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Abstract Flight retiming in airline scheduling consists in slightly modifying the scheduled
departure time of some flights with the goal of providing a better service with a cheaper cost.
In this research, the departure times must be selected from a small discrete set of options.
The whole problem embeds flight retiming, fleet assignment, aircraft routing and crew pairing.
Thus, the aim is to determine the departure times of the flights, the fleet assignment and the
minimum cost aircraft and crew routes. The objective function takes into account a large cost
associated with each crew member, a penalization for short or long connection times, a cost
for crew members changing aircraft along their routes, and a minor penalty associated with
the use of each aircraft. The constraints enforce aircraft maintenance and crew working rules.
In this setting, flight retiming is allowed to potentially reduce the total costs and increase the
robustness of the solution against delays by decreasing the number of aircraft changes.

We propose and compare four heuristic algorithms based on a Mixed Integer Linear Pro-
gramming model for the whole problem. The model contains path variables representing the
crew pairings, and arc variables representing the aircraft routes. In the heuristic algorithms,
column generation is applied on the path variables, and different flight retiming options are
considered. The algorithms are tested on real-world instances of a regional carrier flying in
the Canary Islands to evaluate their advantages and drawbacks. In particular, one of the al-
gorithms, that uses the solution of the Linear Programming relaxation of the model to select
promising options for the departure of the flights, turns out to be the most effective one. The
obtained results show that costs can be significantly reduced through flight retiming while still
keeping the computing times reasonably short. In addition, we perform a sensitivity analysis
by including more retiming options and by using different aircraft and crew costs. Finally, we
report the results on larger size instances obtained by combining real-world ones.
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1 Introduction

Airline scheduling is a very complex problem that is usually solved by decomposing it into
several planning stages ([6], [7]): flight scheduling, in which origin and destination airports
and departure and arrival times have to be determined for each flight based on the passenger
demand; fleet assignment that consists of deciding which fleet (aircraft type) must be assigned
to each flight; aircraft routing, in which the routes for the aircraft are designed while satisfying
maintenance constraints; crew pairing, in which the routes for the crew members are defined
while respecting the labor work rules; crew rostering that consists of finding a roster for
each crew member. Each of these stages is usually characterized by an objective function
that minimizes the costs appearing in that stage. In addition, the output of a stage becomes
the input of the subsequent stage (see e.g. [19]). Therefore, suboptimal solutions might be
obtained due to the problem decomposition. To overcome this issue, recent works integrate
different stages and solve the integrated problem at once (see e.g. [3], [5], [9], [10], [12], [13],
[18], [20], [21]).

Flight retiming consists of selecting one departure time (and consequently the arrival time)
for each flight among a set of options. In some airlines, like the one motivating our research,
the commercial department initially suggests a departure time for each flight, but a small
modification (say ±10 minutes) may by allowed if convenient. Each flight has fixed duration,
departure airport and arrival airport. When planning in advance, the suggested departure
time can be anticipated or postponed within a discrete set of options, typically a small time
interval. Flight retiming can be used both to reduce the airline scheduling costs and to increase
the robustness of the planned solution against possible delays, and therefore, it can be viewed
also as a simple variant of flight scheduling.

In this work, we include the feature of flight retiming in an integrated airline scheduling
problem combining fleet assignment, aircraft routing and crew pairing. The whole problem
requires to determine the departure times (chosen inside a small set of options) for the flights,
the fleet assignment and the minimum cost aircraft and crew routes. The objective function
of the problem takes into account a large cost associated with each crew member, including
penalties for short and long connection times between consecutive flights, a cost for the air-
craft changes (since they increase the probability of delay propagation), and a cost associated
with the use of each aircraft. In this setting, we apply flight retiming to possibly reduce the
total costs, while satisfying constraints on aircraft maintenance and crew working rules. Note
that costs not only aim at the efficiency of the schedule, but also include a penalty for short
connections and a term for minimizing the aircraft changes, thus favoring robustness of the
planned schedule. Flight retiming allows sequencing flights that otherwise would be too close
or too far in time, i.e., it increases the flight connection possibilities. Thus, by using retiming,
the number of crew members and/or aircraft needed to execute all flights can be reduced, and
the number of aircraft changes and the cost for short or long connection can be decreased
too. The studied problem arises at a regional carrier flying in the Canary Islands. In [9], we
studied the problem without flight retiming for the same carrier, and provided several exact
approaches to solve it. The best approach is based on a Mixed Integer Linear Programming
(MILP) model with path (crew-route) variables representing the crew pairings and arc vari-
ables representing the aircraft routing. The approach was composed of three phases. In the
first phase, the Linear Programming (LP) relaxation of the MILP model was solved to obtain
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a lower bound by applying column generation on the crew-route variables, where the pricing
problem was an Elementary Shortest Path with Resource Constraints (ESPRC) solved by a
dynamic programming procedure on an acyclic graph. The second phase was used to find an
integer solution (upper bound), by solving, within a given short time limit, the reduced MILP
model containing only the crew-route variables generated in the first phase and all the arc
aircraft variables. The third phase was used to derive the optimal solution by solving a MILP
model including all variables with reduced cost smaller than the gap between the upper and
lower bounds computed in the previous phases. The three-phase approach was enhanced with
a bounding cut derived by computing a lower bound on the number of aircraft changes that
are needed in a feasible solution. Computational experiments showed that the approach was
able to solve to optimality all the real-world instances. The success was partially due to the
size of the instances, each one involving about 150 flights, with no interaction between con-
secutive days because the carrier does not operate during night time. Those excellent results
motivated the extension of the problem to also address the retiming characteristic. Indeed, the
commercial department of the carrier initially proposes the flights with given departure times,
but the regional carrier is willing to slightly move (anticipate or postpone) those suggested
times if a better solution with respect to the one without retiming is generated.

Our first attempt to solve the problem with flight retiming was to adapt the exact approach
in [9] by considering a flight for each alternative departure time. However, the number of
available flight connections significantly increases when flight retiming is allowed, thus making
the problem much harder to be solved. To reduce the computing times, we propose and evaluate
four heuristic algorithms, all based on the MILP model with crew-route variables and aircraft-
arc variables.

The main contributions of this paper are as follows:

– The paper tackles a real-world integrated airline scheduling problem that includes the
feature of flight retiming. The problem requires to determine the departure times (chosen
inside a small set of options) for the flights, the fleet assignment and the minimum cost
aircraft and crew routes. While most of the articles on flight retiming in the literature
consider one phase (aircraft routing or fleet assignment) or two phases (aircraft routing
and crew pairing), our approaches solve the three phases and flight retiming all together.

– The problem is of interest to regional carriers, characterized by many short flights between
a small set of airports and by a large number of flight connections. These features make the
flight retiming opportunity very challenging. In addition, the problem includes contrasting
goals: the objective function contains costs aiming at the efficiency of the schedule (e.g.
aircraft and crew costs), and costs for minimizing the number of aircraft changes, thus
maximizing also the robustness of the planned schedule.

– The paper describes four two-phase algorithms for solving heuristically the integrated
airline scheduling problem. The algorithms are based on a MILP model with route variables
representing the crew pairings and arc variables representing the aircraft routing. Column
generation is applied on the crew-route variables, and different procedures for selecting
the retiming options are considered.These algorithms rely on the MILP model and column
generation developed in [9] for the variant without retiming, but incorporate procedures
for appropriately selecting flight copies. As shown in the computational results, finding a
good set of flight copies is not trivial, but important for limiting the computing times while
still obtaining improved solutions.

– Computer implementations of the algorithms are tested on real-world instances of the
regional carrier. The results show the advantages and drawbacks of the different algorithms,



4 Valentina Cacchiani, Juan-José Salazar-González

with a better trade-off between solution quality and computing time of one algorithm with
respect to the other three.

– We perform a sensitivity analysis on the impact that a larger number of retiming options
has on the quality of the obtained solutions and on the computing times. In addition,
we consider different aircraft and crew costs in the objective function, and evaluate their
effects on the obtained airline schedules. Finally, we test the performance of the most
effective algorithm on larger size instances, showing that they can effectively be solved in
acceptable computing times.

The paper is organized as follows. Section 2 gives an overview of the works from the litera-
ture that apply flight retiming. Section 3 describes formally the studied problem, emphasizing
the main features that characterize regional carriers. Section 4 presents the MILP model by
[9] adapted to deal with flight retiming, and Section 5 describes four heuristic approaches.
Section 6 reports the computational results obtained on real-world instances of the regional
carrier, showing the improvement that can be achieved by flight retiming. It also reports our
sensitivity analysis and the computational results on larger size instances. Finally, we conclude
with some remarks and ideas for future research in Section 7.

2 Literature Overview

Due to the wide research in the field of airline scheduling, we focus on related works that
consider flight retiming in the planning phase to increase either the robustness against delays
or the profits/reduce costs, even in non-integrated settings. Retiming is also used for disruption
management (see, e.g., the literature review in [24]), but our problem occurs in the planning
phase afforded about six months before the operational phase. The planning phase includes
our problem in a first step and rostering problems (for crew and aircraft) in a second step.
The operational phase deals with disruption issues.

