under the belief that

the components of the solution are nonnegative and not larger than H . More general box

contraints can be treated in a similar way.
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Figure 4: The radius of the convexity region as a function of r and η for generalized gamma

hyperpriors with−3 ≤ r < 0 (top left) and 0 < r ≤ 1 (top right). The two panels on

the bottom row show, for different choices of (r, η) in the generalized gamma family, the

level curves of the corresponding functionals. In each tile, a red curve, if present, marks the

boundary of the region inside which the functional is convex. The absence of a red curve

indicates that for that choice of (r, η) the functional is always convex.

We begin by introducing the penalty function

G(z) =

{
0, when 0 < z ≤ H,

∞ otherwise,

and write the posterior density with the bound constraints as

π(z, ξ | b) ∝ exp (−Φ(z, ξ)−G(z)) = exp (−ΦG(z, ξ)) .

Following the ideas in [28, 20], consider the Moreau-Yoshida envelope of the objective

function,

Φλ
G(z, ξ) = Φ(z, ξ) +Gλ(z),
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Figure 5: Eight of the panels in figure 4 corresponding to negative but varying r keeping η

fixed (upper row), and positive fixed r with varying η (lower row). The convexity region is

shaded in red. For positive values of r, the plot of the ℓp-ball corresponding to the asymptotic

behavior is also plotted to underline the similarity with the contour lines.

where

Gλ(z) = minu∈Rn

{
G(u) +

1

2λ
‖z − u‖2

}
,

with λ > 0 an auxiliary parameter. Its can be shown [26] that the Moreau-Yoshida envelope

is differentiable with respect to z, and its gradient is of the form

∇zΦ
λ
G(z, ξ) = ∇zΦ(z, ξ) +

1

λ
(z − proxλG(z)),

where the proximal operator is defined as

proxλG(z) = argminu∈Rn

{
G(u) +

1

2λ
‖z − u‖2

}
=

{
z, if G(z) = 0

Pz, if G(z) = ∞ ,

and P is the orthogonal projector onto the feasible set [0, H]n. Since the derivatives of the

objective function with respect to the parameters ξj are unaffected by the inclusion of the

bounds, a natural extension of the IAS algorithm for bound constrained problems can be

obtained by modifying the solution of the least squares minimization problem as follows:

Given the current ξt:

(a) Find z = z∗ by solving ∇zΦ(z, ξ
t) = 0 in the least squares sense,

(b) Define zt+1 = proxλG(z
∗) as the projection of z∗ onto the feasible set.
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Observe that unlike when exploring the posterior, for the computation of the MAP estimate it

is not necessary to specify the auxiliary parameter λ, as the proximal operator is a projection

regardless of the value of λ. It was proved in [20] that, as λ → 0+, the posterior distribution

defined in terms of the Moreau-Yoshida envelope converges in the sense of total variation

towards the posterior distribution augmented by the positivity constraint.

6. Computed examples

In this section, we present computed examples that illustrate how the choice of the hyperprior

from the generalized gamma family affects the sparsity promotion of the computed MAP

solution. Moreover, we address some computational aspects when using a hypermodel that

does not allow a closed form updating formula for the parameter ξ.

6.1. Example 1

The first computed example is a one-dimensional deconvolution problem with and Airy

convolution kernel. The generative model is a piecewise constant signal f : [0, 1] → R,

f(0) = 0, and the data consist of discrete noisy observations,

bj =

∫ 1

0

A(sj − t)f(t)dt+ εj, 1 ≤ j ≤ m, A(t) =

(
J1(κ|t|)
κ|t|

)2

,

where J1 is the Bessel function of the first kind and κ is a scaling controlling the width of the

kernel. We set κ = 40, yielding a kernel with FWHM = 0.08. We discretize the integral as

∫ 1

0

A(sj − t)f(t)dt ≈
n∑

j=1

wkA(sj − tk)f(tk), 1 ≤ k ≤ n,

where tk = (k − 1)/(n− 1) and the wk’s are the trapezoidal quadrature weights. To generate

the data, we use a dense discretization with n = ndense = 1253, while the forward model

used for solving the inverse problem assumes n = 500. The observation points are given by

sj = (4+ j)/100, 1 ≤ j ≤ m = 91, and the noise added is assumed to be scaled white noise,

with standard deviation σ set to 1% of the noiseless generated signal. We denote xj = f(tj).

Figure 6 shows the generative signal and the data.

