ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Prediction of Time-to-Solution in Material Science Simulations Using Deep Learning

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Pittino, F., Bonfa, P., Bartolini, A., Affinito, F., Benini, L., Cavazzoni, C. (2019). Prediction of Time-to-

Solution in Material Science Simulations Using Deep Learning. New York : Association for Computing
Machinery [10.1145/3324989.3325720].

Availability:
This version is available at: https://hdl.handle.net/11585/718393 since: 2020-01-29
Published:

DOI: http://doi.org/10.1145/3324989.3325720

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)

10 September 2024

http://doi.org/10.1145/3324989.3325720
https://hdl.handle.net/11585/718393

This is the final peer-reviewed accepted manuscript of:

Federico Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini, and Carlo
Cavazzoni. (2019). Prediction of Time-to-Solution in Material Science Simulations
Using Deep Learning. In Proceedings of the Platform for Advanced Scientific
Computing Conference (PASC ’19). Association for Computing Machinery, New York,
NY, USA, Article 10, pag. 1-9.

The published version is available online at:
https://dl.acm.org/doi/10.1145/3324989.3325720

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://dl.acm.org/doi/10.1145/3324989.3325720

Prediction of time-to-solution in material science simulations

Federico Pittino*
federico.pittino@unibo.it
Department of Electrical, Electronic
and Information Engineering (DEI),
University of Bologna
Bologna, Italy

Fabio Affinito
f.affinito@cineca.it
CINECA
Casalecchio di Reno (Bologna), Italy

using Deep Learning

Pietro Bonfa*
pietro.bonfa@fis.unipr.it
Department of Mathematical,
Physical and Computer Sciences,
University of Parma
Parma, Italy

Luca Benini
luca.benini@unibo.it
Department of Electrical, Electronic
and Information Engineering (DEI),
University of Bologna
Bologna, Italy
Integrated Systems Laboratory, ETH
Zurich
Zurich, Switzerland

Andrea Bartolini
a.bartolini@unibo.it
Department of Electrical, Electronic
and Information Engineering (DEI),
University of Bologna
Bologna, Italy

Carlo Cavazzoni
c.cavazzoni@cineca.it
CINECA
Casalecchio di Reno (Bologna), Italy

ABSTRACT

Predicting the time to solution for massively parallel scientific codes
is a complex task. The reason for this is the presence of multiple,
strongly interconnected algorithms that possibly react differently
to the changes in compute power, vectorization length, memory
and network bandwidth and latency and I/O throughput. A reliable
prediction of execution time is however of great importance to
the user who wants to plan on large scale simulations or virtual
screening procedures characteristic of high throughput computing.
In this article we present a practical approach based on machine
learning techniques to achieve very accurate predictions of the time
to solution for a DFT-based material science code. We compare our
results with the predictions provided by a parametrized analytical
performance model showing that deep learning solutions allow
for a greater accuracy without the need of domain knowledge to
introduce an explicit description of the algorithms implemented in
the code.

ACM Reference Format:

Federico Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini,
and Carlo Cavazzoni. 2020. Prediction of time-to-solution in material sci-
ence simulations using Deep Learning. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

“Both authors contributed equally to this research.

1 INTRODUCTION

One of the consequence of the end of Moore’s era and Dennard’s
scaling has been the push towards architecture specialization to
keep the pace in performance growth of HPC systems [1]. On one
side we see the rise of hybrid systems, where the standard central
processing unit (CPU) is accompanied by one or more accelerators.
Other approaches still adopt the classical CPU-based solution, but
with a drastic increase of the number of cores per node and of the
set of vectorized instructions. At the same time, scientific software
targeting HPC systems faces this growing diversity by branching
out algorithms and enriching the parallel or accelerated execution
options. As a consequence, the (parallel) execution of these applica-
tions becomes more complex and their performance on different
machines becomes harder to predict. This may impact the users of
high throughput computing (HTC) and HPC systems significantly.
On the one hand, it may become difficult to identify execution prob-
lems as the expected execution time on a given machine becomes
more unpredictable. On the other hand, when planning for large
scale simulations or HTC approaches, reliable estimates of the time
to solution for a given set of simulation are very hard to obtain.

Finally, it may also become rather complex to estimate the reduc-
tion of the time to solution for different parallel execution schemes
as the number of possible approaches to solve the same problem
grows.

All these problems derive from the difficulty of finding reliable
strategies to estimate the computational efficiency of scientific
codes given a computational method, a given scientific case and
a set of compute node(s). In fact, having an accurate estimate of
the execution time for any scientific application with a given input
file in an HPC environment would lead to more precise resources
allocation, therefore saving money and improving utilisation of
computational resources, which is particularly relevant for high-
throughput computations.