2.1 Robustness Increase

To our knowledge, all the works that use retiming in order to increase the robustness of the
schedule against delays, except for [11], focus on the aircraft-routing stage, rather than on an
integrated problem. The article [4] describes a Mixed Integer Programming (MIP) model that
aims at determining flight departure times and building robust aircraft routes. The goal is to
insert buffer times between connecting flights so as to increase the protection against delays. A
Monte Carlo simulation study is used to show the robustness of the derived plans. Reliability
and flexibility of the schedules are improved in [8], by a memetic algorithm that applies flight
retiming and aircraft rerouting. An extensive simulation study is performed to evaluate the
effect of these robustness objectives on the operational performance of the schedules. The
article [16] proposes two alternative approaches to minimize passenger disruptions through
robust plans: the first one considers aircraft routing, while the second involves retiming flight
departure times within a small time window to reduce the number of passengers that miss
their connection. A two-level method is proposed in [2] to obtain robust schedules by using
buffer times. In the first level, two Mixed Integer Quadratic Programming (MIQP) models are
iteratively solved: the first one is used to generate aircraft routes and lower bounds on aircraft
connection buffer times, with the goal of maximizing the robustness of aircraft connections; the
second one is used to compute the departure time of each flight, with the goal of maximizing
the passenger connection robustness. To evaluate the robustness of the solutions derived by
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the MIQP models, the Monte Carlo simulation procedure of [4] is applied. The second level
consists of an evolutionary algorithm to improve the solution derived in the first level. The
problem of determining robust weekly schedules for a fleet of aircraft while taking into account
maintenance constraints is studied in [1]. Flight retiming is applied in order to derive schedules
that are less sensitive to delays. A compact Mixed Integer Non-Linear Programming (MINLP)
model is proposed and reformulated as a MILP model: in this first stage, the departure time of
each flight is set at the earliest departure time. Then, a second stage is applied in which flights
can be retimed with the goal of improving the robustness of the solution: this is obtained by a
heuristic algorithm that iteratively applies a Monte Carlo simulation procedure for estimating
the delays, and a retiming algorithm for increasing the buffer times where it is more useful.

The aircraft routing and crew pairing are combined in [11], in an iterative framework, to
determine the dependencies that affect the propagation of delays: both problems are modelled
by using route variables, and are solved separately by column generation and label setting
pricing algorithms. Then, the propagated delay is computed along each aircraft route (crew
route, resp.), taking into account propagated delays from crew (aircraft, resp.). Based on these
delays, crew and aircraft route costs are updated, and the aircraft routing and crew pairing
problems are solved again. Flight retiming is applied, together with the iterative aircraft rout-
ing and crew pairing algorithm, to provide more slack over critical connections, but flights are
retimed without altering the aircraft and crew assignments of the incumbent solution. In addi-
tion, to further improve the solution method, an exact approach and a local-search procedure
are developed to incorporate delay scenarios in the aircraft routing and crew pairing subprob-
lems. Both methods incorporate stochastic delay information by considering a set of primary
delay values for each connection in the network. In particular, the exact method consists of
enumerating all feasible aircraft and crew paths in the aircraft and crew subproblems, and
then calculating, for each path, the average delay propagation along the path over all delay
scenarios. The heuristic method computes the average delay propagation at each node in the
label setting algorithm, and then, based on this delay, chooses which labels to propagate. The
two methods are used within the iterative framework, i.e., the exact or heuristic methods are
used to solve the aircraft and crew pricing subproblems. Finally, flight retiming is integrated
in the iterative framework with the delay scenarios, by considering, for the aircraft routing
problem, a network that contains multiple copies for each flight, while it is assumed that the
departure times chosen for the flights are also followed by the crew.

2.2 Profit Increase / Cost Reduction

Flight retiming is often used in combination with fleet assignment to improve the airline
company profits by increasing the connection possibilities for the passengers and by adapting
flights to the passenger demand that changes over time. A dynamic scheduling approach is
proposed in [14]. It reoptimizes the departure times of the flights and the fleet assignment,
during the passenger booking process, at regular intervals, based on booking data and improved
forecasts, in order to avoid empty seats or lack of seats in the flights. The goal is to improve
the total profits. The solution process consists of solving two MILP models: the first one is a
passenger mix model to find the revenue maximizing assignment of passengers to itineraries
based on passenger demand and with capacity constraints on the number of available seats; the
second model is a reoptimization model that considers flight copies for each flight and decides
the fleet assignment and flight retiming that maximizes the revenue minus the operating costs,
while taking into account passenger demand, fleet capacity, maximum number of aircraft
arrivals and departures for each airport, and service to previously booked passengers. A MILP
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model is proposed in [23] and [22] to integrate flight scheduling and fleet assignment, and
it includes additional features such as path/itinerary-based demands, flexible flight times,
schedule balance, recapture issues, and multiple fare-classes. Valid inequalities are generated
through a polyhedral analysis, and a Benders decomposition solution approach is applied. The
goal is to maximize the net profit as given by the revenue minus the cost, while considering
multiple fare-classes in each path/itinerary. Flight retiming helps to determine new connecting
itineraries for serving certain markets, and thereby improve profits by appropriately assigning
fleet to flights.

Aircraft routing and crew pairing problems have been integrated in a single stage and
combined with the possibility of flight retiming in [15] and [17] with the goal of reducing
the airline costs for performing all flights. The former work exploits a partial integration of
the two problems by including plane-count constraints (that count the number of available
aircraft on the ground at any time) to the crew scheduling problem, and additionally allowing,
for each flight, the departure time to be chosen within a given time window. A subset of
pairings based on the original schedule are generated, and the crew scheduling model with
plane-count constraints and only the generated pairings is solved: in this case, the plane-count
constraints are approximated because flight retiming makes it hard to model them exactly. In
[17], aircraft routing and crew pairing problems are integrated in a single ILP model and flight
retiming is allowed to reduce the costs. Both aircraft routing and crew pairing are modelled
using path variables on a time-space networks, and a discrete set of departure times is given
for each flight. Constraints on aircraft maintenance, and total work time, flight time and
number of landings for the crew are imposed in the definition of the paths. Constraints on the
flight covering, maximum number of available aircraft and crew are imposed in the model. In
addition, deadhead flights, i.e. flights where crew members travel as passengers, are allowed,
and it is imposed that the same flight schedule is chosen for the working crew and for the
travelling crew. Similarly, it is guaranteed that for each flight the same schedule is chosen
for the aircraft and the crew. Additional constraints require that on short connections aircraft
changes are not allowed. The ILP model is then reformulated by imposing the latter constraints
in an aggregated form, i.e. they are imposed on every short connections without specifying
the departure time chosen by the pairs of connecting flights. A three-phase heuristic algorithm
is proposed, based on Benders decomposition of the ILP model where the crew pairing is
kept in the master problem. The first phase consists of solving the LP-relaxation of the ILP
reformulated model by Benders decomposition and column generation. During this phase,
constraints on deadhead flight schedule and on detailed short connection are dynamically
generated. In the second phase, crew variables are imposed to be integer and the model is
solved by generating Benders cuts. Finally, in the third phase, integrality constraints are
imposed also on the aircraft variables and the resulting model is solved.

In our work, we consider both goals of robustness increase and cost reduction in a weighted
linear objective function, while these contrasting goals have usually been studied separately
in the literature. The weights given to the different terms are the same used in [9] and give a
high importance to the minimization of the crew costs, and next to the minimization of the
number of aircraft changes (when the crew member needs to change aircraft), thus including,
in a simplified way, the goal of robustness. In addition, we contribute to the existing literature
by adding fleet assignment (i.e. we consider the three operators in which the airline company is
divided) in the integrated problem together with aircraft routing and crew pairing. Moreover,
the studied application arises at a regional carrier, and has some specific features that make
the problem quite different from the existing literature. The studied problem and its features
are described in Section 3.



Title Suppressed Due to Excessive Length 7

3 Problem Description

We address a daily fleet assignment, aircraft routing and crew pairing problem. A set F of
flights is given. Each flight f ∈ F is characterized by origin and destination airports, and
departure and arrival times. No flight is scheduled during the night. Flights in F are called
original flights. In addition, for each flight f ∈ F , we are given a discrete set of alternative
departure times, corresponding to the retiming possibilities. For example, in the context mo-
tivating our research, the set contains the departure time of the original flight and two other
options corresponding to the original departure time plus and minus 10 minutes. We call Cf

the set of copies of flight f ∈ F , and C = ∪f∈FCf the set of all flight copies.
The regional carrier motivating our research consists of three operators (Binter, Naysa,

Canair), each one owning some aircraft and managing some crew members. The set of operators
is denoted by K. Even though all aircraft are identical, crew members can only operate aircraft
of their operator. Crew members of different operators have different salaries and different
work rules. In particular, constraints are imposed on the maximum number of flights in a crew
route and on its duration. These constraints depend on the departure time of the first flight
of the route and on the operator. Moreover, some flights can be executed only by some of the
operators (e.g., flights outside Canary Islands can be operated by low-cost operations only).
An aircraft cannot fly unless operating a flight, and a crew member cannot be planned to
travel as a passenger.

The regional carrier operates flights between eleven airports, denoted by M , among which

– MB ⊆ M are bases, i.e. airports where aircraft and crew members can stay during the
night,

– H ⊆ MB are home bases, i.e. hub airports where a crew route can start and end without
any overnight cost to the company, and

– B ⊆ H are the airports with maintenance facilities. In our real-world application, it is a
singleton set containing the depot (Las Palmas de Gran Canaria); with abuse of notation,
we will identify the depot as B.

The numbers nkla of available aircraft and nklc of available crew members of each operator
k ∈ K at the beginning of the day at each base l ∈MB are given.