To compute the update of the hyperparameter ξ given the current vector z, we first sort the

values of z so that 0 ≤ |zj1 | ≤ . . . ≤ |zjn |, and subsequently solve numerically the differential

equation (19) at these values. Observe that this solution is fast since the propagation needs

not to be restarted from zero, but rather we only need to propagate from |zjℓ | to |zjℓ+1
| to get

the next value. The integration was done using the RK45 solver of Matlab.

While the generative signal, a piecewise constant function, is not sparse, it admits a sparse

representation in terms of its increments zj = xj − xj−1 over the interval of definition. If we
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Figure 6: Left: The generative model. Center: the blurred and noisy data vector b ∈ R
91.

Right: Singular values of the discrete blurring kernel A ∈ R
91×500 used for the solution of the

inverse problem. Since only the first 30 singular values are significantly different from zero,

the matrix is numerically singular.

assume that x0 = 0, then

z = D x , D =




1 0 . . . 0

−1 1 . . . 0
. . .

0 . . . −1 1


 ∈ R

n×n, (26)

hence

x = C z with C = D
−1 =




1 0 . . . 0

1 1 . . . 0
...

. . .

1 . . . 1 1


 ∈ R

n×n. (27)

Therefore our inverse problem is to estimate the vector z, assumed to be sparse, from the data

vector b, given the forward model

b = ACz + e, ε ∼ N (0, σ2
I), Ajk = wkA(sj − tk). (28)

To illustrate how the sparsity of the MAP estimate determined by the IAS algorithm is affected

by the choice of hyperprior in the generalized gamma family, we show the results with the

hyperpriors corresponding to r = 3, r = 1 and r = 0.5, see Figure 7. The results clearly

demonstrates that with decreasing r, the sparsifying properties are strengthened. Observe that

the dramatic decrease of the CGLS iterations, compared to the numerical rank of the matrix,

makes the approximate IAS very attractive for large problems.

6.2. Example 2

In the second example, we consider the problem of estimating a nearly black two-dimensional

object. The generating model is an impulse image, defined as a distribution on Ω =
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Figure 7: Reconstructions of the signal x (left), the hyperparameter θ (center) and the count

of CGLS iterations per each IAS update when the approximate method is employed. In the

top row, the parameter values are r = 3 and η = 10−5, in the middle row, r = 1 and η = 10−5,

and in the bottom row r = 1/2 and η = 10−5. The results with both the exact and approximate

IAS are shown.

[0, 1]× [0, 1],

dµ(p) =
J∑

k=1

akδ(p− pk)dp, pk ∼ Uniform(Ω), ak ∼ Uniform([1.5, 2]),

and we assume that the distribution is observed with a Gaussian convolution kernel,

A(p, p′) =
1

2πw2
e−‖p−p′‖2/2w2

, w = 0.01,

the discrete an noisy data being given at observation points qj ∈ Ω by

bj =

∫

Ω

A(qj, p
′)dµ(p′) + εj =

K∑

k=1

akA(qj, pk) + εj.

To solve the inverse problem, we divide the image Ω in n = 128 × 128 = 16 384 pixels,
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Figure 8: Left panel: The generative model, an impulse image of 50 point sources with

variable amplitude. Right panel: The 64 × 64 blurred and noisy observation, degraded

by Gaussian blur and additive while Gaussian noise, scaled so as to achieve SNR ≈ 25,

corresponding to a standard deviation of about 1.8% of the maximum noiseless signal.

denoted by Ωℓ, and discretize the kernel, approximating

∫

Ω

A(qj, p)dµ(p) ≈
n∑

ℓ=1

|Ωℓ|A(qj, q′ℓ)︸ ︷︷ ︸
=Ajℓ

xℓ, xℓ =
1

|Ωℓ|

∫

Ωℓ

dµ(p),

where q′ℓ denotes the center point of the pixel Ωℓ and |Ωℓ| is its area. In this example, we

assume that the number of observation points is m = 64 × 64 = 4 096, hence the forward

model is defined by a matrix A ∈ R
m×n. The noiseless signal is then corrupted by scaled

white noise with standard deviation approximately 1.8% of the maximum noiseless signal. In

this case, since the signal itself is sparse, no change of variable is needed. Figure 8 shows the

positions of the point masses in the true impulse image, as well as the noisy blurred image

with kernel width w = 0.01.

We consider three hyperpriors from the generalized gamma family, corresponding to r = 1,

r = 0.5, and r = −1. In this example we do not assume non-negativity, hence no projection

is performed. To promote sparsity in the first two cases se set η = 10−5, while in the third

case, where r = −1 and η does not have the same role as for positive values of r, we set

β = 3. We scale the hyperparameters by a constant value, setting ϑj = ϑ0 = constant, and

to make the results comparable, we select the parameter ϑ0 so that the lower bound for the

scaling parameters θj are equal,

ϑ0ϕ(0) = ϑ0

(η
r

)1/r
= 10−9.