Conference’17, July 2017, Washington, DRédeiSéo Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini, and Carlo Cavazzoni

Miu and Missier [2] showed promising results in the estimation
of the execution time of chemical engineering workflows using
decision tree methods to perform machine learning on the base of
a set of input features. A different approach based on radial basis
function neural network (RBF-NN) was proposed by Nadeem et
al. [3] for the prediction workflows’ execution time for grid based
computing. Notably, one of the workflows considered by the authors
is based on the ab initio code Wien2K [4]. A thorough review of
other approaches to solve this problem is provided by [5], mostly
employing Machine Learning techniques. The common trait to all
these approaches is the assumption that the models should work
by monitoring the online status of the machine and the workload
characteristics. These approaches are thereby not exploiting any
domain knowledge on how the application is designed, and neither
of its current input.

A completely different approach is pursued in [6], where the
authors model the applications performance using their source
code as input. The advantage of such an approach is that the model
becomes aware of the operation of each application, and therefore
its predictions more independent of the particular architecture on
which it was derived. On the other hand, such a model is very
complex to obtain.

In our work we take instead a different approach, by focusing
on the application level and using as input to the prediction models
a set of features derived from the application input files. We also
specialize the goal of finding the execution time by considering a
selected set of subroutines of the QuantumESPRESSOsuite [7]. We
show that accurate predictions can be obtained with machine learn-
ing (ML) techniques using a modest amount of training data and
algorithms. As expected, the best performance is obtained by us-
ing advanced deep learning techniques, i.e., training multi-layered
artificial neural networks [8], which are rapidly becoming the state-
of-the-art in multiple different fields. In particular, a deep artificial
neural network is able to even beat the accuracy of a full-custom
analytical model specifically derived using expert knowledge of the
application, improving the prediction error by up to 5%.

The article is organized as follows. In section 2 we describe how
the data used for the machine leaning was generated, collected and
prepared. Section 3 discusses the various ML approaches considered
and describes a parametrized analytical performance model that
we developed to compare the quality of its predictions against the
ML results, that appear in section 4. Conclusions and perspectives
are drawn in section 5.

2 DATA AND CODE DESCRIPTION

In this section we present the code used to perform the runs of the
application considered in this work. Some relevant characteristics of
the data collection are also discussed in relation to their composition
and diversity. Both these points are in fact of importance for the
sake of performing machine learning based approaches.

A set of about 10k runs is publicly available in the “2D structures
and layered materials” collection [9] stored in the MaterialsCloud
repository [10]. These runs were mainly produced with the codes
of QuantumESPRESSO (QE) [7, 11], a suite for performing material
science simulations at the nanoscale in massively parallel environ-
ment.

2.1 Codes

The QuantumESPRESSO suite is a collection of applications, mostly
written in modern Fortran, for performing simulations aiming at ob-
taining electronic structure details and estimating materials’ prop-
erties from first principles. The term “first principles” is used to
indicate that this kind of simulations does not depend on ad-hoc
parametrizations but only requires the derivation from the funda-
mental laws of (quantum) physics of a (many-body) interaction
problem to be solved numerically. In the field of materials mod-
elling, the definition of the problem only depends on the position
of the elements in a compound. As a matter of fact, a number of
approximations enters the theory and the discretization of the math-
ematical problem implied by numerical approaches increases the
number of initial information that these simulations require. As a
consequence, the type of input data that one requires to devise a
simulation can be divided into two classes: the physical descrip-
tion of the material under study and the set of information that
is required to represent its quantum-physical description into a
discretized computational approach.

There is a third class of control variables that is specific to the
code and algorithm implementations used to solve the problem.
These variables are defined during the execution phase, i.e. at run-
time. Examples may include parallelization options, input/output
policies, optimization levels etc.

To describe how these data enter the evaluation of the total time
to solution, let us start describing briefly the code of the QE suite
we focused in this work: PWscr.

2.2 Algorithms

PWscF, solves the Khon-Sham (KS) equations [12] iteratively on a
plane wave basis and using various approaches for treating core
electrons, namely, norm conserving, Ultrasoft [13] or PAW pseu-
dopotentials [14]. It features a hybrid MPI+OpenMP parallelism
with hierarchical levels for data and computational intensity dis-
tribution. These levels are mapped onto MPI Communicators and
are all user tunable to optimize the code performance on different
architectures.