Each aircraft needs a long-term maintenance which takes it out of service during two
consecutive weeks each year. The two weeks are decided in another phase by the carrier, and
it is known when solving our problem. Instead our problem must also determine the time for
the short-term maintenance of each aircraft, which are checking operations to undergo every 2
days where the aircraft was used. Since no flight departure is scheduled during the night (from
22:00 to 07:00), aircraft short-term maintenance is always performed at that time. Since the
depot B can check half of the fleet each night, the carries imposes that each aircraft stays one
night at B, and the next night at a different airport MB \ B. However, it is allowed that up
to DNB (equal to 2 in our real-world application) aircraft can stay two consecutive nights at
H \B, and it is also allowed that up to DB (equal to 2 in our real-world application) aircraft
can stay two consecutive nights at B. These special cases are called short-term maintenance

exceptions.
Due to budget limitation, the company requires that every crew member ends its duty

at its home base in H, thus avoiding overnight rest outside his/her house. However, a few
exceptions are possible when the overnight rest outside the home base is unavoidable, and
occurs in MB \H (in our application, it occurs in two airports: La Palma and Arrecife). These
special cases are called overnight rest exceptions, and are only possible for some (low-cost)
operators.
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The flight sequencing rules are as follows. The plane-turn time is 20 minutes, and a con-
nection is short when smaller than 30 minutes. Two flights can be performed in sequence by
the same crew member if the connection time is at least 20 minutes and at most a maximum
allowed connection time (3 hours in our application). On short connections, aircraft changes
are not allowed. On all other connections, aircraft changes are penalized.

The objective function takes into account:

1. A cost associated with each crew route: it is based on the connection times between con-
secutive flights in the route. In particular, long and short connection times are penalized.
Long connection times should be avoided because (for the regional carrier motivating our
work) the crew cost increases as a monotone piecewise linear function of the time spent
without flying. On the other hand, short connection times often cause delay propagation.

2. A cost associated with the number of crew routes, as the crew salary (which depends on
the operator) is augmented each day the crew is operating.

3. A cost associated with the number of aircraft routes: even if all aircraft belongs to the
carrier, it is desired to minimize the number of aircraft needed in the solution in order to
spare some aircraft that could substitute another aircraft in case of disruptions.

4. A cost associated with each aircraft change in order to find solutions that can be more
robust against delays.

As in [9], we reduce the multi-criteria nature of the problem to a single linear objective by
introducing weights: α weigths the sum of the connection times in the crew routes, βk the
number of crew routes of operator k ∈ K, γk the number of aircraft routes of operator k ∈ K,
and δ the number of aircraft changes in the crew routes.

As mentioned above, regional carriers present some special features with respect to major
airline companies:

1. Even though no flight is performed during the night, during the day many short flights
connect the airports (located on islands in our application). Thus there exists a very large
number of possible connections and alternative options for crew and aircraft routes, which
makes the problem even more challenging when it also includes flight retiming.

2. Most crew and aircraft routes contain several (often 6 to 8) flights, since the minimum
connection time is short (20 minutes) and the flight time is also short compared to major
airlines considering intercontinental flights.

3. Only one airport (the depot B) can host maintenance, and no overnight rest outside the
home base of the crew is allowed for the crew members (with very few exceptions, as men-
tioned above). Hence, some aircraft changes are needed, making the solution less robust
against delays (a late arrival of the flight before the aircraft change may cause late de-
partures of the two flights operated by the same aircraft and crew, respectively, after the
aircraft change, and so on).

4. Since small aircraft (ATR 72 in our application) are used by the regional carrier, weather
conditions (e.g. fog) can deeply affect the planned schedule, making robustness a critical
issue. For that reason, one of the main goals of the regional carrier is to minimize the
number of aircraft changes. In our case, this means that δ is a large number.

We conclude the description of the problem with two images in Figure 1 to illustrate how
the solutions look like. Images (a) and (b) are solutions of the problem without and with
retiming, respectively. In both cases, the data correspond to 144 flights on Thursday 5 April
2012. The boxes represent flights, the horizontal lines represent aircraft, and colors are used for
crew routes. Non-horizontal lines in color depicts aircraft changes, which is one of the major
objective to be minimized in the problem. The letters on the left and right sides of each flight
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(a) Optimal solution of the problem without retiming

(b) Feasible solution of the problem with retiming

Fig. 1 Instance example (5 April 2012)
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represent the departure and arrival airports, respectively (T for TFN, L for LPA, V for VDE,
S for SPC, A for ACE, F for FUE, R for RAK) and the letters in the right margin represent
the operator owning each aircraft needed (B for Binter, N for Naysa, C for Canair). Image
(a) is the optimal solution computed by the exact algorithm in [9], and consists of 16 aircraft
routes and 30 crew routes, with 6 aircraft changes. By allowing ±10 minutes for retiming with
respect to the original flight departures, the solution shown in (b) consists of 14 aircraft routes
and 27 crew routes, with 5 aircraft changes. Also relevant for the cost reduction, it is worth
noting that (a) uses 2 aircraft and 2 crew members from the most-expensive operator (Binter),
while (b) succeeds in performing all the flights with the two low-cost operators (Naysa and
Canair). The goal of the current paper is to propose and compare several algorithms to find
solutions like the one in (b). As shown in the figure, the cost reduction can be significant, thus
confirming the high interest of the regional carrier in pursuing this goal.

4 Mathematical Model

This section presents the MILP model proposed in [9] and extended in this paper to deal
with flight retiming. This model will be used by all the proposed algorithms. It contains route
variables representing the crew pairings and arc variables representing the aircraft routing. The
model is based on two directed acyclic graphs, used to represent the feasible flight sequences
as (aircraft and crew) routes.

Let Ga = (N,Aa) and Gc = (N,Ac) be, respectively, the aircraft and the crew graphs,
where N = Nbd ∪Nr ∪Nba is the set of nodes: Nbd is the set of departure base nodes, Nba the
set of arrival base nodes and Nr the set of flight nodes. The set Nr includes one node for each
original flight f and for each retimed copy of the flight in Cf , being f ∈ F . Departure base
nodes and arrival base nodes correspond to bases in MB . The sets of arcs Aa and Ac represent,
respectively, the feasible flight sequences for aircraft and crew. In particular, arc (i, j) ∈ Aa

represents a feasible departure flight when i ∈ Nbd is a departure base and j ∈ Nr is a flight
departing from that base, a feasible arrival flight when j ∈ Nba is an arrival base and i ∈ Nr

is a flight arriving at that base, and a feasible connection of two flights when i, j ∈ Nr. The
same holds for arcs (i, j) ∈ Ac but, in this case, crew sequencing rules are considered. Let Ac

s

be the subset of crew arcs corresponding to short connections.

To deal with flight retiming, we further define the set NFCf ⊂ Nr for each original flight
f ∈ F . The set NFCf includes the node corresponding to the original flight f and the nodes
corresponding to its copies in Cf . Let Rkl

c be the set of feasible crew routes in Gc = (N,Ac)
for a crew member of operator k ∈ K departing from base l ∈ Nbd. Each crew route R has an
associated cost cR which depends on the connection times between consecutive flights, and a
cost βk which represents the crew salary and depends on the operator. The parameter α is
used to normalize the two terms. The cost γk associated with the number of aircraft routes also
depends on the operator, while the cost δ of the aircraft changes is the same for all operators.
Appropriate values for these parameters were selected by the regional carrier in the initial
step, before setting up the model for the problem.

We introduce the following binary variables:

– for each crew route R ∈ Rkl
c , a binary variable xR assuming value 1 if and only if route R

is assigned to a crew of operator k ∈ K departing from base l ∈ Nbd;
– for each arc (i, j) ∈ Aa, each operator k ∈ K and each base l ∈ Nbd, a binary arc-flow

variable yklij assuming value 1 if and only if arc (i, j) is operated by an aircraft of operator
k departing from base l;
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– for each arc (i, j) ∈ Ac \Ac
s a binary variable zij assuming value 1 if and only if an aircraft

change occurs between flights i and j.

The MILP model then reads as follows:

min
∑

k∈K,l∈Nbd,R∈Rkl
c

(α·cR+βk)·xR+
∑

k∈K,l∈Nbd,i∈Nbd,j∈Nr:(i,j)∈Aa

γk ·yklij +δ·
∑

(i,j)∈Ac\Ac
s

zij (1)

∑
k∈K,l∈Nbd,i∈NFCf ,R∈Rkl

c :i∈R

xR = 1 ∀f ∈ F (2)

∑
R∈Rkl

c

xR ≤ nklc ∀k ∈ K, l ∈ Nbd (3)

∑
(i,j)∈Aa

yklij =
∑

(j,i)∈Aa

yklji ∀k ∈ K, l ∈ Nbd, i ∈ Nr (4)

∑
i∈Nbd,j∈Nr:(i,j)∈Aa

yklij ≤ n
kl
a ∀k ∈ K, l ∈ Nbd (5)

yklij = 0 ∀k ∈ K, l ∈ Nbd \H, i ∈ Nr, j ∈ Nba \B (6)

yklij = 0 ∀k ∈ K, l ∈ H \B, i ∈ Nr, j ∈ Nba \H (7)∑
k∈K,l∈H\B,i∈Nr,j∈H\B:(i,j)∈Aa

yklij ≤ DNB (8)

∑
k∈K,l∈B,i∈Nr,j∈B:(i,j)∈Aa

yklij ≤ DB (9)

∑
l∈Nbd,R∈Rkl

c :i∈R

xR =
∑

l∈Nbd,(i,j)∈Aa

yklij ∀k ∈ K, i ∈ Nr (10)

∑
l∈Nbd,R∈Rkl

c :(i,j)∈R

xR =
∑

l∈Nbd

yklij ∀k ∈ K, i, j ∈ Nr : (i, j) ∈ Ac
s (11)

