
21 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Huska M., L.A. (2019). A Convex-Nonconvex variational method for the additive decomposition of
functions on surfaces. INVERSE PROBLEMS, 35(12), 1-33 [10.1088/1361-6420/ab2d44].

Published Version:

A Convex-Nonconvex variational method for the additive decomposition of functions on surfaces

Published:
DOI: http://doi.org/10.1088/1361-6420/ab2d44

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/717295 since: 2020-01-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1088/1361-6420/ab2d44
https://hdl.handle.net/11585/717295


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Martin Huska et al 2019 Inverse Problems 35 124008.  

The final published version is available online at : http://dx.doi.org/10.1088/1361-
6420/ab2d44 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 

publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1088%2F1361-6420%2Fab2d44
http://dx.doi.org/10.1088%2F1361-6420%2Fab2d44


A CONVEX-NONCONVEX VARIATIONAL METHOD FOR THE
ADDITIVE DECOMPOSITION OF FUNCTIONS ON SURFACES

MARTIN HUSKA ∗, ALESSANDRO LANZA† , SERENA MORIGI‡ , AND IVAN SELESNICK§

Abstract. We present a Convex-NonConvex variational approach for the additive decompo-
sition of noisy scalar fields defined over triangulated surfaces into piecewise constant and smooth
components. The energy functional to be minimized is defined by the weighted sum of three terms,
namely an `2 fidelity term for the noise component, a Tikhonov regularization term for the smooth
component and a Total Variation (TV)-like non-convex term for the piecewise constant component.
The last term is parametrized such that the free scalar parameter allows to tune its degree of non-
convexity and, hence, to separate the piecewise constant component more effectively than by using
a classical convex TV regularizer without renouncing to convexity of the total energy functional. A
method is also presented for selecting the two regularization parameters. The unique solution of
the proposed variational model is determined by means of an efficient ADMM-based minimization
algorithm. Numerical experiments show a nearly perfect separation of the different components.

Key words. Image decomposition, Convex non-convex strategy, ADMM, Functions on surfaces.

1. Introduction. Signal decomposition is a widely used tool in many data pro-
cessing applications such as, e.g., data coding, analysis and synthesis. In such prob-
lems it is typically assumed that the observed signal is a linear mixture - or weighted
average - of different source signals with specific homogeneous characteristics.

For the case of 2-D signals, Meyer in [6] proposed a variational model based on TV
regularization [16] to decompose an image into two components, namely a piecewise
constant - or cartoon - component and a texture - or oscillatory - component. In
particular, the G norm was introduced in [6] to capture texture in noiseless images.
The idea is that, while the space of functions of Bounded Variation (BV) is a good
space to model cartoon images, a space close to the dual of BV is well suited to model
oscillating patterns. Inspired by Meyer’s work, and motivated by the difficulty of
dealing with the dual of BV which is not a separable space, several variational models
have been proposed to decompose gray-scale and color images [4, 1, 3, 20, 21].

Related prior work in a variational approach, proposed for image restoration
rather than for image decomposition, is introduced by Chambolle and Lions in [2],
where a combination of bounded variation and bounded Hessian function components
is considered. More recently Gholami in [5] proposed an image restoration model
based on a balanced combination of TV and Tikhonov regularization.

In this paper we address the problem of decomposing noisy scalar functions for the
general case where the functions are defined over an arbitrary topology 2-manifold
Ω embedded in R3 - that will be discretized by an unstructured triangle mesh -
and the underlying data may contain jump discontinuities that separate smoothly
varying regions. In particular, we assume that the observed scalar field b : Ω → R is
representable by the following three-terms additive model

b = v + w + ε = u + ε , (1.1)
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u = v + w

Fig. 1.1. Additive decomposition of a noise-free piecewise smooth image/scalar field u into a
piecewise-constant - or cartoon - component v and a smooth component w.

with v, w, ε : Ω →R the cartoon, smooth and noise components, respectively, and
u := v + w the underlying noise-free piecewise smooth field. Notice that v models
sharp edges in u, whereas w models the smooth part of u which contains small or
even large oscillations but characterized by small gradient norms, and, in practice,
can capture smoothly varying intensities due, e.g., to lightning effects. In Fig. 1.1
we show an example of cartoon/smooth component decomposition of both a noiseless
image (top row) and a noiseless scalar field defined over a surface in R3 (bottom row).
The component ε in (1.1) models a noise realization, which we assume to be drawn
from a (zero-mean) white Gaussian process.

In accordance with (1.1), in this paper we propose a variational model for the
additive decomposition of any observed noisy scalar field b into three different fields
v∗, w∗, ε∗ := b− (v∗ + w∗) representing estimates of the cartoon, smooth and noise
components in b, respectively. The idea here is to use a combination of two suitable
regularizers, namely a convex Tikhonov term for the smooth component and a non-
convex TV-like term for the cartoon component, together with a convex quadratic
fidelity term accounting for noise. Since the noise ε is an oscillatory but non auto-
correlated (or white) component, we consider an `2 norm fidelity term rather than a
G norm term which instead is designed to separate an oscillatory but auto-correlated
(or colored) component - i.e. texture. On the other hand, the texture concept itself is
not even clear in case of scalar fields sampled on unstructured triangle meshes. This
even more challenging problem will be investigated in future work. The proposed
variational model reads

{v∗, w∗} ∈ arg min
v,w
J (v, w;λ, η, a) , with (1.2)

J (v, w;λ, η, a) :=
η

2

Rw(w)︷ ︸︸ ︷∫
Ω

‖∇w‖22 dΩ +
(1−η)

2

Rv(v;a)︷ ︸︸ ︷∫
Ω

φ(‖∇v‖2; a) dΩ +
λ

2

F(v,w)︷ ︸︸ ︷∫
Ω

(v + w − b)2 dΩ,

(1.3)
where ‖ · ‖2 in (1.3) denotes the `2 norm, ∇ · the intrinsic (Riemannian) gradient, λ,
η, a scalar model parameters satisfying

λ > 0, 0 < η < 1, a > 0, (1.4)
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and φ( · ; a): [0,+∞)→R a parameterized non-convex (sparsity-promoting) penalty
function with properties that will be outlined in Sect. 2. In particular, the parameter
a allows one to tune the degree of non-convexity of φ( · ; a). The domain Ω represents
either a generic connected 2-manifold embedded in R3 or, as an interesting special
case corresponding to the image decomposition problem, a compact rectangle in R2.

Due to term Rv, the functional J in (1.3) is non-smooth and can be convex or
non-convex depending on the parameters λ, η, a. In fact, as it will be illustrated in
the paper, the quadratic term given by the weighted sum of the fidelity F and the
regularizer Rw in (1.3) holds the potential for compensating non-convexity of Rv.

The idea of constructing and then optimizing convex functionals containing non-
convex (sparsity-promoting) terms, referred to as Convex-NonConvex (CNC) strategy,
was first introduced by Blake and Zisserman in [7], then by Nikolova in [14] for denois-
ing of binary images and very recently by Selesnick and others for different purposes,
see [17, 9, 18, 15, 10, 11, 12] for details. Attractiveness of the CNC approach resides in
its ability to promote sparsity more strongly than by using convex regularizers while
at the same time maintaining convexity of the optimization problem, so that reliable
convex minimization methods can be used to compute the (unique) solution.

The main contributions/proposals of this paper are summarized as follows:
• effective method for the additive decomposition of noisy scalar fields defined

over triangulated surfaces into a piecewise constant and a smooth component,
which, to the best of authors’ knowledge, has not been proposed before;

• CNC variational model for the sought-for decomposition, with all the advan-
tages of this kind of models; this represents a novelty also in the specific case
of image decomposition;

• ADMM-based minimization algorithm which, thanks to a suitable preliminary
change of variable and variable splitting procedure, allows for a very efficient
computation of the (unique) model solution;

• simple strategy for an effective, automatic selection of all the parameters
λ, η, a of the proposed CNC model.

The paper is organized as follows. In Sect. 2 we define the non-convex sparsity-
promoting penalty φ used in our model (1.2)–(1.3). In Sect. 3 we introduce the 2-
manifold discretization via unstructured triangular mesh and in Sect. 4 we discretize
our cost functional. In Sect. 5 we give conditions for convexity of the model and
in Sect. 6 we describe special model variants. Sect. 7 addresses the ADMM-based
scheme for solving the proposed convex model. In Sect. 8 we discuss the automatic
choice of the free parameters in the model. We present several experimental results
on images and surfaces in Sect. 9 and, finally, conclusions are drawn in Sect. 10.

2. Penalty function. In the paper, we denote by R+ := { t ∈ R : t ≥ 0} and
R∗+ := {t ∈ R : t > 0} the sets of non-negative and positive real numbers, respectively,
by Id and 0d, 1d the d× d identity matrix and the d-entries vectors of all 0s and 1s,
and by (v1; v2) the column vector obtained by concatenating column vectors v1, v2.