Tab. 1 summarizes the list of runtime options that govern the
parallel execution strategies. Following a top-down description,
NPool portions out the world communicator and defines the number
of groups of MPI processes that will solve the KS Hamiltonian at
a particular point k in reciprocal space. In each group there will
be NBgrp MPI processes sharing distributed real and reciprocal
space grids. A subset (or all) NBgrp processes can be used for the
solution of the eigenvalue problem of each pool. This value is set by
the NDiag metric. Finally, NCores is the total number of MPI and
OpenMP processes running the code. The following relation holds:

Ncores = Npoot X NBgrp X Nopenmp (1)
where Nopennp is the number of OpenMP threads spawned by
each MPI process.

From the algorithmic point of view, the computational intensive
tasks mainly consist of as small sized Fourier transforms, linear
algebra operations (with BLAS level 3 operations dominating the
workload) and the solution of dense eigenvalue problems origi-
nating from the iterative diagonalization (see below). These three

Prediction of time-to-solution in material science simulations using Deep Learning

classes, generally performed by specialized and optimized libraries,
account for a sizable part of the (per MPI process) execution time,
possibly close to 50% as the size of the simulation grows. Another
sizable component in the time to simulation is MPI communication.
As shown by Cesarini et al. [15], as the number of MPI processes
grows, the synchronization and communication time may reach up
to half of the total time to solution.

The eigenvalue problem in plane wave based DFT codes is gen-
erally tackled with iterative algorithms. The reader is referred to
one of the many articles and reviews on this topic [7, 16—-19] for
the details. In PWscF, two algorithms are currently implemented,
Davidson and Conjugate Gradient. These two approaches are used
to solve the generalized eigenvalue problem

Hyi = &Sy (2)

with H and S being the Hamiltonian and the overlap operator, ¢;
and ¢; the i-th eigenvalues and eigenstates. In general, the lowest
N eigen-pairs corresponding to the occupied states are sought.

In both cases one has to compute the application of the Hamilton-
inan and overlap operators on a pre-existing trial solution and, in a
number of steps dependent on the chosen algorithm, the converged
eigen-pairs are obtained. These inner iterations, performed every
time the solution of the KS equation is needed, require either the
solution of eigenvalue problems defined on a (at least) 2N dimen-
sional subspace (see Appendix A.2.1 in Ref [7]) that provide the
correction to the trial solution or from a sequence of (constrained)
minimization problems.

As it is evident, the two methods have substantially different
parallel performance and this is accounted for by the CG category
in Tab. 1.

The physical description of the material under study is encoded
in the variables NKS and pseudo that represent the number of KS
states in the system and the elements present in the lattice respec-
tively.

A second set of parameters is connected with the discretization
and the approximations entering the numerical method. The char-
acteristics of the pseudopotential (for what concerns its non-local
part) are embedded in the N1 value, which contains the number of
B functions and their angular momentum?. In addition, the system
may be described with or without spin degrees of freedom. The
absence of spin degrees of freedom speeds up the simulation by
about a factor 2. This is accounted for by the nspin metric.

The truncation of the plane wave basis set leads to the definition
of the FFT grids where, in reciprocal space, these are contained in a
sphere. These details are stored in densegrid_G and densegrid_-
real.

2.3 Data

In this section we describe the data collected in [9] without entering
too much into the scientific case discussed in [21]. The database
contains a large set of simulations that are part of a screening
procedure that, starting from the bulk structures available in the

!For a description of the pseudopotential formalism see for example page 220 of
Ref. [20]

Conference’17, July 2017, Washington, DC, USA

o o o =
> o o o
.

o
N
)

Cumulative distribution

o
o
.

10 10 10!
Time per iteration [s/call]

Figure 1: Distribution of the time per iteration for each
of the 8 compute nodes used in our dataset (the different
curves).

Crystallography Open Database [22], aims at identifying good can-
didates for 2D materials that could be easily exfoliated from their
parent compounds.

This database collects a number of simulations that include
ground state energy and electron density estimations, atomic struc-
ture relaxations and lattice vibration (phonon) dispersion curves.
The majority of the ground state energy simulations was performed
on periodic systems with small to medium sized unit cell with 90%
of the volumes in the range 10 + 500 A3,

The simulations available in the published database [9] were
performed using a number of different compute nodes and with
different versions of the codes. We focused on a selected subset
by collecting the results obtained with the PWscF executable and
re-grouping the various outputs according to the code version and
the machine name that was used to generate them.

The data span a vast number of structures and include 72 el-
ements of the periodic table. As already stated, the size of the
simulation is peaked at small sized structures. As a consequence, a
limited number of combinations of parallelization options was used.
On the other hand, pseudopotential methods span both Ultrasoft
and PAW methods while we find a limited use of Norm Conserving
pseudopotentials. The time to solution taken by the simulations
spans over four orders of magnitude and the time per iteration,
later used in our analysis, ranges from tenths to tens of seconds.
The distributions of time per iteration for each compute node is
shown in Fig. 1.