∑
k∈K,l∈Nbd,R∈Rkl

c :(i,j)∈R

xR ≤
∑

k∈K,l∈Nbd

yklij + zij ∀i, j ∈ Nr : (i, j) ∈ Ac \Ac
s (12)

xR ∈ {0, 1} ∀k ∈ K, l ∈ Nbd, R ∈ Rkl
c , (13)

yklij ∈ {0, 1} ∀k ∈ K, l ∈ N
bd, (i, j) ∈ Aa, (14)

zij ∈ {0, 1} ∀i, j ∈ Nr : (i, j) ∈ Ac \Ac
s. (15)

The objective function (1) calls for the minimization of the weighted sum of crew, aircraft
and aircraft changes costs. Constraints (2) require to select, for each original flight f ∈ F , a
crew route visiting it or one of its copies, i.e. one node in NFCf : these constraints are used to
determine the retiming for each flight. Constraints (3) impose to respect the maximum number
of crew members available, for each operator, at each base at the beginning of the workday.
Since we use arc-flow variables to represent aircraft routing, flow conservation at every flight
node is imposed through constraints (4). With constraints (5) we ensure that the maximum
number of aircraft available is respected, for each operator, at each base at the beginning of
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the workday. Constraints (6) and (7) impose, respectively, that aircraft starting from a non-
home base must end its route at the depot, and aircraft can end its route at a non-home base
only if it departed from the depot, as imposed by the short-term maintenance requirements.
Constraints (8) and (9) take into account the short-term maintenance exceptions: at most
DNB aircraft routes are allowed to start and end in non-depot bases, and at most DB aircraft
routes are allowed to start and end at depot bases. With constraints (10) we impose that, if
a flight node is visited, then the corresponding flight is operated by exactly one crew member
and one aircraft of the same operator. Aircraft changes must be avoided on short connections:
this is imposed by constraints (11), which requires to have a crew route and an aircraft of the
same operator on pairs of consecutive flights whose connection is short. Constraints (12) are
used to count the aircraft changes penalized in the objective function: given a pair of flights
(i, j) such that the connection between these flights is not short, if a crew member operates
them in sequence, then either an aircraft executes them in sequence or an aircraft change
occurs. Finally, constraints (13)–(15) define the variable domains. Notice that, as explained in
[9], once the integrality constraints are forced on the x and z variables, they are unnecessary
on the y variables.

With respect to the model proposed in [9], constraints (2) are imposed for each original
flight rather than for each node in Nr: in this way, we guarantee that either the original flight
or one of its copies is visited by a crew route: this is equivalent to choosing the departure time
for each original flight. Constraints (10), (11) and (12) are imposed for each flight node in Nr

but they are active either for the node corresponding to the original flight or for one of its
copies: indeed, not all the flight nodes i ∈ Nr will be visited, as we select, for each f ∈ F , only
one node in the set NFCf . Another difference is that we deal with larger size graphs, since
they include one node for each original flight and for each flight copy.

5 Heuristic Algorithms

This section presents four heuristic algorithms that we propose for the problem with retiming.
We first describe the common features that all the algorithms share, and then, in Sections 5.1,
5.2, 5.3 and 5.4, we highlight the main differences and specific characteristics of each approach.
All the algorithms are based on model (1)–(15), and consist of two phases. The first phase is
used to compute a lower bound on the optimal solution value and to define the set of crew
routes to be considered in the second phase. The second phase is used to find a feasible solution
for the whole problem. The main difference between the four algorithms is the way to choose
flight retiming options. In particular, the first two methods consider all flight retiming options
(i.e. all original flights and all flight copies), while the other two methods select a subset of
the flight copies.

To compute a lower bound, in the first phase of the algorithms, we consider the LP-
relaxation of model (1)–(15), and enhance it with a bounding cut on the minimum number
of aircraft changes needed, as proposed in [9]. This cut takes into account that a minimum
number of aircraft changes is needed in any optimal solution. Indeed, aircraft changes are
mandatory because the short-term maintenance requires every aircraft to stay overnight at
the depot every two days, while every crew member is required to go back to its home base to
avoid overnight rest outside the home base. The computation of the bounding cut consists of
three steps: first, we count, for every time instant t, the maximum number of aircraft departing
from (arriving at, resp.) every home base in H before time t. Then, we decrease the counters
by the number of aircraft routes that can start and end at the same base (DNB and DB).
Finally, the maximum of all counters gives the minimum number of aircraft changes needed
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in an optimal solution. The short-term maintenance exceptions are taken into account. The
computation of the bounding cut has been extended to consider flight copies. In particular, we
consider only the latest copy of a flight when counting the aircraft departures, and the earliest
copy of a flight when counting the aircraft arrivals.

Due to the very large number of crew-route variables in model (1)–(15), solving its LP-
relaxation with all such variables could be extremely time-consuming. Therefore, a column-
generation procedure is applied. The pricing problem calls for determining, for each operator
k ∈ K and each base l ∈ Nbd, the feasible crew route with the smallest reduced cost. A crew
route is feasible if it satisfies all constraints on flight sequencing and the work rules for the
crew members:

(i) plane turn time and maximum connection time must be respected between every pair of
consecutive flights in the route;

(ii) limits on the maximum number of flights and the route duration must be respected;
(iii) consecutive arrival and departure airports must coincide and belong to the set of home

bases H, unless an unavoidable overnight rest outside the home base is needeed (and only
allowed to a subset of the operators).

The pricing problem corresponds to an Elementary Shortest Path with Resource Constraints
(ESPRC) to be computed on the acyclic graph Gc = (N,Ac) defined above. Dynamic pro-
gramming is used to solve ESPRC: each node in Nr is associated with a set of labels that
store, for different levels of resource consumption (route duration and number of flights in the
route), the best path from base l to the node. Labels are then propagated and simple domi-
nance rules applied to discard unpromising labels (i.e. we take into account the consumption
of each resource and the label profit that derives from the dual variables associated with the
constraints of the LP-relaxation of model (1)–(15)). Finally, for each operator k ∈ K and each
base l ∈ Nbd, the route with the smallest reduced cost is reconstructed.

The column-generation procedure is iteratively applied and, at each iteration, up to CR

crew routes (500 in our experiments) having the smallest negative reduced cost are generated
and added to the LP-relaxed model. Different terminating conditions are used to stop the
column-generation procedure in the four algorithms, and are described in the next sections.
When the column-generation procedure is terminated, the second phase starts: it consists in
solving, for a given time limit and by using a general-purpose solver, a reduced MILP model
created from (1)–(15) but containing variables only for the crew routes generated during the
first phase. Note that, since the four algorithms consider different retiming options, the set of
crew routes is different in each algorithm. In addition, the set of aircraft variables y and aircraft
change variables z contained in the reduced MILP model varies according to the algorithm.
More details will be provided in the next sections.

5.1 Method Adapted from [9]

The first method consists of applying the first and second phases of the exact algorithm
proposed in [9], now adapted to handle flight retiming. In particular, we consider all original
flights and flight copies in graphs Ga = (N,Aa) and Gc = (N,Ac), i.e., all retiming options
are available. The first phase applies column generation on the crew routes and, to limit its
computing time, we stop the column-generation procedure when the improvement of the lower-
bound value obtained in the current iteration is smaller than a given threshold θ compared to
the one obtained NM iterations before. Based on preliminary experiments, we fixed θ = 0.5%
and NM = 5. In order to obtain a valid lower-bound, when the column-generation procedure
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stops, we compute the most negative reduced cost crew route for each operator k ∈ K and
departure base l ∈ Nbd. Then, we decrease the current lower-bound value by the sum of the
computed reduced costs. Therefore, this is a valid lower bound on the MILP model (1)-(15)
with all flight retiming possibilities, and can be used to measure the quality of the obtained
heuristic solutions. Afterwards, we apply the second phase on the reduced MILP model that
contains all the y arc-flow variables, all the z variables for counting the aircraft changes, and
only the x variables corresponding to crew routes generated during the first phase. The reduced
MILP model is solved by a general purpose solved for a given time limit.

The main advantage of this method is that all retiming options are considered. Hence,
more flexibility is allowed and larger improvement can be expected. A drawback is certainly
that the computing time can be rather large, as it will be shown in Section 6.

5.2 Fixed Aircraft Routes Retiming

To limit the computing time, but nevertheless keeping all retiming options, we developed a
second method in which aircraft routes are fixed as in the solution without retiming. More
precisely, we fix the assignment of flights to aircraft as in the optimal solution without retiming,
which represents the existing plan, and allow using all original flights and all flight copies (i.e.,
all retiming options are available). This algorithm should resemble the behavior of a manual
planner, who applies slight modifications to the flight schedule, without destroying the existing
plan. By fixing the assignment of flights to aircraft, only a subset of the arc-flow variables y is
present in the LP-relaxed model, namely those corresponding to the assignment of flights to
aircraft in the optimal solution without retiming. However, by allowing retiming, different crew
routes can be obtained, having a different assignment of the flights to the crew members, and
flight copies can be selected to replace the original flights. The reason of fixing the assignment
of flights to aircraft is that we want to limit the problem size but, at the same time, possibly
allow the reduction of the number of crew routes, which is the most-expensive component of
the costs.

Once the assignment of flights to aircraft is fixed, we apply the first phase to generate crew
routes by column generation. In this case, the column-generation procedure is executed until
no new columns with negative reduced costs are found. Clearly, the lower bound obtained at
the end of the column-generation process is only valid for the fixed flight assignment and is
not a valid lower bound on the MILP model with all y variables. The second phase solves the
reduced MILP model that includes the arc-flow variables selected according to the assignment
of flights to aircraft (as described above), all z variables, and the crew routes generated during
the first phase.