We now introduce the penalty function used in our model (1.2)–(1.3), describe
the motivations for its choice and highlight some of its properties. To fulfill our goals
from both the model and the minimization algorithm perspective, φ in (1.3) must:

a) be non-convex, such that regularizerRv can induce sparsity of gradient norms
of the cartoon component more strongly than the convex TV regularizer;

b) be parameterized, such that the free parameter allows to tune the degree of
non-convexity of Rv and, hence, to keep the total functional J convex;

c) have a range independent of its parameter, so that the degree of non-convexity

3



Fig. 2.1. Plots of the penalty φ(t; a) in (2.1) for different a values. Solid dots indicate points

separating, on each penalty graph, the two pieces associated with sub-domains
[
0,
√

2/a
)
,
[√

2/a,∞
)
.

of Rv can be tuned without changing the “weight” of Rv in the total J ;
d) have a form such that the associated multi-variate proximity operator defined

by proxαφ(q) := argminx∈Rn {αφ
(
‖x‖2; a

)
+ ‖x − q‖22/2 } , q ∈ Rn, admits

a closed-form expression which can be computed very efficiently.
In light of previous requirements, we choose a re-scaled re-parametrized version of the
minimax concave penalty [22], namely the piecewise quadratic function defined by:

φ(t; a) =

{
−a

2
t2 +

√
2a t for t ∈

[
0,
√

2/a
)

1 for t ∈
[√

2/a,∞
) . (2.1)

It is immediate to verify that the penalty above exhibits the following properties:

φ(t; a) ∈ C1
(

[0,∞)
)
∩ C∞

(
[0,∞) \

{√
2/a

} )
,

φ′(t; a) =

{√
2a− at for t ∈

[
0,
√

2/a
)

0 for t ∈
[√

2/a,∞
) , φ′′(t; a) =

{
−a for t ∈

[
0,
√

2/a
)

0 for t ∈
(√

2/a,∞
) .

In particular, we note that a= |mint φ
′′(t; a)|, t∈ [0,∞) \ {

√
2/a}, such that a really

represents the degree of non-convexity of φ and, hence, will be referred to as the
concavity parameter of φ (or, by extension, of regularizer Rv). In Fig. 2.1 we plot
φ(t; a) for three values a ∈ {1, 3, 9} of the concavity parameter. We remark that φ in
(2.1) clearly fulfills the above outlined requirements a), b), c). In Sect. 7, devoted to
the ADMM algorithm, we will prove that the proximity operator of φ admits a simple
closed-form expression, such that requirement d) is also satisfied.

3. Domain discretization and gradient approximation. A connected 2-
manifold embedded in R3 can be approximated via a triangle mesh Ω := {V, T},
where V := {Xi}nVi=1 ∈ RnV ×3 is the set of vertices and T ∈ NnT×3 is the set of face
triangles. The direct connection between two neighboring vertices Xi, Xj is referred
to as edge eij and we define by E := {eij} ⊆ V × V the set of all edges. For each
vertex Xi, we denote by N (Xi) := {Xj : eij ∈ E} its 1-ring neighborhood, defined
as the set of incident vertices to Xi, and by D(Xi) the 1-disk of adjacent triangles of
the vertex Xi, with |D(Xi)| the sum of the areas of the neighboring triangles.

Under this discrete setting, a function u: Ω→R can be sampled over the vertices
of the mesh and is understood as a piecewise linear function. Setting ui := u(Xi),
i = 1, . . . , nV , the sampled function is represented by vector u ∈ RnV . The value of

4



function u at a location x inside a triangle τ = [Xi, Xj , Xk] ∈ T is thus given by

u(x)|τ = ui Bi(x) + uj Bj(x) + uk Bk(x) , (3.1)

where {B` : ` = 1, . . . , nV } represents the set of piecewise linear basis functions defined
by B`(Xi) = δ`i, `, i = 1, . . . , nV , which exhibit the properties of (a) local support:
supp

(
B`
)

= D(X`), (b) non-negativity: B` ≥ 0 and (c) partition of unity:
∑
` B` ≡ 1.

By differentiating these vertex-based basis functions, we obtain a piecewise constant
(face-based) tangent vector field. The intrinsic gradient of u lies in the tangent space
TXΩ ⊂ R3×nT , and restricted to a triangle τ is thus constant and expressed as

∇u(x)|τ = ui∇Bi + uj ∇Bj + uk∇Bk . (3.2)

where the gradient of each basis function on τ is also constant and given by [19]:

∇Bi =
Xi −Oi
|Xi −Oi|2

=
1

|Xi −Oi|
Xi −Oi
|Xi −Oi|

=
1

|hi|
hi
|hi|

, (3.3)

where Oi is the orthogonal projection of Xi onto the edge ejk, thus hi is the triangle’s
height w.r.t. Xi, and hi/|hi| is a unit vector in direction of the triangle’s height. For
each vertex Xi of the triangle τ the corresponding projection Oi can be expressed as

Oi = Xj +
eji · ejk
|ejk|

ejk .

Using matrix–vector notation, the gradient operator (3.2) can be locally discretized
and represented by matrix Gτ ∈ R3×3 and vector uτ ∈ R3 as follows:

∇u(x)|τ = Gτuτ =

 ∇B1
i ∇B1

j ∇B1
k

∇B2
i ∇B2

j ∇B2
k

∇B3
i ∇B3

j ∇B3
k

 ui
uj
uk

 , (3.4)

from which the squared gradient magnitude can be written as follows

‖∇u(x)|τ‖22 = 〈Gτuτ , Gτuτ 〉 = uTτ G
T
τ Gτuτ = uTτ Qτuτ , (3.5)

with matrix Qτ ∈ R3×3 defined by

Qτ =

 ‖∇Bi‖22 〈∇Bi,∇Bj〉 〈∇Bi,∇Bk〉
〈∇Bj ,∇Bi〉 ‖∇Bj‖22 〈∇Bj ,∇Bk〉
〈∇Bk,∇Bi〉 〈∇Bk,∇Bj〉 ‖∇Bk‖22

 . (3.6)

The matrix elements in Qτ can be computed as follows

‖∇Bi‖22 =
1

|hi|2
, 〈∇Bi,∇Bj〉 =

cos](hi, hj)

|hi||hj |
,

and similarly for the other elements. Finally, the global discrete gradient operator is
represented by matrix D ∈ R3nT×nV defined by

D :=
(
DT

1 , D
T
2 , D

T
3

)T
, (Dj)ik =

{
∇Bjk if Xk ∈ τj
0 otherwise

, (3.7)

where each sub-matrix Dj ∈ RnT×nV , j = 1, 2, 3, is a highly sparse matrix having
3nT non-zero elements. Each matrix Dj discretizes the linear operator which simul-
taneously computes the j-th gradient component - see (3.4).
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4. CNC model discretization. To discretize (1.2)-(1.3), first we recall that
the integral of a function f over the whole domain Ω represented by nT elements
(triangles/pixels) is simply the sum over all of the elements τj , j = 1, . . . , nT , i.e.:∫

Ω

f(x) dΩ =

nT∑
j=1

∫
τj

f(x) dτj . (4.1)

Now we focus on a generic element τ with d nodes, thus the quadrature approximates
an integral via a discrete weighted sum of function values over the set of nodes∫

τ

f(x) dτ ≈
d∑
i=1

wifi. (4.2)

In case of piecewise constant functions (d = 1), w = sτ , where sτ represents the
area of triangle τ . For piecewise linear interpolants over triangle we have d = 3 and
wi = sτ

3 , i = 1, 2, 3 for the three vertices, while for piecewise quadratic interpolants,
one obtains a quadrature that is exact for all polynomials of degree p ≤ 3 , and the
weights are: w = 27/60 for the 1 centroid, w = 1/20 for the 3 vertices, w = 2/15 for
the 3 edge midpoints. The discretization of (4.1) for piecewise linear function f using
(4.2) with d = 3 leads to the exact quadrature∫

Ω

f(x) dΩ =
∑

τ=[Xi,Xj ,Xk]

sτ
3

(fi + fj + fk) =

nV∑
i=1

fisi, (4.3)

where we used the fact that si = |D(Xi)|/3 =
∑
j∈D(Xi)

sτj/3. However, if f is a

quadratic function, thus the sum on the right hand side of (4.3) is only an approxi-
mation to the integral on the left.

We can thus discretize our functional J in (1.3) in the element-wise form:

J (v, w;λ, η, a) =

nT∑
j=1

{
sτj

η

2
‖(Dw)j‖22 + sτj

(1− η)

2
φ (‖(Dv)j‖2; a)

+
λ

2

3∑
k=1

sτj
d

(vk + wk − bk)2

}
, (4.4)

where (D ·)j represents the discrete gradient of the corresponding function at element
τj , and the fidelity term is rewritten in the form of element nodes. After rewriting
the fidelity term in nodal form - see (4.2) - our discretized functional reads as

J (v, w;λ, η, a) =
η

2

Rw(w)︷ ︸︸ ︷∥∥∥S1/2Dw
∥∥∥2

2
+

(1− η)

2

Rv(v;a)︷ ︸︸ ︷
nT∑
j=1

sτjφ (‖(Dv)j‖2; a)

+
λ

2

∥∥∥S1/2
V (v + w − b)

∥∥∥2

2︸ ︷︷ ︸
F(v,w)

, (4.5)

where b, v, w ∈ RnV are the vectors of nodal values of the associated scalar fields, the
discrete gradient operator matrix D ∈ R3nT×nV is defined in (3.7), and SV ∈ RnV ×nV ,
S ∈ R3nT×3nT are diagonal matrices defined by

SV = diag(s1, . . . , snV ) , S = diag(Ŝ, Ŝ, Ŝ), Ŝ = diag
(
sτ1 , . . . , sτnT

)
. (4.6)
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For future reference, we introduce the real, symmetric, positive semi-definite matrix
DTSD ∈ RnV ×nV which represents a discretization of the Laplace-Beltrami operator:

(DTSD)ij =


∑

τ∈N4(Xi)

sτ‖∇Bi‖22|τ if i = j∑
τ
sτ 〈∇Bi,∇Bj〉|τ if i 6= j and Xi, Xj ∈ τ

0 otherwise

, (4.7)

where N4(Xi) denotes the 1-ring triangle neighborhood sharing the vertex Xi.