3 METHODS

The goal of this investigation is the prediction of the execution time
for each iteration of the SCF loop. In this section we then describe
the models we developed for this purpose and how relevant features
for such models are extracted from the input files.

Conference’17, July 2017, Washington, DRédeiSéo Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini, and Carlo Cavazzoni

3.1 Iteration execution time

To assess the duration of each iteration in the loop, we have used
the timer “cbands” from the output files. The value of the timer is
then divided by the number of calls to the function to obtain the
average duration per iteration.

The prediction of execution time is computed with a diverse set of
Machine Learning (ML) algorithms based on a set of features of the
simulation extracted from the input files. All features, except for
the categorical ones, are normalized to zero mean and unit variance.
The features we have chosen for this task are summarised in Tab.
1, and they aim at providing information about various aspects of
the application:

o Algorithm used in the application: nspin, CG;

o Resources used by the machine: NDiag, NCores, NBgrp, NPool;

e Choices for the physical representation of the simulated
system: pseudo, NKS, N1;

e Parameters of the discretization: densegrid_real, denseg-
rid_G, Nk.

Table 1: Features chosen for the ML algorithms

Metric name Values

nspin

Description
Whether spin polarisation is [0, 1]
present or not

CG If CG algorithm for eigenvalue [0,1]
problem is used

NDiag Number of MPI processes used in [1, o]
the parallel diagonalization sub-
routine

pseudo Number of different element types [1, o]

NCores Number of cores used for parallel [1, co]
calculations

NBgrp Number of MPI processes in the [1, 0]
BandGroup communicator

NPool Number of MPI processes in the [1, 0]
POOL communicator

Nk Number of k points used to sample [1, co]
the reciprocal space

NKS Number of Kohn-Sham states [1, 0]

N1 Sum of the contributions from the [1, c0]
I components for each S-function

densegrid_G Number of G vectors [1, o0]

densegrid_real Dimension in real space of the FFT [1, co]
grid

Moreover, we have decided to predict not directly the execution
time, but its logarithm, both in order to obtain an always-positive
number (which has to represent a time) and since the variations
between execution times of different runs can be very large.

A last feature we explored is the information about the machine
(compute node) on which the simulation was run. Since simulations
run on different machines can behave very differently due to hard-
ware diversity (and we do not use specific hardware information
in this work), we have chosen two approaches to deal with this
information:

Features Peood

FC(26) x 20

+ RelLu

FC(12) x 26 FC(20) x 1

+ RelLu

(a) separate per-machine models

Features pg(md
FC(20) x 10
FC(42) x 20 + RelLu
FC(20) x 42 +Relu FC(10)x 1
+ Relu
(b) joint model

Figure 2: Architecture of the FCNN models.

o for each machine we train a completely different model (we
call this “separate model”);

e we train a joint model with data from all machines, using the
information about the machine as an additional categorical
feature (we call this “joint model”); since 8 machines have
been used in our dataset, this information translates into 8
additional boolean features.

The percentage of data in the test sets is always 20% of the available
data, and this is derived separately for each machine in the case
of separate models. The training data is then used for a 10-fold
cross-validation.

ML algorithms. As far as the algorithms are concerned, we have
explored three different choices of ML algorithms:

(1) Linear Regression (LR) with L2 weight decay [23];

(2) Kernel Ridge Regression (KRR) with radial basis functions
[23];

(3) Fully Connected Neural Network (FCNN) with L2 weight
decay [8].

The architectures of the FCNNSs for the joint and separate models
are shown in Fig. 2. For training and testing the models we have
used the libraries Scipy [24], for the LR and KRR, and PyTorch using
the Adam algorithm [25], for the training of the FCNN.

3.2 Performance model

In order to verify how machine learning approaches compare with
analytical performance modeling results, we also defined a strat-
egy to reproduce the time required by a single iteration of the KS
procedure. There are multiple approaches to do so, here we briefly
introduce the most common ones. A possibility is to fit a num-
ber of parameters describing the underlying hardware in terms of

Prediction of time-to-solution in material science simulations using Deep Learning

Conference’17, July 2017, Washington, DC, USA

1.0 4 — Linear 1.0 4 — Linear
KRR KRR
—— FCNN FCNN

< 0.8 < 0.8 1
il pe
- -
> >
2 2
5 0.6 £ 0.6 1
i) 0
o o
(%] Q
2 2
B 0.4 1 © 041
= =}
£ €
35 =
“ 0.2 “ 0.2

0.0 1 0.0 1

1073 1072 107t 10° 10! 102 1073 1072 107t 100 10!
Time error [s/call] Relative time error
0.6
0.8 1

0.5 1
oy oy
2 2
3 0.4+ g 0.6 1
e e
kel kel
5 0.3 =
2 2 0.4 1
=] =]
i) i)
0 0.2 9 a

0.2 1
0.1 1
0.0 T y — T T T r ; 0.0 +— T T T T r T
-5 -4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1

Logio Time error [s/call]

Logso Relative time error

Figure 3: Distribution of the timing errors (absolute and relative), both in terms of cumulative distribution and distribution

density. Models obtained separately for each machine.