In this example, we consider only the approximate IAS algorithm.

The final reconstructions, shown in Figure 9 are almost identical, and the number of iterations

are comparable. The number of the CGLS inner iterations per outer iteration in each case

is low, no more than 15. To see a difference in the performance for the three parameter

choices, we show how the reconstruction of the hyperparameter θ proceeds. Figure 11 shows
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Figure 9: Reconstructions of the impulse image from blurred noisy observation. The

reconstructed image is of size 128 × 128, and the hyperparameter values are, from left to

right: (r, η) = (1, 10−5), (r, η) = (1/2, 10−5), and (r, β) = (−1, 3). The images are in the

same scale.
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Figure 10: The number of CGLS iterations in each outer iteration. The hyperparameter values

correspond to those in Figure 9.

logarithmic plots of the vector θ, rendered as a pixel image, after 2,4,8, and 16 iterations.

The first observation is that even if the lower bound for the parameter vector θ was set equal,

each choice of hyperprior leads to a different scale of values of θ: The value r = 0.5 yields

the lowest values, while in the case r = −1 the interval is shifted to considerably higher

values. Interestingly, however, the ratio between the largest and smallest value is in the same

range. This observation is important, as the ratio informs us about the relative weights of

each column of A in the scaling A → AD
1/2
θ . The column scaling performs an effective

model reduction, identifying the relevant columns of A and suppressing irrelevant ones. Each

hyperparameter selection in the end identifies the same relevant columns, however the plots

in Figure 11 show that the choice r = 1 is the most conservative, while when r = −1 the

suppression of irrelevant columns happens sooner. Therefore one can argue that the parameter

choices that correspond to less convex case pursue more greedily the support, however, the

lack of convexity also makes it possible that the support corresponds to a local, rather than

global minimum.

6.3. Example 3

The third example demonstrates the inclusion of bound constraints in the IAS algorithm. We

consider a limited angle tomography inverse problem under the assumption that the generative
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Figure 11: Logarithmic plot, top to bottom, of the estimate of θ for the three hyperpriors

corresponding to Figure 9 at the end of the outer iteration 2, 4, 8 and 16 (left to right).

Observe that the focusing effect corresponding to effective model reduction is fastest with

r = −1 (bottom row) and slowest with r = 1 (top row).

density, shown in Figure 12, is piecewise constant, and the data consist of parallel beam

sinogram data corresponding to illumination angles from −40◦ to 40◦ around the vertical

illumination direction. More precisely, given a density function ρ ≥ 0, the noiseless data can

be written as

bjk =

∫ ∞

0

ρ(pj + twk)dt, pj = (sj, 0), wk = (sinφk, cosφk), (29)

where the values sj , 1 ≤ j ≤ 100 are uniformly distributed over the interval [−0.4, 1.4], while

the angles φk, 1 ≤ k ≤ 80, cover uniformly the angle [−40◦, 40◦], this constituting data of

dimension m = 8000. We generate the noiseless data by formula (29), by finding the lengths

of the line segments intersecting the two inclusions shown in Figure 12, and corrupt it with

additive scaled white noise with standard deviation σ equal to 1% of the maximum of the

noiseless data. To solve the inverse problem, we divide the image area Ω = [0, 1] × [0, 0.5]

into n = nx × ny = 200 × 100 = 20 000 square pixels, denoted by Ωi, approximating the

conductivity by a piecewise constant density,

∫ ∞

0

ρ(pj + twk)dt ≈
n∑

i=1

|ℓjk ∩ Ωi|xi,

where ℓjk is the line parametrized by intercept sj and angle φk, |ℓjk ∩ Ωi| is the length of its
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Figure 12: The underlying generative model with two inclusions in a transparent background

ρ = 0. The sinogram data are computed by computing the lengths of the intersections of the

lines with the two inclusions.

intersection with the pixel Ωi, and xi is the ith pixel value of the density. By enumerating the

rays, the above formula defines the linear model with a sparse matrix A ∈ R
m×n.

The true target is not sparse in the pixel basis, but as in [9], we seek to represent it in terms

of vertical and horizontal increments. Assuming that the density ρ is represented as an image,

and the pixels are enumerated column-wise, the vertical and horizontal increments, v and h,

of the image can be computed as

v = (Inx
⊗ Dny

)︸ ︷︷ ︸
=Dv

x, h = (Dnx
⊗ Iny

)︸ ︷︷ ︸
=Dh

x,

where Dnx
∈ R

nx×nx and Dny
∈ R

ny×ny are the first order finite difference matrices (26) of

the respective sizes, Iny
and Inx

are the identity matrices, and ⊗ is the Kronecker product.