5. Analysis of the proposed discrete model. We analyze our discrete model
in terms of coerciveness, convexity as well as of existence/uniqueness of solutions. To
simplify notations, we introduce the total optimization variable x := (v;w) ∈ R2nV .
First, in Proposition 5.1 we point out some important characteristics of J in (4.5)

Proposition 5.1. For any λ, η, a satisfying (1.4), the function J in (4.5) is
proper, continuous, bounded from below by zero and non-coercive in x. In particular,
J is constant along straight lines in its domain R2nV of direction defined by the versor

d := (2nV )−1/2( 1nV ; −1nV ) . (5.1)

The restriction of J to any feasible set defined by a linear constraint of the form

〈c, x〉 = 0 , c ∈ C := { c ∈ R2nV : 〈c, d〉 6= 0 } . (5.2)

is coercive and, thus, J admits (an infinity of) global minimizers over R2nV .

Proof. It comes easily from (2.1),(4.5) that J is proper, continuous, bounded
from below by zero and constant in the direction d in (5.1), thus non-coercive. In
fact, it is easy to check that J (v, w) = J (v+ t1nV , w− t1nV ) ∀v, w ∈ RnV ,∀t ∈ R.
The term Rv in (4.5) is bounded from above by (1− η)/2

∑
j sτj and from below by

zero, hence does not affect coerciveness of J . The remaining quadratic term in J ,
namely Q(x) := (η/2)Rw(x) + (λ/2)F(x), has Hessian Q := ηLT1 L1 + λLT2 L2, with

L1 = diag(S1/2, S1/2) diag(0, D), L2 = diag(S
1/2
V , S

1/2
V )(InV InV ; InV InV ). It is easy

to prove that null(Q) = null(L1) ∩ null(L2) = {x ∈ R2nV : x = t d, t ∈ R}, with d in
(5.1). Hence, Q(x) is coercive over any hyperplane not parallel to null(Q), i.e. any
feasible set defined by a linear constraint of the form in (5.1)–(5.2). This implies that
the total J is also coercive over such sets and, thus, admits minimizers over R2nV .

In light of previous results in order to select one solution among the infinities, we
equip our model with a constraint of the form in (5.1)–(5.2), i.e. we introduce the
following family of linearly constrained versions of our model:

x∗ ∈ argmin
x ∈ R2nV

J (x;λ, η, a) subject to : 〈c, x〉 = 0, c ∈ C , (5.3)

with J and C defined in (4.5) and (5.1)–(5.2), respectively. We remark that the
constrained model in (5.3) is guaranteed to admit solutions.

5.1. Making the model (strongly) convex. We now analyze convexity of
our model (5.3), namely we seek for a sufficient condition on parameters λ, η, a such
that J in (4.5) is convex in x = (v;w). We notice that convexity conditions depend
on the discretization choices outlined in Sections 3-4. However, the procedure below
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can be adapted to other discretization schemes. We rewrite J in (4.5) as follows:

J (v, w;λ, η, a) =
λ

2
‖S1/2

V (v + w)‖22 +
η

2
‖S1/2Dw‖22 −

γ

2
‖S1/2Dv‖22︸ ︷︷ ︸

J1(v,w;λ,η,γ)

+
γ

2
‖S1/2Dv‖22 +

1− η
2

nT∑
j=1

sτjφ (‖(Dv)j‖2; a)︸ ︷︷ ︸
J2(v;η,a,γ)

+ A(v, w), (5.4)

where A(v, w) = λ bTSV (b/2− v−w) is affine in x - hence, does not affect convexity -
and where we added and subtracted the term (γ/2) ‖S1/2Dv‖22, with γ > 0. Clearly,
a sufficient condition for J to be convex is that both J1 and J2 in (5.4) are convex.
In Propositions 5.2, 5.4 below we derive convexity conditions for J1, J2, respectively,
then in Theorem 5.5 we deal with convexity of our total cost function J in (4.5).

Proposition 5.2. The quadratic function J1 in (5.4) is convex if and only if

γ ≤ η / (1 + η ν) , ν = emax/λ , (5.5)

where emax ∈ R∗+ denotes the maximum eigenvalue of matrix B defined by

B = S
−1/2
V DTSDS

−1/2
V ∈ RnV ×nV , (5.6)

with D,SV, S defined in (3.7),(4.6). Moreover, if (5.5) holds strictly, J1 is strongly
convex over any feasible set defined by a linear constraint of the form in (5.1)–(5.2).

The proof is postponed to the Appendix.
Lemma 5.3. Let φ(·; a) be the function defined in (2.1), A ∈ Rq×m a non-zero

matrix and a, α ∈ R∗+ the parameters of the function g : Rm → R defined by

g(y;A, a, α) =
α

2
‖Ay‖22 + φ(‖Ay‖2 ; a) . (5.7)

Then, the function g is convex in y if and only if

a ≤ α . (5.8)

Proof. First, we notice that g(y) = g1(g2(y)) with g2(y) = ‖Ay‖2 a convex
function and g1(t) = (α/2)t2 + φ(t; a), t ∈ R+, a monotonically increasing function
which is convex if and only if a ≤ α. Hence, if a ≤ α then g is convex. On the other
hand, if a >α, by taking y1 = 0m and y2 such that ‖Ay2‖2 =

√
2/a, we have

g(y1) + g(y2)

2
=

1

2

(α
a

+ 1
)
<

1

2

(
α

2a
+

3

2

)
= g

(
y1 + y2

2

)
, (5.9)

hence g is not convex.
Proposition 5.4. Function J2 in (5.4) is convex if and only if

γ ≥ a (1− η)/2 . (5.10)
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Proof. Based on (3.4), we rewrite J2 in (5.4) in triangle-wise form:

J2(v; η, a, γ) =
1− η

2

nT∑
j=1

sτjg(vτj ;Gτj , a, α) , α :=
2γ

1− η
, (5.11)

with g : R3→R defined in (5.7). Condition (5.10) follows by applying Lemma 5.3 to
all terms of the sum in (5.11) and by replacing α given in (5.11) into (5.8).

Theorem 5.5. Let φ(·; a) be the function in (2.1) and emax ∈ R∗+ the maximum
eigenvalue of matrix B in (5.6). Then, if parameters λ, η, a satisfy (1.4) and

a < ā := 2
η

1− η
1

1 + η emax/λ
⇐⇒ a = τc ā , τc ∈ [0, 1) , (5.12)

the function J in (4.5) is strongly convex over any feasible set defined by a linear
constraint of the form in (5.1)–(5.2), hence models in (5.3) admit a unique solution.

Proof. If condition (5.12) holds true, then we can clearly write:

a =
2 γ

1− η
, γ = τc

η

1 + η emax/λ
, τc ∈ [0, 1) . (5.13)

Based on (5.13), (5.5) and (5.10) and recalling that the sum of a strongly convex and
a convex function is strongly convex, the function J = J1 +J2 +A in (5.4) is strongly
convex over any feasible set defined by a linear constraint of the form in (5.2).

6. Special variants of the model. In this section, we outline some special
variants of our decomposition model to be used when some a priori knowledge about
the process of formation of the measured field b = v + w + ε is available. In partic-
ular, we consider the three cases where, respectively, v, w or ε can be considered as
negligible. Starting from (4.5), the special variants read

v ≈ 0 =⇒ v∗ = 0, ε∗ = b− w∗, w∗ ∈ argmin
w ∈ RnV

JS1(w;α), α = η/λ,

w ≈ 0 =⇒ w∗ = 0, ε∗ = b− v∗, v∗ ∈ argmin
v ∈ RnV

JS2(v;α, a), α = (1− η)/λ,

ε ≈ 0 =⇒ ε∗ = 0, w∗ = b− v∗, v∗ ∈ argmin
v ∈ RnV

JS3(v;α, a), α = (1− η)/η,

where the objective functions have the form

JS1(w;α) =
∥∥∥S1/2

V (w − b)
∥∥∥2

2
+ α

∥∥∥S1/2Dw
∥∥∥2

2
,

JS2(v;α, a) =
∥∥∥S1/2

V (v − b)
∥∥∥2

2
+ α

nT∑
j=1

sτjφ (‖(Dv)j‖2; a) ,

JS3(v;α, a) =
∥∥∥S1/2D (v − b)

∥∥∥2

2
+ α

nT∑
j=1

sτjφ (‖(Dv)j‖2; a) .

We remark that the first two special models above correspond to a pure denoising
(no decomposition) by means of an `2 fidelity term together with a Tikhonov regu-
larization term and a non-convex TV-like regularization term, respectively. The last
special model, instead, carries out a pure decomposition (no denoising).

Finally, in the special case where the scalar fields are images, that is the domain
is a 2D rectangle discretized through a regular mesh, then our complete model in
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(4.5) and the three special variants outlined above simplify due to the area of all the
mesh elements being the same: matrices S, SV and scalars sτj disappear from the
models. Moreover, if a standard forward finite difference discretization of the gradient
operator is used, then the maximum eigenvalue emax of matrix B is equal to 8.