FLOP/s, memory bandwidth, network bandwidth, I/O bandwidth
and possibly cache sizes against repeated measurements of the
time to solution obtained as the above parameters are (sometime
artificially) varied.

A second approach is based on the identification of the most
time consuming kernels constituting the application and a subse-
quent (possibly approximate) estimation of the dependence of these
algorithms on the most relevant compute node characteristics [26].

We followed this second path, by dividing the most relevant
algorithms of QE into memory bound, compute bound, network
bandwidth/latency bound problems, and identifying for each of
them a single parameter that allows to reproduce its performance
given the underlying hardware characteristics. As an example, let
us discuss the case of xGEMM (with x being either D or Z for the
double-precision real or complex general matrix multiplication sub-
routines respectively). For this compute bound operation a good
indicator is the number of FLOP/s performed by the CPU under
consideration. However, while for large matrix size xGEMM imple-
mentations may almost reach theoretical peak performance, there

are conditions dependant on the matrix size or shape that may lead
to sizable deviations from the peak value. For this reason, we do
not fix the value of the hardware parameters of the model to their
theoretical values. These may instead be estimated with simple
mini-benchmark targeting a specific kernel on the machine under
consideration or by least square fitting against a set of results, as
explained in section 4.

As already mentioned in section 2.2, a few well defined opera-
tions dominate the walltime:

(i) Linear algebra and Fourier transform operations are used to
move from/to real and reciprocal space during the evaluation of the
components of the Hamiltonian, inside the iterative diagonalization
procedure, and to apply projection operators. For the particular case
of PWscF, the input parameters define the size and the number
of calls of this kind of operations, that generally appear in the
same fashion at each iteration. Therefore, since the number of
floating point operations performed by linear algebra subroutines
and 1D FFT calls is easily evaluated, given a set of input parameters

Conference’17, July 2017, Washington, DRédeiSéo Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini, and Carlo Cavazzoni

1.0 4 — Linear 1.0 4 — Linear
KRR KRR
—— FCNN FCNN

< 0.8 < 0.8 1
il pe
- -
> >
2 2
5 0.6 £ 0.6 1
i) 0
o o
(%] Q
2 2
B 0.4 1 © 041
= =}
£ €
35 =
“ 0.2 “ 0.2

0.0 1 0.0 1

1073 1072 107t 10° 10! 102 1073 1072 107t 100 10!
Time error [s/call] Relative time error
0.6
1.0 1

0.5 1
2 2 i
2 208
o 0.4 [}
© ©
S 5 0.6 1
5 0.3 1 S
2 2
ki 0 0.4 1
o 0.2 A a

0.1 0.21

0.0 — 7 " T T T T T 0.0 +— T r T T T T T

-4 -3 -2 -1 0 1 2 3 -4 -3 -2 -1 0 1 2 3

Logio Time error [s/call]

Logso Relative time error

Figure 4: Same as Fig. 3, featuring models jointly obtained using data from all machines.

and the computational power of the underlying hardware, it is
straightforward to calculate the time taken by these functions.

(ii) The eigenvalue problem solved as a part of the Davidson
method (the only one we actually considered) mainly consists of
the extraction of a subset k of the n eigenvalues in a generalized
eigenvalue problem. When parallel diagonalization algorithms are
not used (a rather common situation in our case since the dimen-
sion of the eigenvalue problem is of the order of few hundreds of
elements in our data set) this is done through the xHEGVX LAPACK
subroutine [27]. The computational intensity of this task as imple-
mented in the MKL subroutine used as a benchmark, to the best of
our knowledge, is still of the order of O(k * n?).

(iii) The QE’s custom distributed FFT algorithm, a separate do-
main specific library called FFTXlib [28], provides optimized work-
loads and communication patterns for the Fourier transform of
3D distributed data defined only inside spheres in reciprocal space.
This is one of the most used kernels in the PWscF code and thus
requires special attention. Its functionality has been modeled by
considering not only the time taken by the standard 1D FFT calls
(already discussed above), but also memory access patterns and

communication time in alltoall MPI calls. All these operations enter
the scattering of the data owned by different MPI processes. This
was modeled by considering, as a function of the problem size, the
time taken by the initialization of auxiliary variables that are zeroed
out at each call, the time taken by intra-process data scattering and
preparation for the all-to-all communication, and the time for the
all-to-all MPI communication .