This method has the advantage of dealing with a much smaller number of arc-flow variables,
and thus requires much shorter computing times (see Section 6). However, it has far-less
flexibility, that results in limited improvement of the solution costs.

5.3 Method with Flight Copy Pre-selection

This method follows a different approach to reduce the size of the problem: it selects a subset
of the flight copies, i.e. limits the set of retiming options. In particular, flight copies are pre-
selected before applying the first phase of the algorithm, so that graphs Ga = (N,Aa) and
Gc = (N,Ac) include a smaller number of nodes. Several alternative selection criteria have
been tested: (i) selection of all flight copies in a peak period, i.e. a time interval in which
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many flights are scheduled; (ii) selection of copies of flights that (at least partially) overlap in
time; (iii) selection of copies as in (ii) and also copies of flights whose connection time is larger
than a given threshold; (iv) selection of copies in two steps, where the first one, as in (ii),
selects copies of flights that (at least partially) overlap in time, and the second one performs
the selection of additional copies by considering the (at least partial) overlapping between the
original flights and the copies generated in the first step.

All these selection criteria aim at selecting flight copies so as to allow new connection
possibilities between flights, while limiting the set of flight retiming possibilities. By allowing
new flight connections it might be possible to reduce the number of crew and/or aircraft routes,
the connection costs, as well as the number of aircraft changes.

Once the flight copies have been selected, we execute the two phases. In the first phase,
column generation on the crew routes is applied, and the LP solution of model (1)–(15),
having only the selected subset of nodes in N , is computed. The column-generation procedure
is executed until no new column with negative reduced-cost is found. Notice that the lower
bound is only valid with respect to the current flight copies selection. In the second phase,
we solve the reduced MILP model that contains only the y and z variables corresponding to
the original flights and the selected flight copies, and the x variables corresponding to crew
routes generated during the first phase. We report, in Section 6, only the results obtained by
applying the best selection criterion, namely (ii).

This algorithm has the advantage that by selecting a subset of the flight copies it is possible
to control the computing time. However, it is quite hard to determine a “good” subset of flight
copies: preliminary computational experiments showed that better results can be obtained by
enlarging the set of retiming options, but the computing time rapidly increases too.

5.4 LP-based Retiming Selection Heuristic Algorithm

The last method that we present is also based on selecting a subset of the flight copies.
However, instead of using a pre-selection criterion, it uses the solution of the LP-relaxed
model to effectively limit the flight retiming choices, as follows. The column-generation process
is executed for IT iterations (IT = 10 in our experiments), and the LP solution obtained after
IT iterations is used to decide which arc-flow variables y should be kept and which ones could
be discarded. Recall that each arc-flow variable corresponds to an arc of the aircraft graph
Ga = (N,Aa), and represents either the sequencing of two flights or the departure or arrival of a
flight from/to a base. These arcs can connect original flights with other original flights, original
flights with copies of other flights, or can also connect flight copies. Therefore, the choice of the
arc-flow variables influences the choice of the flight copies that can be used in the aircraft and
crew routes, i.e., by selecting a subset of the arc-flow variables we select the allowed retiming
options. This choice is based on the LP solution obtained after IT iterations: in particular,
we discard from the LP-model all y variables that are set to 0 in the LP solution, unless
the corresponding arcs connect original flights. Indeed, we always want to keep the original
flights while limiting the retiming choices. We decided to examine the LP solution after IT
iterations, since the first iterations require rather short computing times, as it is usual in
column generation, while later the process becomes more heavy.

After IT iterations have been executed, the column generation process is iterated on the
obtained reduced LP-relaxed model until it is solved to optimality. Note that, also in this
case, the obtained lower bound is not a valid lower bound for the problem including all flight
copies (retiming options), but is a valid lower bound for the reduced MILP model including the
reduced set of arc-flow variables. As it will be shown in Section 6, it is much more effective to
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delegate the choice of the flight retiming options to the LP solution than making a pre-selection
of the flight copies.

The second phase consists of deriving a heuristic solution by solving the reduced MILP
model that contains the arc-flow variables that have not been discarded during the first phase,
the crew-route variables generated in the first phase, and all the z variables.

The main advantage of this algorithm is that there is no need to appropriately select a
subset of the flight copies a priori, as this choice is based on the LP solution, which can take into
account the crew routes generated during the column-generation process and, consequently,
the most-useful retiming options. We also tried other LP-based selection methods, such as
discarding the non-used y variables as soon as the lower bound value became smaller than
the lower bound value without retiming, or discarding, after IT iterations of the column-
generation process, the y variables that were used a small number of times during the IT

iterations. However, these variants obtained results of worse quality.

6 Computational Experiments

This section is divided into three parts. Section 6.1 compares the four heuristic algorithms in
terms of solution quality and computing time, and determines which algorithm achieves the
best performance. Section 6.2 reports a sensitivity analysis of how the most effective algorithm
behaves under different numbers of alternative departure times and different costs for aircraft
and for crew connections. Finally, Section 6.3 shows the performance of the most effective
algorithm on instances of double size.

6.1 Comparison of the Algorithms

To compare the four algorithms we decided to use the same benchmark instances tested in [9],
where results for the problem without retiming are presented and discussed. These instances
correspond to the real-world flights of the regional carrier in Canary Islands during the first
week of September 2012 and the first week of April 2012. Table 1 shows the day to identify
each instance, the number #f of flights, the number #conn of all connections, the number
#SC of short connections (less than 30 minutes), the number #RC of arcs where an aircraft
change may occur (connection times between 30 minutes and 3 hours), and the number #OC
of other connections (which are feasible for aircraft but not for crew). Table 1 also reports,
for each instance, the number #a of aircraft, the number #c of crew members, the number
#ch of aircraft changes, and the optimal solution value when retiming is not allowed. We use
these features for evaluating the solutions obtained by the retiming algorithms introduced in
this paper.

On these instances, when computing cR (for each R ∈ Rkl
c , k ∈ K, l ∈ Nbd), the weights for

the time duration of the connections in crew routes are as follows: 2 for connections between
20 and almost 30 minutes, 1 for the connections between 30 minutes and one hour, 3 for the
connections larger than one hour but not larger than two hours, 5 for larger connections. The
weights in the objective function are as follows: α = 1, β1 = 1000, β2 = 950, β3 = 910, γk = 10
(for each k ∈ K) for the aircraft routes that respect short-term maintenance rules and γk = 20
(for each k ∈ K) for the short-term maintenance exceptions (with DB = 2 and DNB = 2), and
δ = 100. All these values are in [9], and we decided to use them in our experiments to compare
the obtained solutions. According to the considered weights, the main goal is to minimize the
numbers of crew members used to serve all the flights, but also to minimize the number of
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Inst. #f #conn #SC #RC #OC #a #c #ch opt value
1/9 102 938 19 253 666 12 22 4 22028
2/9 140 1661 35 515 1111 15 28 5 27828
3/9 130 1540 44 450 1046 14 25 5 25172
4/9 124 1409 41 408 960 13 24 4 24017
5/9 124 1407 42 407 958 13 24 4 24121
6/9 128 1474 45 416 1013 13 25 4 24796
7/9 150 2041 40 580 1421 15 28 5 27970
1/4 138 1786 41 560 1185 17 27 6 27287
2/4 132 1804 34 493 1277 16 29 6 28985
3/4 138 2000 31 578 1391 16 29 6 29266
4/4 136 1966 30 564 1372 16 29 6 29101
5/4 144 2176 33 640 1503 16 30 6 29962
6/4 172 2915 46 830 2039 17 33 6 33103
7/4 100 1001 9 282 710 12 21 4 21300

Table 1 Details of the instances and optimal solutions without retiming.

aircraft changes, the cost related to the waiting times at the connections for the crew members,
and the number of aircraft used to serve all the flights. To adapt the instances for the problem
with retiming, we considered a retiming of ±10 minutes for each flight, hence each flight has
three possible departure times in our experiments.

The four algorithms described in this paper were implemented in C. All the tests were
performed on a personal computer with a i5-2400 at 3.10 Ghz and 16 Gb of RAM. IBM Ilog
Cplex 12.4 was used to solve the LP-relaxed models and the reduced MILP models. A single
thread and default Cplex parameter settings were used. We fixed a time limit of 1800 seconds
for the second phase of each algorithm.

The remainder of this section is devoted to analyze the performances of the four algo-
rithms, described in Sections 5.1–5.4, in terms of solution quality and computing times. The
results of each algorithm are reported in Sections 6.1.1–6.1.4. Each table displays the following
information for each instance: the number of aircraft (#a), crew members (#c) and aircraft
changes (#ch) in the best solution found by the method, the lower bound (LB) obtained at
the end of the first phase, the upper bound (UB) obtained at the end of the second phase, the
percentage gap (gap%) between upper and lower bounds, the computing times (tLB and tUB)
of the first and second phases, respectively, the whole computing time (time) of the two-phase
heuristic algorithm (i.e., the sum of tLB and tUB), and the percentage improvement (impr%)
with respect to the optimal solution of the non-retiming problem (reported in Table 1). All
times are expressed in seconds.

Recall that, except from those reported in Table 2, lower bounds LB are not valid lower
bounds for the whole problem (with all the retiming options) because fixed aircraft routes
(see Section 5.2) or subsets of flight copies (see Sections 5.3 and 5.4) are considered. However,
the lower bound values are locally valid, and hence they are used to evaluate the gap between
upper and lower bounds of each algorithm.