7. Applying ADMM to the proposed CNC model. In this section we
describe the ADMM-based algorithm used to solve the proposed constrained model
(5.3) in case that parameters λ, η, a satisfy (1.4) and (5.12), so that the solution is
unique. Although such desirable property holds for the infinity of linear constraints
defined in (5.2), the constraints might not be equivalent in terms of computational
effort implied by the numerical solution. Also, a preliminary change of variables holds
the potential for a faster solution. We introduce the one-to-one change of variables{

u = v + w
v = v

(7.1)

and choose the simple constraint

v1 = 0 ⇐⇒ 〈ĉ, (u; v)〉 = 0 , ĉ = (0nV ; 1; 0nV −1) . (7.2)

It is easy to prove that the transformed-domain constraint (7.2) corresponds to a
constraint in the original domain which belongs to the set C in (5.2). The chosen
constraint (7.2) allows also for its direct inclusion into the cost function. In fact, the
variable v appears in the cost function only left-multiplied by matrix D and, hence,
we can define the reduced vector ṽ ∈ RnV −1 and matrix D̃ ∈ R3nT×(nV −1) as follows

ṽ := (v2, v3, . . . , vnV )T , D̃ := (D2, D3, . . . , DnV ) , (7.3)

with Di ∈ R3nT denoting the i-th column of matrix D in (3.7). Model (5.3) af-
ter change of variable (7.1) with constraint (7.2) and after introducing the auxiliary

variable t = D̃ṽ ∈ R3nT , can be reformulated in the equivalent constrained form:

{x∗, t∗} ← arg min
x,t

{
λ

2
‖S1/2

V (u− b)‖22 +
η

2
‖S1/2(Du− t)‖22

+
(1− η)

2

nT∑
j=1

sτjφ
(
‖tj‖2; a

)}
subject to : t = D̃ṽ, (7.4)

with x := (u; ṽ)T ∈ R2nV −1. To solve (7.4) we define the augmented Lagrangian

L(x, t, ρ;λ, η, a) =
λ

2
‖S1/2

V (u− b)‖22 +
η

2
‖S1/2(Du− t)‖22 +

(1− η)

2

nT∑
j=1

sτjφ
(
‖tj‖2; a

)
− 〈 ρ, t− D̃ṽ 〉 +

β

2
‖t− D̃ṽ‖22 , (7.5)

with β > 0 a penalty parameter and ρ ∈ R3nT the vector of Lagrange multipliers
associated with constraint t = D̃ṽ in (7.4). Given the previously computed (or initial-
ized for k = 0) vectors t(k) and ρ(k), the k-th iteration of the proposed ADMM-based
iterative scheme for the computation of the saddle-point of L in (7.5) reads as follows:

x(k+1) ← argmin
x∈R2nV −1

L(x, t(k), ρ(k);λ, η, a) , (7.6)

t(k+1) ← argmin
t∈R3nT

L(x(k+1), t, ρ(k);λ, η, a) , (7.7)

ρ(k+1) ← ρ(k) − β
(
t(k+1) − D̃ṽ(k+1)

)
. (7.8)
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The first-order optimality conditions for the quadratic sub-problem for x in (7.6) read(
SV + (η/λ)DTSD 0

0 D̃T D̃

)(
u
ṽ

)
=

(
SV b+ (η/λ)DTSt(k)

D̃T
(
t(k) − 1

β ρ
(k)
) )

, (7.9)

with D̃T D̃ ∈ R(nV −1)×(nV −1) a full rank matrix. We remark that system (7.9) is
decoupled in u and ṽ thanks to the chosen preliminary change of variables.

After some algebraic manipulations, and introducing the constant (with respect

to the optimization variable t) vectors r
(k+1)
j ∈ R3, j = 1, . . . , nT , defined by

r
(k+1)
j =

1

ηsτj + β

(
sτjη

(
Du(k+1)

)
j

+ β

(
D̃ṽ(k+1) +

1

β
ρ(k)

)
j

)
, (7.10)

the sub-problem for t in (7.7) can be decoupled into the nT element-wise problems

t
(k+1)
j ← arg min

t∈R3

{
φ
(
‖tj‖2; a

)
+
ωj
2

∥∥∥tj − r(k+1)
j

∥∥∥2

2

}
, ωj = 2

η + β/sτj
1− η

. (7.11)

Since we are assuming that condition (5.12) is satisfied, so that our cost function
is strongly convex, we aim at avoiding non-convexity of the ADMM sub-problems
(7.11). In Proposition 7.1 below, we give necessary and sufficient conditions for strong
convexity of the cost functions in (7.11). In particular, based on (7.14)–(7.15), the
problems in (7.11) are strongly convex if and only if the following condition holds:

β > (a(1− η)/2− η) max
j

sτj . (7.12)

In case that (7.12) is fulfilled, the unique solutions of problems in (7.11) can be
obtained based on the operator defined in (7.17)–(7.18) of Proposition 7.1, that is:

t
(k+1)
j = ξ

(k+1)
j r

(k+1)
j = min

{
max

{
νj − ζj/

∥∥r(k+1)
j

∥∥
2
, 0
}
, 1
}
r

(k+1)
j , (7.13)

where νj = ωj/(ωj − a), ζj =
√

2a/(ωj − a), with ωj defined in (7.11).
Proposition 7.1. Let φ( · ; a) be the penalty function defined in (2.1), r ∈ Rm

a given constant vector and a, ω ∈ R∗+ two (free) parameters. Then, the function

θ(z) := φ (‖z‖2; a) +
ω

2
‖z − r‖22 , z ∈ Rm , (7.14)

is strongly convex if and only if the following condition is satisfied:

ω > a . (7.15)

Moreover, in case that (7.15) holds, the strongly convex minimization problem

arg min
z∈Rm

θ(z) (7.16)

admits the unique solution z∗ ∈ Rm given by the following shrinkage operator:

z∗ = ξ∗r , with ξ∗ ∈ [0, 1], in particular : (7.17)

ξ∗ = min {max {ν − ζ/‖r‖2 , 0} , 1} , ν = ω/(ω− a), ζ =
√

2a/(ω− a). (7.18)

The proof is postponed to the Appendix.
We remark that the condition on β in (7.12) only ensures (strong) convexity of

the sub-problems for the primal variable t, but does not guarantee convergence of
the overall ADMM scheme. Following [23], a proof of convergence of the proposed
ADMM-based minimization algorithm will be investigated in future work.
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Fig. 8.1. Left: normalized histograms of the gradient magnitudes of components v and w
reported in Fig. 1.1. Right: normalized histograms of the gradient magnitudes of the noiseless
image u = v + w and of the noise-corrupted image b = v + w + ε.

8. Parameters selection. In this section we discuss how the free parameters
a, λ, η in our decomposition model (4.5), (5.3) can be suitably set.

First, for what regards a, in CNC regime we suggest to set τc in (5.12) strictly
less than but near to 1. Clearly, one can use our decomposition model also in pure
non-convex regime by setting τc greater than 1 or in pure convex regime by letting
τc tend to zero, such that the regularizer Rv in our cost functional (4.5) tends to the
classical convex TV regularizer. We also notice that by letting τc tend to +∞ then
the penalty φ in (2.1) tends to the `0 pseudo-norm, hence sparsity of the gradient
norms of component v is maximally promoted by regularizer Rv .

For what concerns λ, we rely on the discrepancy principle which, given a known
- or estimated - value for the noise standard deviation σ̂, suggests to choose a λ such
that the obtained solution u∗ = v∗ + w∗ satisfies

‖u∗ − b ‖2 ≤ τd
√
nV σ̂, (8.1)

with τd a coefficient usually chosen around 1.
For what regards η, we present a procedure for automatically setting its value un-

der the assumption that we can get good estimates of the minimum non-zero gradient
norm of the cartoon component v - that is, the minimum size of jump discontinuities
in v - and of the maximum gradient norm of the smooth component w, namely of

m := min
j: ‖(∇v)j‖2>0

∥∥(∇v)j
∥∥

2
, M := max

j

∥∥(∇w)j
∥∥

2
, j = 1, 2, . . . , nT . (8.2)

In real applications, clearly one does not know v and w in advance. However,
we can estimate m and M directly from the observed scalar field b and then proceed
as described below to estimate the η parameter value. In Fig. 8.1(left) we show
zooms of the normalized histograms of gradient norms of components v and w shown
in the first row of Fig. 1.1, together with two vertical lines representing m and M
defined in (8.2). It is clear that M < m, meaning that the histograms for v and
w are separable and that, likely, M and m can be robustly estimated starting from
the histogram of the gradient norms of the noise-free observation u = v + w, shown
in Fig. 8.1(right). The second histogram in Fig. 8.1(right) is the one associated to
the noisy observation b = u + ε, with ε the realization of white Gaussian noise of
standard deviation σ = 2/255. Automatic estimation of m and M also in case of noisy
observations is a more challenging task, and will be a point of future investigation.
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We note that - see (4.5) - parameter η ∈ (0, 1) controls the convex combination
of the two regularizers for components v and w, which can be usefully rewritten as

1− η
2
Rv(v; a) +

η

2
Rw(w) =

1

2

nT∑
j=1

sτj
[
fv
(
‖(Dv)j‖2; a, η

)
+ fw

(
‖(Dw)j‖2; η

)]
,

where we introduced the functions fv, fw : R+ → R+ defined by

fv(t; a, η) := (1− η)φ(t; a), fw(t; η) := η t2 , t ∈ R+ . (8.3)

Our proposal is to set η such that fv, fw above intersect at a point of abscissa

t̄ = κ := (m+M)/2 . (8.4)

In Proposition 8.1 below, whose proof is given in the Appendix, we provide a formula
that, for any fixed value of parameters a, λ, allows to compute the unique η yielding
the prescribed abscissa t̄ of the intersection between functions fv and fw in (8.3).

The idea at the basis of the proposed strategy is that, even though the decomposi-
tion process carried out by the proposed variational model is global to the whole fields
domain, by setting η as above we expect to likely push locally large/small gradients
- i.e., edges/smooth parts - into the estimated cartoon/smooth component v∗/w∗.