The final time to solution estimated with this approach is given
by the sum of the individual components, repeated as per input pa-
rameters that in turn define the various subroutines’ execution trees
and loops. The number of iterations performed by the Davidson
iterative diagonalization approach represents the only unknown in
this procedure. This number is hard to predict and it has been ap-
proximated with an empirical trend of the form NCj;1 = (N Ci)k -1
where NC is the number of unconverged eigenvalues at each itera-
tion i and k was set to 0.7.

In conclusion, 8 parameters define the model. For the basic linear
algebra operations we parametrize the performance of the imple-
mentations of the DGEMM and the ZGEMM subroutines. These
two values should match but the size of the matrices considered

Prediction of time-to-solution in material science simulations using Deep Learning

may lead to small differences. Diagonalization is described by two
effective parameters that account for the performance of ZHEGV
and ZHEGVX lapack subroutines. Finally, the FFTXIib is described by
four parameters that describe memory bandwidth as obtained from
a setting operation, memory latency that enters data scattering, 1D
FFT performance, and communication time in all-to-all MPI calls.

Of course, a significant part of the wall-time taken by the code is
not considered with this approach. However, if one assumes that the
set of operations considered, for which the number of calls is fixed
by the input parameters, is representative of the remaining part
of the application that evades the model, one may extrapolate the
time for each iteration by multiplying the result with an effective
factor. When setting the values of the various parameters through
ad-hoc micro-benchmarks, we have found that the real time per
iteration is consistently underestimated by about 15%.

4 RESULTS

The first step in our experiments has been to clean and normalize
the data. In particular, in order to clean the data and to remove
outliers, we have excluded all simulations with an average time per
iteration greater than 50s, which would be unreasonable for the
kind of systems considered in this study. Then, the normalization
has been performed according to the procedure described in Sec. 3.

Figs. 3 - 4 report the timing errors on the test set using all ML

algorithms, either training a separate model for each machine or
training a single joint model, respectively. We note that, as expected,
the FCNN is always performing better than the KRR, which in turn
is always better than the LR. Moreover, we note relatively small
differences when using FCNN between the separate and the joint
models, with the former being the most accurate.
Focusing on the relative error, in our best scenario we can achieve
for 99% of the points an error below 100%, with a distribution peak
and median at about 10% relative error. Looking also at the density
distributions, the FCNN is consistently highly monomodal, while
for the other algorithms this is approximately true only in the joint
training case. Moreover, inspecting in detail the cases where the
relative error is above 100%, it turns out that these are generally the
cases where the absolute timer is very small, much below 1 s/call,
so these are also the quickest simulations whose impact on the total
batch is generally small. On the other hand, the points where the
absolute error is greatest are also the ones where the relative error
is small, so also these cases are not so critical.

When choosing an architecture and an optimization procedure
for a FCNN, there are multiple degrees of freedom and the criteria
for choosing them are based only on empirical rules [8]. For these
reasons, it is important to evaluate the loss function behaviour dur-
ing the training phase, and the 10-fold cross-validation is particular
useful for this purpose. Fig. 5 shows then the behaviour of the loss
function for the FCNN as a function of the training epoch. The blue
and red lines are the average losses on the training and validation
sets, respectively, while the vertical bars are the losses standard
deviations over the 10 training/validation sets combination (that
arise from the 10-fold cross-validation). The green dots are, instead,
the losses on the test set. The fact that the test and validation losses
are very similar and that they are not far from the training loss, and
not decreasing anymore with the training epoch beyond a certain

Conference’17, July 2017, Washington, DC, USA

= Test
Training

100 Validation
wn
w
o
-

1071
\K
0 100 200 300 400 500
Epoch

Figure 5: Example of the behaviour of the loss function for
the FCNN as a function of the training epoch estimated with
10-fold cross-validation.

threshold, assures that the algorithm has converged with neither
overfitting nor underfitting, which are common problems of ML
algorithms [8].