The last line of each table reports the average values for the percentage gap, computing
time and percentage improvement. We show in boldface the number of aircraft, crew or aircraft
changes, when they are smaller than the corresponding values in the optimal solution without
retiming. Note that any solution of the problem without retiming is a valid heuristic solution
that could be given as an upper bound to any of the four algorithms. To better measure the
performance of each approach, we show the results obtained without using a starting solution.
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6.1.1 Results of the Method Adapted from [9]

Table 2 reports the results obtained by the method of [9] adapted to handle retiming. No
feasible solution has been obtained for instance 6/4, and, for that reason, the last line of
the table reports the average values computed over all other instances. As we can see, the
improvement on the optimal solution without retiming is remarkable (6.58% on average).
However, the computing time is also rather large (about 50 minutes) even without considering
the unsolved instance. If we include also the computing time of this instance, the average
becomes almost one hour (more precisely, 3522 seconds). This method shows its limits, as it
is not able to derive a feasible solution for the instance 6/4, which is the largest one in our
collection. On this instance, the first phase took 8418 seconds to compute LB and then the
second phase was interrupted after 1800 seconds without having found any feasible solution.
This is mainly because we allow the use of all flights and flight copies, and no fixing is applied.
On the other instances, the improvements of the obtained solutions respect to the non-retiming
ones are quite relevant.

Inst. #a #c #ch LB UB gap% tLB tUB time impr%
1/9 12 20 4 19809 19829 0.10 523 1800 2323 9.98
2/9 17 26 6 26184 26328 0.55 1904 1800 3704 5.39
3/9 14 24 5 24076 24100 0.10 1668 850 2518 4.26
4/9 13 23 4 23229 23396 0.71 1396 1800 3196 2.59
5/9 13 23 4 23450 23476 0.11 1328 1800 3128 2.67
6/9 14 24 4 23981 24052 0.30 1615 1800 3415 3.00
7/9 15 26 8 26474 26853 1.41 2597 1800 4397 3.99
1/4 16 26 6 26025 26065 0.15 2364 1800 4164 4.48
2/4 14 26 5 25788 25812 0.09 2295 311 2606 10.95
3/4 14 26 5 26195 26204 0.03 2617 200 2817 10.46
4/4 14 26 5 25842 25844 0.01 2537 918 3455 11.19
5/4 14 27 5 26736 26806 0.26 2367 285 2652 10.53
6/4 - - - 30965 - - 8418 1800 10218 -
7/4 11 20 4 20012 20022 0.05 654 73 727 6.00
Avg. 0.30 3007.8 6.58

Table 2 Results of the Method Adapted from [9].

6.1.2 Results of the Fixed Aircraft Routes Retiming

Table 3 shows the results computed by the Fixed Aircraft Routes algorithm. It is evident that
the computing time is much shorter than that of the previous method. This is certainly due
to the limited flexibility for the flight connections as the assignment of flights to aircraft is
fixed. This is also shown by the lower-bound values, that are significantly larger than those of
Table 2. For the same reason, the improvement is rather small (only 1.01%): on two instances
(1/9 and 5/4) the number of crew members can be reduced, while all other cost reductions are
only due to the decrease of connection costs. Therefore this method can become useful when
a very strict limit on the computing time is imposed, or if an existing aircraft routing plan
should not be changed.
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Inst. #a #c #ch LB UB gap% tLB tUB time impr%
1/9 12 21 8 21502 21522 0.09 49 1 50 2.30
2/9 15 28 5 27605 27675 0.25 261 6 267 0.55
3/9 14 25 5 24957 24957 0.00 141 2 143 0.85
4/9 13 24 4 23800 23800 0.00 103 1 104 0.90
5/9 13 24 4 23887 23887 0.00 100 1 101 0.97
6/9 13 25 4 24573 24573 0.00 97 1 98 0.90
7/9 15 28 5 27785 27785 0.00 228 2 230 0.66
1/4 17 27 6 27137 27137 0.00 720 3 723 0.55
2/4 16 29 6 28893 28893 0.00 324 2 326 0.32
3/4 16 29 6 29032 29032 0.00 397 3 400 0.80
4/4 16 29 6 28922 28922 0.00 341 2 343 0.62
5/4 16 29 7 29051 29051 0.00 448 4 452 3.04
6/4 17 33 6 32993 32993 0.00 1569 8 1577 0.33
7/4 12 21 4 21019 21019 0.00 85 1 86 1.32
Avg. 0.02 350.0 1.01

Table 3 Results of the Fixed Aircraft Routes retiming algorithm.

6.1.3 Results of the Method with Flight Copy Pre-selection

Table 4 reports the results obtained by the algorithm in which we apply a pre-selection of the
flight copies. The percentage gap is very small (0.04% on average), and the computing time is
reduced with respect to the method adapted from [9] (see Table 2), but the improvement is
also smaller (4.82% versus 6.58%). However, the method was able to find a feasible solution
for every instance. By comparing the results to those in Table 3, we can observe that much
larger improvements can be obtained by selecting copies rather than by allowing all retiming
options and keeping the aircraft routes fixed.

Inst. #a #c #ch LB UB gap% tLB tUB time impr%
1/9 12 20 4 20008 20027 0.09 99 1800 1899 9.08
2/9 15 27 5 26960 26980 0.07 409 1800 2209 3.05
3/9 14 25 5 25003 25004 0.00 253 34 287 0.67
4/9 13 24 4 23864 23884 0.08 218 1800 2018 0.55
5/9 13 24 4 24018 24038 0.08 262 1800 2062 0.34
6/9 13 25 4 24676 24696 0.08 294 1800 2094 0.40
7/9 15 27 5 26897 26917 0.07 841 1800 2641 3.76
1/4 16 26 6 26136 26156 0.08 629 1800 2429 4.14
2/4 14 27 5 26830 26830 0.00 331 26 357 7.43
3/4 14 27 5 26845 26845 0.00 1036 23 1059 8.27
4/4 14 27 5 26825 26825 0.00 1141 62 1203 7.82
5/4 14 27 5 26858 26859 0.00 1165 79 1244 10.36
6/4 16 31 6 31053 31055 0.01 3776 1533 5309 6.19
7/4 11 20 4 20142 20149 0.03 141 340 481 5.40
Avg. 0.04 1806.6 4.82

Table 4 Results of the method with flight copy pre-selection.

6.1.4 Results of the LP based Retiming Selection Algorithm

We present in Table 5 the results obtained with the LP-based retiming selection algorithm.
As we can see, the gaps are small also in this case (0.16% on average, and at most 1.04%).
The computing times of about 22 minutes on average are shorter than those of Table 4, and
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the improvement is larger (6.32% versus 4.82%). Compared to Table 2, we can see that the
LP-based retiming selection algorithm is able to derive a feasible solution for all instances, and
the improvement is similar (6.32% versus 6.58%). In addition, the computing time is (more
than twice) shorter, and the lower bound values are very close to those of Table 2.

A significant improvement with respect to the optimal solution without retiming is obtained
for most of the instances, with reduction of the number of crew members in all but one
cases (instance 4/9). The number of aircraft used is increased for two instances (5/9 and
6/9), but this still leads to an overall improvement of the solution (with the reduction of one
crew member in both instances). In addition, the number of aircraft changes is reduced for
four instances and increased only in one case (instance 2/09). We can also observe that the
lower-bound values are smaller than in the case of the method with flight copy pre-selection,
suggesting that it is better to select the flight copies by using the LP solution rather than by
applying the a-priori criterion.

Inst. #a #c #ch LB UB gap% tLB tUB time impr%
1/9 12 20 4 19815 19836 0.11 210 53 263 9.95
2/9 15 26 6 26245 26368 0.47 583 112 695 5.25
3/9 14 24 5 24126 24132 0.02 510 478 988 4.13
4/9 13 24 4 23741 23764 0.10 442 1800 2242 1.05
5/9 14 23 4 23557 23581 0.10 405 17 422 2.24
6/9 14 24 4 24093 24135 0.17 519 162 681 2.67
7/9 15 27 5 26616 26896 1.04 1000 1800 2800 3.84
1/4 16 26 6 26070 26094 0.09 1026 1800 2826 4.37
2/4 14 26 5 25833 25836 0.01 775 101 876 10.86
3/4 14 26 5 26267 26280 0.05 863 108 971 10.20
4/4 14 26 5 25863 25868 0.02 865 40 905 11.11
5/4 14 27 5 26823 26825 0.01 852 13 865 10.47
6/4 16 31 6 30990 30999 0.03 2501 1800 4301 6.36
7/4 11 20 4 20032 20032 0.00 280 2 282 5.95
Avg. 0.16 1365.5 6.32

Table 5 Results of the LP-based Retiming Selection Algorithm.

6.1.5 Comparison Summary

In order to provide a compact comparison of the four algorithms, Table 6 reports the following
values for each algorithm: total computing time (expressed in seconds) used for executing both
phases of the algorithm, solution value (UB), cost for the crew (CCost), cost for the aircraft
(ACost) and number of aircraft changes (#ch). In the last row, average values are displayed.
The four algorithms are identified in Table 6 as follows: CS17 is the method adapted from [9]
(Section 5.1), FIX is the algorithm that uses fixed aircraft routes retiming (Section 5.2), SEL
is the method with flight copy pre-selection (Section 5.3), and LPH is the LP-based retiming
selection algorithm (Section 5.4).