Proposition 8.1. Let φ be the penalty function defined in (2.1) and let param-
eters λ, η, a satisfy (1.4). Then, the functions fv(t; a, η) and fw(t; η) defined in (8.3)
intersect at the origin and at another unique point having abscissa t̄ > 0 defined by

t̄ =


√

1−η
η if η ∈

(
0, η12

]
⇐⇒ τc ∈

[
τc
′
12,∞

)√
1−η
η

2
√
C

1+C otherwise
, (8.5)

C = τc/(1 + η ν), η12 = (τc − 1)/ν, τc
′
12 = 1 + η ν, ν = emax/λ . (8.6)

Then, for any given (λ, τc), (8.5) can be inverted to get η as a function of t̄, namely:

η =


1

1 + t̄2
if t̄ ∈

(
0, t̄12

]
⇐⇒ τc ∈

[
τc
′′
12,∞

)
unique solution in (0, 1) of P0 + P1η + P2η

2 + P3η
3 = 0 otherwise

, (8.7)

P0 =−4τc, P1 =(1 + τc)
2t̄2+4τc(1− ν), P2 = 2ν

(
(1 + τc)t̄

2+2τc
)
, P3 = t̄2ν2,

t̄12 =
√
ν/(τc − 1)− 1, τc

′′
12 = 1 + ν/(1 + t̄2).

(8.8)

8.1. Validating the η parameter selection strategy.. In order to better
explain as well as to validate the idea at the basis of the proposed parameter selection
strategy, we now carry out a numerical experiment consisting in applying our CNC
model to the decomposition of image u shown in the first row of Fig. 1.1, both in
the noiseless and in the noisy case. To quantitatively evaluate the quality of the
obtained decomposition results, we use the Signal-to-Noise Ratio (SNR) defined by
SNR(x∗, x) := 10 log10

(
‖x−E[x]‖22 / ‖x∗ − x‖22

)
, with x∗ the computed estimate of

the original scalar field x and E[x] denoting the mean value of x.

Noise-free images. In the first row of Fig. 8.2 we show the SNR plots for the estimated
components v∗ and w∗ obtained by decomposing the noise-free image u in the first
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row of Fig. 1.1 by using the third (S3) special decomposition model outlined in Sect.
6 with parameters τc = 0.99 and η varying in its domain (0, 1). In particular, we limit
the plots to the sub-domain of η yielding non-zero SNR values. The red circles in
the plots correspond to the values η ∈ {0.78, 0.9, 0.996, 0.99999}. The decompositions
obtained by using such η values are shown in the second and third row of Fig. 8.2.

According to the results demonstrated in Proposition 8.1 - in particular, formula
(8.7) - the η value yielding the abscissa of the intersection point between fv and fw
to be t̄ = κ = (m + M)/2 in this experiment is η = 0.9978. By observing the SNR
graphs in the first row of Fig. 8.2, one can notice that the maximum achieved SNR
values are in proximity of that η value. Moreover, by observing the plots reported in
the last row of Fig. 8.2 one can notice that the best decomposition - see the case c)
- is obtained in correspondence of an η value yielding the abscissa of the intersection
point between the functions fv and fw defined in (8.3) to be located inside the interval
[M,m]. This means that the gradient norms which are lower than such abscissa are
penalized more strongly by fv, vice-versa for gradient norms which are larger.

Noisy images. We now apply our complete model in (4.5), (5.3) with parameter
τc = 0.99 to decomposing the noisy image b = u+ ε with u = v+w, again, the noise-
free image in the first row of Fig. 1.1 and ε the realization of white Gaussian noise of
standard deviation σ = 5/255. In this case, for any fixed τc the value of parameter
η provided by the formula in (8.7) depends on t̄ and also on λ, as illustrated in
Fig. 8.3(a) for λ ∈ [0.1, 20]. The size of the interval [η(t̄ = M,λ), η(t̄ = m,λ)] of most
likely good values for η changes significantly with λ. In order to focus the analysis
of the performance of our model over choices of t̄ - hence of the associated η - in
the vicinity of the suggested value t̄ = κ = (m + M)/2, we propose the following
κ-centered affine re-parametrization of t̄ with new parameter δ:

t̄(δ;m,M) =
m+M

2
+
|m−M |

2
δ = κ +

|m−M |
2

δ , (8.9)

illustrated in Fig. 8.3(b) for δ ∈ [−1.2, 1.2].
In Fig. 8.4 we show the SNR surfaces obtained by running our model with pa-

rameters τc = 0.99 and (λ, η(t̄(δ))) varying in the domain [0.1, 20]× [−1.2, 1.2], where
t̄(δ;m,M) is given in (8.9) and η(t̄) in (8.7)–(8.8). In Fig. 8.4 we also plot three lines
corresponding to the values δ ∈ {−1, 0, 1} yielding t̄ ∈ {M,κ,m}, respectively, and in
the other direction three lines representing the iso-curves of the discrepancy equal to
{3, 4, 5}. We can see that the maximum SNR(u∗) is obtained for the discrepancy iso-
curve level 4, marked by •, reaching the SNR(u•) = 32.56, while F marks the point
of maximum SNRmean given by the average of SNR(u∗), SNR(v∗) and SNR(w∗). The
corresponding images output of the decomposition process are reported in Fig. 8.5.
We observe from Figs. 8.4, 8.5 that the proposed parameters-setting strategy allows
to robustly achieve good quality results.

Different blendings. We finally validate the η-setting strategy in (8.4) for different
blendings of the two components v and w shown in Fig. (1.1), yielding different values
of the (m,M) pair in (8.2) - hence, of the κ value in (8.4). In particular, we apply
our CNC model (τc = 0.99) to different linear mixtures of v and w, namely:

b(z) := 2(1− z) v + 2z w, z ∈ (0, 1) . (8.10)

In Fig. 8.6 we show the estimated v∗ and w∗ components and, in the captions, the
associated SNR values for the three cases z ∈ {0.2, 0.5, 0.8} in (8.10). These results
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a) η = 0.78 b) η = 0.9 c) η = 0.996 d) η = 0.9999

Fig. 8.2. SNR plots for varying η parameter values (first row), resulting v∗ (second row) and w∗

(third row) for η values corresponding to the red circles in the graphs of the first row. Corresponding
plots of the fv(t; η, a) (blue) and fw(t; η) (red) functions defined in (8.3) (fourth row). M is marked
by a solid line, while m by a dashed line.

confirm that, as far as the gradient norms of v and w are well separable, our CNC
model coupled with the η-setting strategy achieves good results.

9. Numerical Experiments. In this section, we evaluate experimentally the
performance of the proposed variational decomposition approach when applied to
images (Example 1) and scalar fields defined on surfaces (Examples 2 and 3).

For all the experiments, the parameters m and M are estimated from noiseless
scalar fields and also used for the decomposition of the noisy scalar fields. For all the
tests, the iterations of the ADMM algorithm in (7.6)–(7.8) are stopped as soon as
either of the two following conditions is fulfilled:

k > TH1 = 1000 ,
∥∥x(k+1) − x(k)

∥∥
2
/
∥∥x(k)

∥∥
2
< TH2 = 10−6 . (9.1)
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a) (λ, η(t̄, λ)) b) (λ, δ(λ))

Fig. 8.3. (a) Plot of η values in terms of λ; (b) reparametrization in δ.

SNR(u∗) SNR(v∗) SNR(w∗) SNRmean

Fig. 8.4. SNR surfaces for u∗, v∗, w∗ and their mean.

9.1. Example 1. In this first example, we investigate the performance of the
proposed variational model when applied to the decomposition of images, both in case
of noise-free and in case of noise-corrupted observations b. In particular, in order to
provide evidence for usefulness of the CNC strategy, we are interested in testing the
performance of our model when applied in its three main working regimes, depending
on parameter τc in (5.12), namely the purely convex (TV) regime (τc = 0), the CNC
regime (0 < τc ≤ 1) and the purely non-convex (NC) regime (τc > 1).

Decomposition of noise-free images.
The synthetic noise-free image u = v+w shown in the first column of Fig. 9.3 has

been processed using the decomposition model JS3 outlined in Sect. 6 with varying
values for η(δ, ·) obtained by finely sampling the interval δ ∈ [−1, 1.5]. In particular,
we run the ADMM algorithm for the CNC (τc = 0.99), NC (τc = 5), and TV (τc = 0)
regimes. In Fig. 9.1 we plot SNR(v∗) and SNR(w∗) as functions of δ.

First, we observe from the graphs in Fig. 9.1 that our model in the CNC and
NC regimes performs much better than in the TV regime, both in terms of maximum
achieved SNR values and in terms of SNR peak shapes and positions. In fact, the SNR
curves for CNC and NC are almost flat and equal to their maximum in the whole in-
terval δ ∈ [−1, 1], this validating the proposed η-setting strategy in these two regimes.
Instead, the SNR graphs for TV exhibit a quite narrow peak in correspondence of a
low δ value, thus making the η-setting procedure very fragile in this regime.

Then, it is very interesting to note that CNC and NC performs very similarly, with
the crucial difference that in the CNC case our model is strongly convex - with all the
well-known associated good properties - whereas non-convexity of the model in the NC
case can well be source of intrinsic (existence of local minimizers) as well as numerical
(convergence of the minimization algorithm) problems. In fact, by comparing the
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u SNR(u•) = 32.55 SNR(uF) = 27.84

v SNR(v•) = 18.88 SNR(vF) = 27.03

w SNR(w•) = 18.25 SNR(wF) = 22.23

Fig. 8.5. Decomposition results obtained from corrupted image with SNR(b) = 20.99 in com-
parison to the original images in the first column. Second column corresponds to the best denoising
of u∗, marked as solid dot in Fig. 8.4. Third column corresponds to maximum SNR of the mean,
marked by a star in Fig. 8.4.