Finally, we compared the results of the ML models to the an-
alytical model described in Sec. 3.2. The derivation of the latter
assumed the set of 8 parameters described in Sec.3.2 to be known.
In our case however such parameters were not available from the
dataset, so we had to estimate them. The estimation was done via
a least-squares procedure, minimizing the prediction error of the
model on a training set which is exactly the one used for training
the ML models. With the estimated parameters, the model is then
applied on the test set, and Fig. 6 shows the comparison of the
absolute and relative error distributions with respect to the ML
models. In this case we have used only the ML models separate
by machine and not the joint one. Note also that the results are
slightly different than the ones from Fig. 3, since in this case we
had to exclude all simulations with enabled Conjugate Gradient
calculation, a case not supported by the analytical model. Also in
this case the FCNN shows the best performance, being the only
machine learning based approach to overtake the analytical model
both in terms of absolute and relative errors. More in detail, the
FCNN improves the prediction error by up to 5% with respect to
the model.

The main reason for the superior performance of the FCNN is a
better description of the iterative diagonalization approach, that is
modeled with a phenomenological convergence trend, and the more
comprehensive description of the code that the FCNN approach
may provide. The analytical model only considers a limited number
of time consuming kernels. The missing components are generally
small, but of the same order of the improvement provided by the
neural network approach, thus probably justifying its improved
results.

It is noteworthy that Deep Learning models have obtained such
a good performance despite the relatively small dimensions of the
training dataset. We therefore expect to dramatically increase their
performance and applicability by drastically enlarging the datasets

Conference’17, July 2017, Washington, DRédeiSéo Pittino, Pietro Bonfa, Andrea Bartolini, Fabio Affinito, Luca Benini, and Carlo Cavazzoni

Cumulative distribution

1073 1072 107! 10° 10t 102
Time error [s/call]

Cumulative distribution

1073 1072 107! 100 10!
Relative time error

Figure 6: Distribution of the timing errors (absolute and rel-
ative), compared to the analytical model.

both in terms of number of simulations and in terms of diversity of
codes executions and versions.

From this study we can then conclude that Deep Learning models
are a very promising technology capable of outperforming analyti-
cal models with domain expertise for performance estimation on
complex codes in an HPC environment.

5 CONCLUSIONS

In this work we have proven that out-of-the-box Machine Learning
models can predict surprisingly accurately the time-to-solution of
complex scientific applications, like QuantumESPRESSO. In partic-
ular, we have revealed that Deep Learning algorithms, in our case
a Fully Connected Neural Network, achieve the best performance,
which corresponds to a relative error lower than 100% for 99% of
the simulations, with a distribution peak and median at about 10%
relative error.

On the other hand we have also shown that a full-custom semi-
analytical model specifically tailored to solve this task, whose few

free parameters have been optimized on this dataset, exhibits a
lower performance than that of the Neural Network.

It should be noted, however, that all models described in this
paper have been trained using very similar versions of one scientific
application, all in the same major release cycle.. Once a new major
version of the code is released, it is therefore highly probably that
the models will need some retraining to retain their accuracy. The
investigation on how to generalise the models to multiple codes
and multiple versions of the same code, together with a thorough
cross-validation of the architecture and hyperparameters, will be
the subject of our future work.

Our work paves the way to the development of very accurate
models for predicting in advance the properties of scientific appli-
cations. It can then be extended to predict not only the time per
iteration, but also the number of iterations or other properties of the
applications execution. It serves as a valuable tool for an accurate
scheduling of the applications, but it can also be used to provide an
a-posteriori evidence to the user of an issue on the execution when
the predicted execution time is very different from the actual one.

6 ACKNOWLEDGEMENTS

This work was supported by the EU project H2020-INFRAEDI-
2018-1 MaX “Materials Design at the Exascale. European Centre of
Excellence in materials modelling, simulations, and design” (Grant
No. 824143), by the European H2020 FET project OPRECOMP (g.a.
732631) and by the CINECA research grant on Energy-Efficient
HPC systems.

REFERENCES

[1] J. Hennessy, D. Patterson, and K. Asanovi¢, Computer Architecture: A
Quantitative Approach, ser. Computer Architecture: A Quantitative Approach.
Elsevier Science, 2012. [Online]. Available: https://books.google.it/books?id=
v3-1hVwHnHwC

[2] T. Miu and P. Missier, “Predicting the execution time of workflow activities based
on their input features,” in 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, Nov 2012, pp. 64-72.

[3] F.Nadeem, D. Alghazzawi, A. Mashat, K. Fakeeh, A. Almalaise, and H. Hagras,
“Modeling and predicting execution time of scientific workflows in the grid using
radial basis function neural network,” Cluster Computing, vol. 20, no. 3, pp. 2805—
2819, Sep 2017. [Online]. Available: https://doi.org/10.1007/s10586-017-1018-x

[4] P.Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, “Wien2k: An aug-
mented plane wave plus local orbitals program for calculating crystal properties
(technical university of vienna, vienna, 2001),” Google Scholar.

[5] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of applica-
tions for resources provisioning in cloud,” Journal of Network and Computer
Applications, vol. 82, pp. 93-113, 2017.