As it can be seen, for all instances except for 6/4, the lowest crew cost is obtained by
CS17 which, however, shows the largest computing times. In addition, algorithm CS17 finds
the smallest aircraft cost for all instances except for 2/9, 6/9, and 6/4 (for which no solution
is found by CS17). The second best crew cost is found by LPH for all instances. The same
algorithm also finds the smallest aircraft cost for all instances except for 5/9, 6/9 and 7/9.
For what concerns the number of aircraft changes, LPH finds the smallest one for all instances
except for 2/9; this exception requires 6 changes while the lowest number of changes is 5.
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The FIX and SEL algorithms provide higher crew costs than CS17 and LPH: by comparing
only FIX and SEL, we can see that FIX finds a crew cost lower than that of SEL only for
four instances, while the opposite occurs in the remaining ten cases. However, FIX requires
much shorter computing times than the other three algorithms. We can also observe that
SEL obtains the best aircraft cost and number of aircraft changes for all instances except for
7/9. However, given that the crew cost is much higher than the other costs in the objective
function, SEL is outperformed by LPH.

We can conclude that all four algorithms obtained improvements with respect to the op-
timal solutions without retiming, as shown in Figure 1 (instance 5/4). In addition, they all
show small gaps with respect to the local lower bounds. While the method adapted from [9]
leads to the largest improvements, it also requires the longest computing times, and shows
its drawbacks, since it is not able to find a feasible solution for the largest instance within
the time limit. By fixing the assignment of flights to aircraft, the computing time is signifi-
cantly reduced, but the flexibility is also decreased, so that the improvement is marginal. The
algorithms that select flight copies show better performances, being able to obtain a feasible
solution for all instances and good improvements in reasonable computing times. Especially
the LP-based Retiming Selection Algorithm shows a good trade-off between solution quality
and computing time, as it is also evident from the results reported in Table 6. We there-
fore select LPH in the next sections to perform a sensitivity analysis and to test larger size
instances.

6.2 Sensitivity Analysis

Given that LPH turns out to achieve the best trade-off between the improvement over the
solution without retiming and the corresponding computing time, we now analyze the impact
of different numbers of retiming options on its performance. In addition, we compare the results
obtained by considering three departure time options spaced by 10 minutes with the results
found by including five departure time options spaced by 5 minutes. Finally, we evaluate the
effect of different costs for the aircraft and for the crew connections.

6.2.1 Departure Time Options

In the previous section, we considered three depature time options, i.e., the original flight
departure time (suggested by the regional carrier and used in [9] for the non-retiming problem)
and two retiming options of ±10 minutes. We also executed other experiments on the same
real-world instances with three departure time options and retiming of ±5 minutes on all
flights, instead of ±10 minutes. As expected, the improvement obtained on the ±5 minutes
instances was much smaller than on the ±10 minutes instances. More precisely, it was only
possible to reduce the costs for the short and long connection times, while the reduction of the
number of crews, aircraft, or aircraft changes was not achievable. Since the computing times
of the algorithms in both families of instances are very similar (as the graphs and models have
nearly the same size in both cases), retiming of ±10 minutes is definitely recommended in our
application when using three departure time options.

We now consider five departure time options either spaced by 5 minutes or by 10 minutes,
and seven departure time options spaced by 5 minutes. The obtained results are reported in
Table 7, where each configuration is identified by the number of departure time alternatives
and by the spacing time interval: e.g., 3D±10’ corresponds to three departure time options
spaced by 10 minutes; in particular this configuration corresponds to the one used for the
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LPH approach in the previous section (Table 5), and reported again here (Table 7) for ease of
comparison. For each configuration, we show the number #a of aircraft, the number #c of crew
members and the number #ch of aircraft changes needed in the solution found, the solution
value UB, the total computing time (expressed in seconds), and the percentage improvement
with respect to the optimal solution without retiming. In the last row, we report average
values, over all instances, for the computing time and for the percentage improvement.

As it can be observed, when five departure time options are considered, the computing time
increases of about three times. This is not surprising, as LPH is based on model (1)–(15) that
uses aircraft and crew graphs whose sizes rapidly increase with the number of flight copies.

We can also notice that, by allowing five departure time options with time spacing of 5
minutes (i.e. 5D±5’) instead of three departure time options with time spacing of 10 minutes
(i.e. 3D±10’), we obtain a slight decrease of the improvement (from 6.32% to 5.89% on average).
Since all retiming options allowed by 3D±10’ are also allowed by 5D±5’, the worsening is
mainly due to the choice of the subset of arcs deleted after IT iterations of the LP-relaxed
solution process: as a larger number of retiming options is available, it is indeed harder to
select the best arc-flow variables based on the LP-solution. Therefore, a configuration with a
smaller set of retiming options and a larger time spacing (between the original flight and its
copies) is to be preferred over a combination that includes more retiming options spaced by
shorter time intervals, when the two configurations allow the same maximum shift for each
flight departure. This could be expected, since solution cost reduction is obtained by enabling
new flight connections, that are more likely to be possible when larger time spacings are
considered. The availability of more retiming options covering the same time interval does not
appear to be advantageous since it increases the problem size and requires longer computing
times.

From Table 7, we also observe that, although configuration 5D±10’ requires longer comput-
ing times, it also provides a larger improvement (11.87% on average) over the solution without
retiming. Indeed, each flight can be shifted up to 20 minutes earlier or later than in the original
schedule, and new flight connections become available. Clearly, a change of 20 minutes for the
flight departures has to be carefully analyzed, based on the passenger demand, especially in
the setting of the considered regional carrier (where many flights are used by commuters for
reaching their work place and going back home, even on the same day).

Finally, we also notice that, when seven departure time options are considered, the com-
puting time further increases. While instances with five departure times can be solved in about
one hour and a half (which is still a reasonable time), instances with larger sets of alterna-
tives tend to need longer computing times (about two hours and fifteen minutes on average).
The computing time is especially long for the larger size instances (7/9, 5/4 and 6/4). These
instances contain a higher number of flights and a very large number of connections, which
has a strong impact on the performance in the retiming setting. This observation is typical
in a regional carrier, operating many short flights between a small set of airports. In these
cases, as observed in the comparison between 3D±10’ and 5D±5’, the choice of restricting the
number of retiming options to a small set and possibly enlarging the time spacing between
the provided departure times appears to be more effective. It is worth mentioning that, in the
considered real-world application, the time range for the retiming options should not be too
wide (e.g. at most 10 minutes), as also noted by other researchers (see e.g. [8], [11], [17]).

6.2.2 Aircraft Costs

In this section, we compare the results obtained by using LPH to solve instances with different
aircraft costs in the objective function, namely γk ∈ {1, 10, 50} for each operator k ∈ K; we
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recall that γk = 10 for the results in Table 5 and that for the short-term maintenance exceptions
γk is doubled, hence it becomes 2, 20 or 100 in those exceptional cases. We identify the three
settings by C1, C10 and C50. For each setting, Table 8 reports the computing time (expressed
in seconds), the number #a of aircraft, the number #c of crew members, the number #ch
of aircraft changes, and the number #exc of short-term maintenance exceptions. We do not
report the solution value, since it is computed, in every setting, with different aircraft costs,
and thus the solution values could not be directly compared. In the last row, we report average
values over all instances.

C1 C10 C50
Inst. time #a #c #ch #exc time #a #c #ch #exc time #a #c #ch #exc
1/9 216 12 20 4 3 263 12 20 4 3 345 12 20 5 1
2/9 2445 17 26 6 4 695 15 26 6 4 2070 15 26 6 4
3/9 503 15 24 5 3 988 14 24 5 2 509 14 24 5 2
4/9 1107 13 24 4 3 2242 13 24 4 3 2287 13 24 5 1
5/9 452 13 24 4 3 422 14 23 4 4 2180 13 24 5 1
6/9 495 13 25 4 3 681 14 24 4 4 2301 13 25 4 3
7/9 1111 15 27 5 3 2800 15 27 5 3 2821 15 27 7 1
1/4 1512 17 26 6 4 2826 16 26 6 3 2743 16 26 6 3
2/4 717 14 26 5 2 876 14 26 5 2 721 14 26 5 2
3/4 899 14 26 5 2 971 14 26 5 2 1087 14 26 5 2
4/4 887 14 26 5 2 905 14 26 5 2 825 14 26 5 2
5/4 1689 14 27 5 2 865 14 27 5 2 1128 14 27 5 2
6/4 4152 16 31 6 2 4301 16 31 6 2 4778 17 31 8 3
7/4 707 12 20 4 3 282 11 20 4 2 260 11 20 4 2
Avg. 1206.6 14.2 25.1 4.9 2.8 1365.5 14.0 25.0 4.9 2.7 1718.2 13.9 25.1 5.4 2.1

Table 8 Results with different aircraft costs.

A first observation from the table is that the computing time, on average, is not strongly af-
fected by the different γk values, although instances 4/9-1/4 show an increase of the computing
time in setting C50 with respect to C1. Moreover, we can see that, as expected, the numbers
of aircraft and short-term maintenance exceptions decrease as the aircraft cost increases. In
particular, in setting C50, the smallest numbers of aircraft and short-term exceptions occur
for all instances except for 6/4. The number of crew members employed is almost the same in
every setting. On the contrary, to reduce the number of aircraft used when γk = 50, the num-
ber of aircraft changes increases, since aircraft changes have lower cost than crew members.
Reducing the number of aircraft used and the short-term maintenance exceptions can become
very useful if the airline company needs to rent some aircraft, or if more complex maintenance
rules are required on the aircraft. In these cases, the C50 setting is recommended.