NC and NCGT graphs in Fig.9.1, which have been obtained by using a random and
a ground-truth initial ADMM iterate, respectively, with stopping criteria in (9.1)
defined by TH1 = +∞, TH2 = 10−8, one can deduce that NC with random guess got
regularly stuck in local minima with lower SNR values for δ > 0.75. These results
strongly indicate motivations for using our decomposition model in the CNC regime.
Decomposition of noisy images.

We apply our model in the TV, CNC, NC regimes to decomposing the noisy
image b = u+ ε, with u the noiseless image in Fig. 9.3 and ε the realization of white
Gaussian noise with standard deviation σ = 5/255, yielding to SNR(b) = 21.33.

In the first row of Fig. 9.2, we report the SNRmean graphs for the three regimes
over the parameters domain (λ, δ) ∈ [0.1, 20]×[−1, 1.5]. We over-imposed the iso-levels
{3, 4, 5} of the discrepancy as well as of δ = {−1, 0, 1}, yielding {η(M), η(κ), η(m)}.
By F we denote the point of maximum SNRmean. The corresponding resulting images
uF, vF, wF are reported in Fig. 9.3 for the three regimes, together with the original
images (first column). We observe from these results that TV is the worst performing
especially in terms of {u, v} decomposition, whereas CNC and NC perform similarly
well, with NC providing slightly better results.
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SNR(v∗) = 52.28 SNR(v∗) = 40.23 SNR(v∗) = 20.60

SNR(w∗) = 39.76 SNR(w∗) = 39.76 SNR(w∗) = 32.18
a) z = 0.2 b) z = 0.5 c) z = 0.8

Fig. 8.6. Blending: components v∗ (first row) and w∗ (second row) estimated by using our
CNC decomposition approach (τc = 0.99) for three different linear blendings according to (8.10).

Fig. 9.1. Example 1 (noise-free images): SNR graphs for the decomposition of the noisy-free
image u in the first column of Fig. 9.3 into v∗ and w∗ components under different regimes.

In the second row of Fig.9.2 we present an empirical investigation on the numer-
ical convergence of the proposed ADMM-based minimization scheme, in the different
regimes. We report convergence plots for three different values of the penalty param-
eter β chosen in the interval β ∈ [0.75, 50], with a random ADMM starting iterate.
The empirical behavior suggests numerical convergence of the convex TV and the
proposed CNC schemes, while in the NC regime the convergence plots are in gen-
eral highly oscillating and the method does not converge for β = 0.75. Moreover,
as well known and previously pointed out, the NC regime is also dependent on the
initialization, which can cause stalling at various different local minima solutions.

9.2. Example 2. In this example we test the proposed decomposition approach
in the general case of scalar fields defined over surfaces. In particular, we apply
our model in its CNC (τc = 0.99) and, for comparison, TV (τc = 0) modalities to
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a) CNC (τc = 0.99) b) NC (τc = 10) c) TV (τc = 0)

Fig. 9.2. Example 1 (noisy images): SNRmean graphs for varying λ and η parameters for the
three different regimes (first row). Corresponding ADMM convergence plots (second row).

u SNR(uF) = 27.41 SNR(uF) = 28.42 SNR(uF) = 26.18

v SNR(vF) = 22.97 SNR(vF) = 23.35 SNR(vF) = 16.13

w SNR(wF) = 16.39 SNR(wF) = 16.99 SNR(wF) = 11.52

Fig. 9.3. Example 1 (noisy images): decompositions of noisy images obtained for the parame-
ters providing highest mean SNR for each regime. Original (first column), CNC (second column),
NC (third column) and TV (last column).

decomposing the noiseless piecewise smooth field u in Fig. 9.4, given by the sum of a
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u = v + w

Fig. 9.4. Example 2: (left) scalar field on a sphere; (middle) piecewise-constant component;
(right) piecewise smooth component.

chessboard cartoon field v and a smooth field w, both defined over a meshed sphere.
We are especially interested in investigating the impact of the mesh scale, resolu-

tion and quality on the obtained decomposition results. To this aim, different sphere
meshes Si = {Vi, Ti}, i = 1, . . . , 4, of increasing resolutions |Si| := (|Vi|, |Ti|) were
created, namely |S1| = (4098, 8192), |S2| = (16386, 32768), |S3| = (65538, 131072),
|S4| = (66114, 132288). Visual details of the meshes are shown in Fig. 9.5, whereas
in Table 9.1 we report some quantities characterizing or depending on the meshes,
namely the radius r of the meshed sphere, the minimum height hmin of mesh triangles,
the maximum eigenvalue emax(B) of matrix B in (5.6) and the resulting - according
to (5.12) - concavity parameter a for our CNC model. We also report some quantities
characterizing the scalar fields defined over the meshes, namely m and M defined in
(8.2) and their ratio, and the SNR values achieved by applying our decomposition
approach in the CNC and TV versions. In particular, for CNC model the parameter
η has been estimated according to the proposed automatic selection strategy, i.e. by
using (8.4) and then (8.7)–(8.8), whereas the reported SNR values for TV are the
highest achievable by letting η varying in its domain (0, 1).

The impact of the mesh scale on decomposition results can be deduced from the
SNR values reported in the fourth columns related to S3 of Table 9.1, obtained by
scaling S3 to four different sphere radii r ∈ {1, 2, 4, 10}. We observe that the mesh
scale seems not to influence the quality of the achieved results for both CNC and TV.
This can be explained by observing that when the mesh scale - represented by hmin

- increases, the gradient norms of fields v and w are both downscaled by the same
factor, so that the ratio m/M remains constant.

On the other hand, the increasing of the mesh resolution, i.e. S1–S4 for r = 1, and
its structure i.e. S3–S4 for r = 1, affect the input scalar field quality and the factor
1/h which appears in the computation of the gradient magnitude. Therefore, for
fixed radius r = 1, the height h decreases, and we observe an increasing performance,
mainly caused both by the sampling quality and by improved gradient separability,
due to the factor 1/h in the gradient computation.

Finally, we notice from SNR values in Table 9.1 that CNC outperforms TV also
in this scalar fields decomposition test. This is supported by the visual inspection of
the decomposition results shown in Fig. 9.6, where one can observe, for the TV case,
traces of the original cartoon component in the estimated smooth component w∗.

9.3. Example 3. In this last example we carry out a broader evaluation of
the proposed CNC model - with τc = 0.99 and η automatically selected by (8.4)
and (8.7)–(8.8) - by applying it to the decomposition of noiseless and also noisy scalar
fields defined over three different meshed surfaces referred to as sphere, vase and horse
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S1 S2 S3 S4

Fig. 9.5. Example 2: details of the meshes considered. S1–S3 represent different resolutions of
structured mesh, while S4 is an unstructured mesh with resolution similar to S3.

S1 S2 S3 S3 S3 S3 S4

r 1 1 1 2 4 10 1
hmin 3.47e-2 1.74e-2 8.68e-3 1.74e-2 3.47e-2 8.68e-2 1.02e-3

emax(B) 3.4e+3 1.4e+4 5.5e+4 1.4e+4 3.4e+3 5.5e+2 3.5e+4
a 9.2e-1 4.9e-1 2.5e-1 5.1e-1 1.02 2.54 1.01
M 0.50 0.50 0.50 0.25 0.13 0.05 0.50
m 3.79 7.55 15.09 7.54 3.77 1.51 3.40

m/M 7.58 15.10 30.16 30.16 30.16 30.16 6.80

CNC
SNR(v∗) 17.50 23.61 29.66 29.72 29.74 29.78 33.81
SNR(w∗) 16.19 22.29 28.33 28.39 28.41 28.45 31.54

TV
SNR(v∗) 13.95 20.41 26.47 26.47 26.47 26.47 26.61
SNR(w∗) 12.65 19.08 25.14 25.14 25.14 25.14 24.34

Table 9.1
Example 2: properties of the sphere meshes S1–S4 and SNR values for the CNC and TV models.

and characterized by resolutions |sphere| = (65538, 131072), |vase| = (52028, 131072)
and |horse| = (129218, 258432). The sphere mesh coincides with mesh S3 introduced
in the previous example and also the considered field defined on it is the same as the
one defined in that example.

First, we applied our CNC model in the noiseless case, i.e. for decomposing the
two noise-free fields u shown in the leftmost column of Figs. 9.8, 9.10. The very high
performance of our approach in this test is evident from results in Fig. 9.7, where we
report the estimated components v∗ and w∗ together with the associated SNR values.

Next, the noiseless fields defined over the three meshes vase, sphere and horse have
been corrupted by additive white Gaussian noise of increasing standard deviations
σ ∈ {1× 10−2, 2× 10−2, 3× 10−2}, respectively. The noisy fields b, the noiseless fields
u, and ground-truth cartoon and smooth components v, w are shown in the leftmost
columns of Figs. 9.8–9.10, whereas in the other two columns of the same figures we
report the decomposition results obtained by our approach for two different values of
the model parameter λ, together with the associated SNR values.

From the results in Figs. 9.8–9.10 we notice that for the smaller λ values the
proposed model acts as a good denoiser - in fact, SNR(u∗) values are high - whereas
for the larger λ values the quality of {v∗, w∗} decompositions improves. In particular,
the estimated cartoon components v∗ appear completely noise-free, while a fraction
of the noise components are still visible in w∗. This behavior is more evident in
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CNC
S1 S2 S3 S4

TV
S1 S2 S3 S4

Fig. 9.6. Example 2: robustness to resizing the mesh resolution and structure for S1–S4 with
radius r = 1. The corresponding SNR values are reported in Table 9.1.