[6] S.Lee, J.S. Meredith, and J. S. Vetter, “Compass: A framework for automated
performance modeling and prediction,” in Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing. ACM, 2015, pp. 405-414.

[7] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular and
open-source software project for quantum simulations of materials,” Journal of
Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009. [Online]. Available:
http://stacks.iop.org/0953-8984/21/i=39/a=395502

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[9] N.Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier,
L. E. Castelli, A. Cepellotti, G. Pizzi et al., “Two-dimensional materials from high-
throughput computational exfoliation of experimentally known compounds,”
Nature nanotechnology, vol. 13, no. 3, p. 246, 2018.

[10] “MaterialCloud,” https://www.materialscloud.org/, 2018, [Online; accessed 19-
July-2018].

Prediction of time-to-solution in material science simulations using Deep Learning Conference’17, July 2017, Washington, DC, USA

[11] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, [19] M. P. Teter, M. C. Payne, and D. C. Allan, “Solution of schrodinger’s equation

R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D.
Corso, S. de Gironcoli, P. Delugas, R. A. D. Jr, A. Ferretti, A. Floris, G. Fratesi,
G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura,
H.-Y. Ko, A. Kokalj, E. KAijAgAijkbenli, M. Lazzeri, M. Marsili, N. Marzari,
F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. PoncAl,
D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov,
L Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, “Advanced
capabilities for materials modelling with q uantum espresso,” Journal of
Physics: Condensed Matter, vol. 29, no. 46, p. 465901, 2017. [Online]. Available:
http://stacks.iop.org/0953-8984/29/i=46/a=465901

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev, vol. 140, pp. A1133-A1138, Nov 1965. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRev.140.A1133

D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue

formalism,” Phys. Rev. B, vol. 41, pp. 7892-7895, Apr 1990. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.41.7892

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method,” Phys. Rev. B, vol. 59, pp. 1758-1775, Jan 1999. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.59.1758

D. Cesarini, A. Bartolini, P. Bonfa, C. Cavazzoni, and L. Benini, “COUNTDOWN
- three, two, one, low power! A Run-time Library for Energy Saving in MPI
Communication Primitives,” arXiv e-prints, p. arXiv:1806.07258, Jun. 2018.

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative
minimization techniques for ab initio total-energy calculations: molecular
dynamics and conjugate gradients,” Rev. Mod. Phys., vol. 64, pp. 1045-1097, Oct
1992. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.64.1045

E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices,” Journal of
Computational Physics, vol. 17, no. 1, pp. 87 — 94, 1975. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0021999175900650

for large systems,” Phys. Rev. B, vol. 40, pp. 12 255-12 263, Dec 1989. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.40.12255

R. Martin, R. Martin, and C. U. Press, Electronic Structure: Basic Theory and
Practical Methods. ~Cambridge University Press, 2004. [Online]. Available:
https://books.google.it/books?id=dmRTFLpSGNsC

N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo,
T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, “Two-dimensional
materials from high-throughput computational exfoliation of experimentally
known compounds,” Nature Nanotechnology, vol. 13, no. 3, pp. 246-252, 2018.
[Online]. Available: https://doi.org/10.1038/s41565-017-0035-5
“Crystallography Open Database,” https://www.crystallography.net, 2019, [On-
line; accessed 1-Jan-2019].

H. Trevor, T. Robert, and F. JH, “The elements of statistical learning: data mining,
inference, and prediction,” 2009.

E. Jones, T. Oliphant, P. Peterson et al, “SciPy: Open source scientific
tools for Python,” 2001-, [Online; accessed <today>]. [Online]. Available:
http://www.scipy.org/

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,
2017.

S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman,
and A. Vadgama, “Warpp: A toolkit for simulating high-performance parallel
scientific codes,” in Proceedings of the 2Nd International Conference on
Simulation Tools and Techniques, ser. Simutools *09. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009, pp. 19:1-19:10. [Online]. Available:
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5753

E. Anderson, Z. Bai, C. Bischof, L. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed. Society for Industrial and Applied Mathematics, 1999. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9780898719604

[18] G.Kresse and J. Furthmiiller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, pp. 11 169-11 186, [28
Oct 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.54.11169

“FFTXIib repository,” https://github.com/QEF/q-e/tree/master/FFTXlib, 2017, [On-
line; accessed 19-July-2018].

	Abstract
	1 Introduction
	2 Data and code description
	2.1 Codes
	2.2 Algorithms
	2.3 Data

	3 Methods
	3.1 Iteration execution time
	3.2 Performance model

	4 Results
	5 Conclusions
	6 Acknowledgements
	References