6.2.3 Crew Connection Costs

The second cost variation that we consider is to give more or less importance to the crew
connection costs in the objective function. We recall that the crew cost is made of two com-
ponents: a salary cost βk that depends on the airline operator (with k ∈ K), and a cost cR
that depends on the connection times between consecutive flights in the crew pairing R (with
R ∈ Rkl

c , k ∈ K, l ∈ Nbd). We keep the same salary cost and weights used in Section 6.1 for
computing cR. Remember that we used weight 2 for the connections between 20 and almost
30 minutes, 1 for the connections between 30 minutes and one hour, 3 for the connections
larger than one hour but not larger than two hours, and 5 for larger connection times. In this
section, for the cost variation analysis, we multiple the crew connection cost cR by 1/2 or
by 2 in the objective function, thus giving half or double importance to this cost component
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with respect to the one used for obtaining the results in Table 5. Table 9 reports the results
obtained by LPH when the crew connection cost is weighted a half (CW.5), one (CW1) or
double (CW2). For each setting, we display the computing time (expressed in seconds), the
numbers w2, w1, w3 and w5 of connections with weights 2, 1, 3 and 5, respectively. In addition,
we show the number #a of aircraft, the number #c of crew members and the number #ch of
aircraft changes. Finally, in the last row, we report average values over all instances.

By the weight definition, connections w1 are the preferred ones; indeed, the other types
of connections have either short connection times and can cause delay propagation, or long
connection times and lead to inefficient crew pairings. Table 9 shows that, as the connection
cost increases, the number of connections of type w1 increases too. In addition, the number
of connections of type w3 and w5 decreases notably. As a drawback, we also observe that, for
instances 5/9, 6/9 and 3/4, the number of crew members in CW2 is larger than that in CW1.
On the contrary, in CW.5, a further reduction of #c with respect to CW1 occurs for instances
4/9 and 7/9. Both the number of aircraft used and the number of aircraft changes are not
very affected by the different crew connection costs.

CW.5 CW1 CW2
Inst. time w2 w1 w3 w5 #a #c #ch time w2 w1 w3 w5 #a #c #ch time w2 w1 w3 w5 #a #c #ch
1/9 2044 4 74 4 0 12 20 4 263 10 69 3 0 12 20 4 206 10 69 3 0 12 20 4
2/9 2193 20 88 4 2 17 26 6 695 24 84 4 2 15 26 6 941 16 92 4 2 16 26 6
3/9 474 28 74 3 1 14 24 5 988 25 77 3 1 14 24 5 542 23 79 3 1 14 24 5
4/9 704 24 68 6 3 14 23 4 2242 4 95 0 1 13 24 4 1235 6 93 0 1 13 24 4
5/9 602 22 69 6 4 14 23 4 422 26 67 4 4 14 23 4 375 9 88 2 1 13 24 4
6/9 594 23 76 3 2 13 24 4 681 23 77 2 2 14 24 4 996 3 100 0 0 13 25 4
7/9 3093 17 100 2 5 15 26 5 2800 17 103 3 0 15 27 5 1449 12 109 2 0 15 27 5
1/4 2758 25 87 0 0 16 26 6 2826 15 97 0 0 16 26 6 1228 18 94 0 0 16 26 6
2/4 845 19 87 0 0 14 26 5 876 21 85 0 0 14 26 5 637 21 85 0 0 14 26 5
3/4 975 30 78 2 2 14 26 5 971 33 75 2 2 14 26 5 2917 24 87 0 0 14 27 6
4/4 915 29 81 0 0 14 26 5 905 23 87 0 0 14 26 5 713 35 75 0 0 14 26 5
5/4 1015 19 98 0 0 14 27 5 865 20 97 0 0 14 27 5 2319 11 106 0 0 14 27 5
6/4 2519 15 126 0 0 16 31 6 4301 20 121 0 0 16 31 6 2904 8 133 0 0 16 31 6
7/4 360 4 71 5 0 11 20 4 282 8 67 5 0 11 20 4 257 9 66 5 0 11 20 4
Avg. 1363.6 19.9 84.1 2.5 1.4 14.1 24.9 4.9 1365.5 19.2 85.8 1.9 0.9 14.0 25.0 4.9 1194.2 14.6 91.1 1.4 0.4 13.9 25.2 4.9

Table 9 Results with different crew connection costs.

To conclude this section, we underline that many parameters are present in the problem
formulation, and many combinations could be analyzed. However, we decided to focus on some
configurations of interest for the practical application. Based on our analysis and the opinion
of experts of the regional carrier, we recommend to keep the objective function (1) and the
setting used in the previous section.

6.3 Results on Larger Instances

To further evaluate the performance of LPH, we artificially built larger size instances by
combining pairs of the real-world instances used in the previous experiments. More precisely, we
created a new instance dd/94 by merging the flights of the two instances d/4 and d/9, for each
d = 1, . . . , 7. In our application, both overnight rest exceptions and short-term maintenance
exceptions are taken into account. Thus, to keep these constraints on the larger size instances,
and still ensure they are feasible, we selected and removed a few flights from some instances.
The new instances contain between 240 and 296 flights. To have reasonable numbers of flight
connections, each large instance includes all the existing connections between flights in a same
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day, but no connection between flights in different days. In this way, the new instances keep
the structure of the real-world ones but on a double number of airports.

We applied LPH to the new instances using the standard configuration, i.e., three departure
time options and ±10 minutes changes from the original departure time, exactly as done in
Section 6.1 (Table 5). The new results are reported in Table 10. In addition to the results
obtained by LPH, we report the results obtained without retiming so as to see the improvement
that can be achieved. For the case without retiming, we executed the first two phases of the
method developed in [9]. Table 10 shows, for the case without retiming and for the LPH
algorithm, the instance name, the corresponding number #f of flights, and the number #conn
of flight connections. Similarly to what was done in Section 6.1, the table reports the number
#a of aircraft, the number #c of crew members and the number #ch of aircraft changes
needed in the solution found, the lower bound (LB) obtained at the end of the first phase,
the upper bound (UB) obtained at the end of the second phase, the percentage gap (gap%)
between upper and lower bounds, the computing times (tLB and tUB) of the first and second
phases, respectively, and the whole computing time (time). Moreover, for the LPH algorithm,
we report the percentage improvement with respect to the solution without retiming. Finally,
in the last row, we display average values for the percentage gap, total computing time and
percentage improvement.

Without Retiming With Retiming
Inst. #f #conn #a #c #ch LB UB gap% tLB tUB time #a #c #ch LB UB gap% tLB tUB time impr%
11/94 240 2724 29 48 12 48181 48381 0.41 42 45 87 28 45 12 44818 45157 0.75 1556 1800 3356 6.66
22/94 270 3393 32 56 13 55955 56155 0.36 37 1800 1837 30 51 16 51366 52062 1.34 1801 1800 3601 7.29
33/94 264 3391 28 51 12 51572 51579 0.01 34 1800 1834 28 48 12 47962 48403 0.91 1458 1800 3258 6.16
44/94 256 3228 27 50 11 50120 50220 0.20 40 1800 1840 27 46 11 46691 46913 0.47 1580 1800 3380 6.59
55/94 264 3426 27 51 11 51085 51185 0.20 36 1800 1836 28 47 13 47631 48322 1.43 1681 1800 3481 5.59
66/94 296 4206 30 55 12 55021 55021 0.00 69 118 187 30 52 12 52436 52580 0.27 2864 1800 4664 4.44
77/94 248 2992 25 46 10 46453 46476 0.05 37 48 85 26 44 11 43925 44453 1.19 1760 1800 3560 4.35
Avg. 0.18 1100.9 0.91 3614.3 5.87

Table 10 Results on larger size instances without or with retiming.

We can conclude that, when including the flight retiming feature, the computing time for
the approach LPH is about one hour, and the average percentage gap is below 1%. In addition,
the obtained improvement with respect to the non-retiming solution is relevant (5.87% on
average) and, for all instances, the number of crew members is reduced. Therefore, LPH
can handle larger size instances in an effective way by considering a small set of alternative
departure time options.

7 Conclusions and Future Research

This paper has addressed a new problem that embeds flight retiming in an airline scheduling
problem that includes three phases (fleet assignment, aircraft routing and crew pairing). The
goal is to use flight retiming to reduce the aircraft and crew costs, as well as the number of
aircraft changes that can lead to delay propagation. The problem was motivated by a regional
carrier operating about 150 flights every day within Canary Islands and other nearby regions.
It is a problem to be solved during the planning stage, afforded about six months before the
days of the operation. The integrated problem without retiming was solved to optimality in
a previous work, and afterwards the regional carrier was also interested in investigating the
extension in which flight departure times can slightly be moved. This extra freedom has been
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investigated in other scheduling problems, including ground transportation among others, and
there are also recent articles considering retiming in air transportation.

We proposed four heuristic approaches that were tested on real-world instances from the
literature with three optional departure times for each flight. Although each algorithm has its
advantages and drawbacks, the comparison showed that the best trade-off between solution
improvement and computing time is achieved by an algorithm that selects flight copies based
on the Linear Programming solution obtained within a column generation process. In addi-
tion, this research has confirmed that significant improvement can be obtained by considering
retiming when solving the scheduling problem.

We conducted a sensitivity analysis of the impact of different sets of retiming options and
different aircraft and crew costs on the performance of the most effective algorithm, and also
performed experiments solving instances with up to 296 flights. The results show that the
complexity of the problem increases significantly with the number of optional departure times
per flight, especially due to the large number of flight connections available in our real-world
instances. However, the algorithm was able to handle up to five departure time options in
reasonable computing times. A challenging area of research for the future is to analyze the
robustness of the obtained solutions under delay scenarios, and possibly improve them by
inserting additional retiming options only for the most critical flights.
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