SNR(v∗) = 51.68 SNR(v∗) = 52.25 SNR(w∗) = 50.33 SNR(w∗) = 63.31

Fig. 9.7. Example 3: piecewise constant (v∗) and smooth (w∗) components estimated by our
CNC decomposition approach applied to noisy scalar fields defined over the vase and horse meshed
surfaces. Ground-truth fields are shown in Fig. 1.1 for vase and Fig. 9.10 for horse.

Fig. 9.10 corresponding to the test characterized by the highest noise level. This is
explained by the fact that as the noise level increases the separability of the smooth
and noise components becomes increasingly difficult. This suggests an effective two-
phase procedure which holds the potential for simultaneously achieving very good
denoising and decomposition of noisy scalar fields on surfaces, visually illustrated in
Fig. 9.11. In particular, in the first phase we compute a {v∗, w∗} decomposition of the
noisy observation b = v+w+ ε by using our CNC model with a very large λ value or,
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equivalently, the model variant (S3) outlined in Sect. 6. This should allow to capture
in v∗ a very good estimate of the true cartoon component v, such that w∗ is also a
very good estimate of the true noise-corrupted smooth component w + ε. Hence, as
a second phase we apply the model variant (S1) in Sect. 6 to w∗ obtained in the first
phase so as to get good estimates w̄∗, ε∗ of the true smooth and noise components w,
ε. Clearly, if one is only interested in denoising the observed field b, then it can finally
get a good estimate of the true noiseless field u = v+w by summing v∗ output of the
first phase with w̄∗ output of the second phase, as illustrated in Fig. 9.11.

b

u SNR(u∗) = 23.88 SNR(u∗) = 22.36

v SNR(v∗) = 12.16 SNR(v∗) = 32.31

w SNR(w∗) = 10.88 SNR(w∗) = 18.64

Fig. 9.8. Example 3: original scalar field components, at the top the noisy input b, with
SNR(b) = 21.83 and σ = 10−2 (first column); decomposition results obtained for estimated η pa-
rameter and λ = 10 (second column) and λ = 80 (third column)
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b

u SNR(u∗) = 27.58 SNR(u∗) = 25.92

v SNR(v∗) = 13.58 SNR(v∗) = 24.73

w SNR(w∗) = 12.15 SNR(w∗) = 19.83

Fig. 9.9. Example 3: original scalar field components, at the top the noisy input b, with
SNR(b) = 21.33 and σ = 2 × 10−2 (first column); decomposition results obtained for estimated η
parameter and λ = 140 (second column), λ = 105 (third column)

10. Conclusions. This work enlarges the class of CNC variational approaches
and can be used to denoise as well as to decompose noisy scalar fields defined over
triangulated surfaces into piecewise constant and smooth components. The introduced
energy functional is a linear mixture of a Tikhonov regularization term for the smooth
component, a TV-like non-convex regularization term for the cartoon component and
a quadratic fidelity term accounting for noise. The non-convex term is parametrized
such that the free scalar parameter allows to tune its degree of non-convexity and,
hence, to promote sparsity of gradient norms of the cartoon component more strongly
than classical convex TV without renouncing to convexity of the total model. A
selection strategy for the free model parameters has been presented, theoretically
motivated and experimentally validated. An efficient ADMM algorithm has been
proposed to compute the (unique) solution of our CNC model. Numerical experiments
on images as well as functions on surfaces indicate the high quality of decompositions
obtainable by our proposal, confirm the CNC strategy as a very valuable alternative
to both the purely convex and purely non-convex approaches and prove the robustness
of the proposed parameter selection strategy.

Future work will be devoted to improve our proposal both in the model and in
the parameter selection perspective, namely we will investigate more powerful fidelity
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b

u SNR(u∗) = 24.71 SNR(u∗) = 19.78 SNR(u∗) = 16.04

v SNR(v∗) = 7.28 SNR(v∗) = 17.76 SNR(v∗) = 29.63

w SNR(w∗) = 18.87 SNR(w∗) = 18.90 SNR(w∗) = 15.57

Fig. 9.10. Example 3: original scalar field components, at the top the noisy input b, with
SNR(b) = 16.04 and σ = 3 × 10−2(first column); decomposition results obtained for estimated η
parameter and λ = 3 (second column), λ = 100 (third column), λ = 1012 (fourth column).

+ =
b = w∗ SNR(w̄∗) = 33.25 v∗ SNR(u∗) = 33.39

Fig. 9.11. Example 3: two-phases approach. From left to right: input b to the second phase
coinciding with output w∗ of the first phase shown in the last column of Fig. 9.10 with SNR(b) =
15.57; resulting w̄∗ via the second phase; output v∗ of the first phase depicted in the right-most
column of Fig. 9.10; reconstructed noise-free field u∗ = v∗ + w̄∗.
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terms enforcing whiteness of the residual (see, e.g., [8]), which should allow for better
separation of noise/smooth components, and we will investigate automatic methods
for estimating quantities m and M in (8.2) also in noisy cases.
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Appendix. Proof of Proposition 5.2.
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Proof. First, we rewrite the function J1 in (5.4) as follows:

J1(v, w;λ, η, γ) =
λ

2

(
vTSV v + wTSV w + 2vTSV w

)
+
η

2
wTDTSDw − γ

2
vTDTSDv

=
1

2
(vT wT )

(
λSV − γ DTSD λSV
λSV λSV + η DTSD

)(
v
w

)
. (10.1)

The function J1 in (10.1) is quadratic in (v, w), hence it is convex in (v, w) if and only
if its Hessian HJ1

∈ R2nV ×2nV is at least positive semidefinite, that is if and only if

HJ1
=

(
S

1/2
V 0

0 S
1/2
V

)(
λ In − γ B λ In
λ In λ In + η B

)(
S

1/2
V 0

0 S
1/2
V

)
� 0 , (10.2)

with matrix B ∈ RnV ×nV defined in (5.6). Since B is symmetric and positive semidef-
inite, it admits the eigenvalue decomposition

B = V TEV, E = diag(e1, e2, . . . , enV ) , V TV = V V T = InV , (10.3)

with e1 ≥ e2 ≥ . . . ≥ enV ≥ 0 indicating the real non-negative eigenvalues of B.
Replacing (10.3) into (10.2), we obtain:

HJ1 =

(
S

1/2
V V T 0

0 S
1/2
V V T

)(
Λ1,1 Λ1,2

Λ2,1 Λ2,2

)
︸ ︷︷ ︸

Λ

(
V S

1/2
V 0

0 V S
1/2
V

)
� 0 , (10.4)

where the blocks Λ1,1,Λ1,2,Λ2,1,Λ2,2 ∈ RnV ×nV are diagonal matrices defined by

Λ1,1 = λ InV − γ E , Λ2,2 = λ InV + η E , Λ1,2 = Λ2,1 = λ InV . (10.5)

Following [24], there exists a permutation matrix P ∈ R2nV ×2nV such that

PΛPT = Λ′ = diag
(
Λ′1,Λ

′
2, . . . ,Λ

′
nV

)
, (10.6)

with matrices Λ′k ∈ R2×2 defined by[
Λ′k
]
i,j

=
[
Λi,j

]
k
, k ∈ {1, . . . , nV }, i, j ∈ {1, 2} . (10.7)

Thus, the original 2 × 2 block matrix Λ in (10.4) with diagonal blocks Λi,j of order
nV can be transformed into the block-diagonal matrix Λ′ with nV full blocks Λ′k of
order 2 which, in accordance with (10.5) and (10.7), take the form

Λ′k =

(
λ− γ ek λ
λ λ+ η ek

)
, k ∈ {1, . . . , nV } . (10.8)

The real symmetric matrices Λ′k in (10.8) admit the eigenvalue decompositions

Λ′k =RTk LkRk, Lk = diag
(
l
(1)
k , l

(2)
k

)
, RTkRk =RkR

T
k = I2, k ∈ {1, . . . , nV }, (10.9)

with l
(1)
k , l

(2)
k the two real eigenvalues of Λ′k. Recalling (10.6) and introducing the block

diagonal matrix R := diag (R1, . . . , RnV ) ∈ R2nV ×2nV , which is orthogonal as blocks
Rk are all orthogonal, condition in (10.4) can be equivalently rewritten as follows:

HJ1
= WTLW � 0 with W = RP

(
V S

1/2
V 0

0 V S
1/2
V

)
∈ R2nV ×2nV (10.10)
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a full rank matrix and L ∈ R2nV ×2nV the diagonal matrix containing all the eigenval-
ues of all the matrices Λ′k in (10.8), namely

L = diag(l1, l2, . . . , l2nV ) = diag
(
l
(1)
1 , l

(2)
1 , l

(1)
2 , l

(2)
2 , . . . , l(1)

nV , l
(2)
nV

)
. (10.11)

In particular, the pair of eigenvalues l
(1)
k , l

(2)
k of matrix Λ′k in (10.8) is given by

l
(1),(2)
k = λ+

η − γ
2

ek ±

√
λ2 +

(
η + γ

2
ek

)2

. (10.12)

Condition in (10.10) is satisfied if and only if matrix L in (10.11) is positive
semidefinite, that is if and only if all its diagonal entries in (10.12) are non-negative.
Since such entries coincide with the eigenvalues of matrices Λ′k in (10.8), function
J1 is convex if and only if all matrices Λ′k are positive semidefinite. According to
Sylvester’s criterion, this happens if and only if λ− γ ek ≥ 0

λ+ η ek ≥ 0
(λ− γ ek

)(
λ+ η ek

)
− λ2 ≥ 0

=⇒ γ ≤ λ η

λ+ η ek
∀ k ∈ {1, . . . , nV } , (10.13)

hence condition (5.5) follows.
To complete the proof, first we recall that, based on (10.10), we can write