As in [9], we write the conditional prior for the pair (v, h) ∈ R
2n as

π(v, h | θ) = 1

(2π)nθ1 · · · θn
exp

(
−1

2

n∑

j=1

v2j + h2
j

θj

)
,

that is, rather than treating the vertical and horizontal increments as independent, the prior

is written for the length of the gradient. Observe that unlike in Example 1, in this case the

mapping between x and x = (v, h) is not bijective. Moreover, the prior can be interpreted

to promote group sparsity, being thus slightly more general than the plain sparsity promoting

prior discussed in the paper, however, we apply the alternating iteration with projection to

the feasible set as described above. We refer to the cited article for details about how the

likelihood density is interpreted.

We run the approximate IAS algorithm with the bound constraints, assuming that 0 ≤ xj ≤
H , where the upper bound in this case is chosen high enough so that in practice the projection

is performed only on the positive cone. We test the algorithm using two hypermodels,

corresponding to parameter values (r, η) = (1, 10−4) and (r, η) = (0.5, 10−4). The stopping

criterion for the IAS algorithm is ‖θt+1−θt‖∞/‖θt‖∞ < τ , with the threshold value τ = 10−2.
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Figure 13: The limited angle tomography reconstruction with the hyperparameter values

(r, η) = (1, 10−5). The iterations converge in 15 iterations to the solution shown in the

top row, left, and the corresponding scaled variance ξ, rendered as a pixel image, is shown

in a logarithmic plot on the right. The vertical intersection through the two inclusion are

shown in the bottom row, left, and the horizontal intersection on the right. We observe that

the hyperprior is not focalizing enough to suggest sharp edges at the horizontal boundaries

where the data do not support the jump.

Figure 13 shows the final reconstructions. The results confirm that the hyperprior r = 1/2

produces a sharper edge of the target objects on the horizontal edge where the data are not

able to distinguish between a sharp and diffuse edge, while the hyperprior r = 1 is less

committal. In this example, the approximate IAS algorithm with projection converges rather

fast for r = 1 (15 iterations), while the convergence in the case r = 0.5 requires more

iterations (153). However, as in the previous example, even after a few iterations, the latter

hypermodel has already identified the support of the discontinuities; the intermediate results

are not shown here. As in the previous example, the large dynamical range of ξ, around 9

orders of magnitude, provide a very efficient column reduction of the matrix ADθ.

7. Conclusions

The present article discusses conditionally Gaussian hypermodels and the IAS algorithm,

extending the previous analysis to a larger class of hyperpriors, and investigates the asymptotic

behavior of the resulting priors, as well as the convexity of the optimization problem for

finding the MAP estimate. The algorithm is modified to include simple bound constraints,

and an emphasis is given to an approximate method of solving the imbedded least squares

problem using Krylov subspace methods. The computed examples confirm that the further
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Figure 14: Reconstructions from the same data as in Figure 13 with parameter values

(r, η) = (0.5, 10−5). The number of iterations before convergence is higher than in the

previous case, however, the contrast in ξ is orders of magnitudes larger than in the previous

case. As in Example 2, even after few iterations, the algorithm is already identifying well the

support of the discontinuities (not shown). Also, as the hyperprior is more sparsifying, the

algorithm suggests sharp jumps across the horizontal boundaries of the inclusions.

away from the convexity conditions we are, the more pronounced the identification of the

support of the sparse variable is, with the caveat that in lack of convexity, there is no guarantee

of a single global minimum of the energy functional. Thus, the algorithm may get trapped in a

local minimum. The question of how to effectively take advantage of the convexity properties

requires further tools and will be a topic of a forthcoming work. The examples also show that

the proposed methods for sparse recovery can be an efficient model reduction scheme. The

latter property will be further analyzed in a forthcoming article.

The discussion in this article was limited to finite dimensional discretized inverse problems.

While sparsity in infinite dimensions is not a well-defined concept, a significant body of

work exists, with the interpretation that a prior is sparsity promoting if the finite dimensional

truncation in a given basis is sparsity promoting, giving rise, e.g., to Besov space priors with

wavelet bases, see, e.g., [24, 15, 25, 1]. The interpretation and extension of the hierarchical

model discussed in this paper to infinite dimensional spaces remain an open problem.
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