J1(x;λ, η, γ) =
1

2
xTHJ1x =

1

2
xTWTLWx , x = (v;w) , (10.14)

with W ∈ R2nV ×2nV in (10.10) a full-rank matrix and L ∈ R2nv×2nV the diagonal
matrix defined in (10.11)–(10.12). We now analyze L. The diagonal entries of L
depend on the parameters λ, η, γ as well as on the eigenvalues ek, k = 1, . . . , nV , of
matrix B ∈ RnV ×nV defined in (5.6). It is easy to prove that B is always symmetric
positive semidefinite with rank equal to nV − 1, in fact:

1) B = ATA with A := S1/2DS
−1/2
V , hence B is symmetric positive semidefinite

and has the same rank of A;

2) S1/2, S
−1/2
V are full rank square matrices, hence A has the same rank of D;

3) D discretizes the gradient operator, hence its null-space has dimension 1.
This implies that the eigenvalues of B satisfy e1 ≥ e2 ≥ . . . ≥ enV −1 > enV = 0. It
follows from (10.12) that the nV -th pair of diagonal entries of L - obtained by replacing

ek = enV = 0 in (10.12) - is given by
(
l
(1)
nV , l

(2)
nV

)
= (2λ, 0), hence L has rank less than

or equal to 2nV − 1, independently of parameters λ, η, γ. In particular, it is easy to
prove that if γ ≥ η/(1 + η emax/λ), then L can have rank less than 2nV − 1. Instead,
if γ <η/(1 + η emax/λ), then L has rank 2nV − 1. In fact, the remaining nV − 1 pairs

of eigenvalues
(
l
(1)
k , l

(2)
k

)
of L obtained by replacing in (10.12) the positive eigenvalues

ek, k = 1, . . . , nV − 1, of B, are positive if and only if all the nV − 1 matrices Λ′k,
k = 1, . . . , nV − 1, defined in (10.8) are positive definite. According to Sylvester’s
criterion, and following analogous derivations as in (10.13), it is immediate to prove
that this happens if and only if γ < η/(1 + η emax/λ).

Hence, if inequality (5.5) holds in strict sense, then L is positive semidefinite and
has rank equal to 2nV −1, such that its diagonal entries are all positive but one which
is zero. This means that there exists one and only one unit-norm vector d̄ ∈ R2nV

such that J1 assumes constant null values along the homogeneous straight line x = t d̄,
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t ∈ R. It comes easily from the original expression of J1 in (5.4) that such unit-vector
d̄ coincides with d defined in (5.1). Hence, J1 is strongly convex over any feasible set
defined by a linear constraint of the form in (5.2).

Proof of Proposition 7.1.
Proof. Condition (7.15) comes easily from Proposition 2 in [9] and for the proof

of statement (7.17) we refer the reader to Proposition 4.5 in [11].
We now prove statement (7.18). First, we notice that if ‖r‖2 = 0, then the solution

of (7.16) is clearly z∗ = 0. We now consider the case ‖r‖2 > 0. Based on statement
(7.17), by setting z = ξ r, ξ ≥ 0, we turn the original unconstrained 3-dimensional
problem in (7.16) into the following equivalent constrained 1-dimensional problem:

ξ∗ = arg min
0≤ξ≤1

{
f(ξ) := φ (‖r‖2 ξ; a) +

ω

2
‖r‖22

(
ξ2 − 2ξ

)}
, (10.15)

where we omitted the constants and introduced the function f : R+ → R. Since φ
is continuously differentiable on R+ - see Sect. 2 - the function f in (10.15) is also
continuously differentiable on R+. Moreover, f is strictly convex as it is the restriction
of the strictly convex function θ in (7.14) to the half-line ξ r, ξ ≥ 0. Hence, a necessary
and sufficient condition for a point 0 < ξ < 1 to be the global minimizer of f is

f ′(ξ) = 0 ⇐⇒ ‖r‖2
[
φ′ (‖r‖2ξ; a) + ω ‖r‖2 (ξ − 1)

]
= 0 . (10.16)

Since f is continuously differentiable and strictly convex on R+, f ′(ξ) is continuous
and strictly increasing in the domain 0 ≤ ξ ≤ 1 and at the extremes we have:

f ′(0+) = ‖r‖2
[√

2a− ω ‖r‖2
]
≥ 0 for ‖r‖2 ≤

√
2a/ω (< 0 otherwise)

f ′(1) = ‖r‖2 φ′(‖r‖2; a) > 0 for ‖r‖2 <
√

2/a ( = 0 otherwise)
(10.17)

Moreover, since ω > a =⇒
√

2a/ω <
√

2/a, we have the three cases:

a) ‖r‖2 ≤
√

2a/ω =⇒ f ′(0+) ≥ 0, f ′(1) > 0 ;

b)
√

2a/ω < ‖r‖2 <
√

2/a =⇒ f ′(0+) < 0, f ′(1) > 0 ;

c)
√

2/a ≤ ‖r‖2 =⇒ f ′(0+) < 0, f ′(1) = 0 .

(10.18)

For cases a) and c) the solution ξ∗ of (10.15) belongs to the boundary of the opti-
mization interval [0, 1], namely ξ∗ = 0 for case a) and ξ∗ = 1 for case c). For case b),
instead, ξ∗ ∈ (0, 1) is the solution of the first-order optimality condition (10.16), i.e.

√
2a− a‖r‖2ξ + ω‖r‖2(ξ − 1) = 0 ⇐⇒ ξ∗ =

(
ω −
√

2a/‖r‖2
)
/ (ω − a) . (10.19)

The proof of statement (7.18) is thus completed.

Proof of Proposition 8.1.
Proof. Existence and uniqueness of the second intersection point - the first is the

origin - comes easily form the definitions of fv, fw in (8.3) and of φ in (2.1).
To prove (8.5), first we notice that the function fv in (8.3) is piecewise defined

like the function φ - see (2.1) - on the two sub-domains [0,
√

2/a) and [
√

2/a,+∞).
Denoting by t̂ the (positive) abscissa of the intersection point between fw and the
prolongation of the second piece of fv to [0,+∞) - namely, the horizontal half-line
having intercept (1− η) - we have

η t2 = 1− η =⇒ t̂ =
√

(1− η)/η . (10.20)
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In order for t̂ above to be an acceptable solution, that is to represent the abscissa t̄
of the actual intersection point for t > 0 between fv and fw, t̂ must belong to the
domain of definition [

√
2/a,+∞) of the second piece of fv, namely:

t̂ ≥
√

2

a
⇐⇒ a ≥ 2η

1− η
⇐⇒ τc

2η

1− η
1

1 + η emax/λ
≥ 2η

1− η
(10.21)

⇐⇒ τc ≥ 1 + η µ ⇐⇒ η ≤ (τc − 1)/µ , (10.22)

where in (10.21) we replaced the expression of a as a function of λ, η, τc given in the
convexity condition (5.12) and in (10.22) we substituted ν = emax/λ. In case that
(10.22) is not satisfied, then clearly t̄ coincides with the abscissa of the intersection
for t > 0 between fw and the first piece of fv. In particular, recalling the definitions
of fv, fw in (8.3) and of φ in (2.1), we have:

ηt2 = (1− η)
(√

2at− a
2
t2
)
⇐⇒ t̄ =

(1− η)
√

2a

η + (1− η)a2
⇐⇒ t̄ =

√
1− η
η

2
√
C

1+C
, (10.23)

where the last equality comes from replacing the expression of a in (5.12) and then
algebraically manipulating the result, with C defined in (8.6).

To prove (8.7), first we denote by %(η;λ, τc) : (0, 1) → R∗+ the piecewise-defined
function in (8.5) which, for any given pair of parameters (λ, τc) ∈ R∗+ × R∗+, maps
η into the abscissa t̄ and by %1(η;λ, τc) : (0, η12] → R∗+, %2(η;λ, τc) : (η12, 1) → R∗+
the two pieces of % defined in (8.5), with η12 defined in (8.6). For any given pair
(λ, τc) ∈ R∗+×R∗+, the functions %1 and %2 are clearly both continuously differentiable
in η over the domain (0, 1) and, in particular, we have %1(η12;λ, τc) = %2(η12;λ, τc) =√

(1− η12)/η12. Hence, the function % is continuous in η over its the entire domain
(0, 1). For what concerns the first-order derivatives with respect to η of functions %1

and %2, we have:

∂%1(η;λ, τc)

∂ η
=− 1

2η2

√
η

1− η
< 0 ∀ η ∈ (0, 1), (10.24)

∂%2(η;λ, τc)

∂η
=− 1

2η2

√
η

1− η
2
√
C

1 + C
+

√
1− η
η

1− C√
C

∂C

∂η
< 0 ∀ η ∈ (0, 1),(10.25)

where the last inequality in (10.25) can easily be proved after some algebra. It follows
from (10.24)-(10.25) that the functions %1, %2, hence %, are monotonically decreasing
and, thus, invertible in the variable η. The inverse functions %−1

1 (t̄;λ, τc), %
−1
2 (t̄;λ, τc)

can be obtained starting from (8.5):

t̄ =

√
1− η
η
⇐⇒ t̄2 =

1− η
η
⇐⇒ ηt̄2 + η = 1⇐⇒ η =

1

1 + t̄2
(10.26)

t̄ =

√
1− η
η

2
√
C

1 + C
⇐⇒ t̄2 = 4

1− η
η

τc(1 + ην)

τ2
c + (1 + ην)2

, (10.27)

where the latter equation in (10.27) comes from the former after replacing the expres-
sion of C in (8.6). Further simple algebraic manipulations yield to the fourth-degree
polynomial equation in (8.7).
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