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Abstract 31 

In recent years digital sensors have been successfully integrated on board Unmanned Aerial 32 

Vehicles (UAV) to assess crop vigor, vegetation coverage, and to quantify the “greenness” of 33 

foliage as indirect measurements of crop nitrogen status. The classical approach of precision 34 

agriculture has involved the use of multispectral sensors onboard UAV and the development of 35 

numerous vegetation indices associated with vegetation parameters, such as the mostly used 36 

Normalized Difference Vegetation Index (NDVI). However, the main negative issue when dealing 37 

with multi and hyper-spectral reflectance measuring tools is their high cost and complexity from the 38 

operational point of view. As a low-cost alternative, vegetation indices derived from Red Green 39 

Blue (RGB) cameras have been employed for remote sensing assessment, providing data on 40 

different stress conditions and species. Digital images record information as amounts of RGB light 41 

emitted for each pixel of the image; however, the intensity of red and blue will often alter how 42 

green an image appears. To simplify the interpretation of digital color data, recent studies have 43 

suggested converting RGB values to the more intuitive Hue, Saturation, and Brightness (HSB) color 44 

spectrum, and then into a single measure of dark green color, the Dark Green Color Index (DGCI). 45 

In this study NDVI acquired by a ground-based handheld crop sensor and by a multispectral camera 46 

mounted on board a UAV have been compared with DGCI calculated from images taken with a 47 

commercial digital camera on board a UAV, trying to quantify the color of turfgrass that had 48 

received different nitrogen (N) rates. 49 

The objectives of the trial were to study an affordable easy-to-use tool evaluating the relationship 50 

among NDVI, DGCI and leaf nitrogen content on turfgrass. 51 

  52 
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Introduction 53 

Nitrogen fertilization on turfgrasses is one of the factors that most influence physiological and 54 

aesthetic aspects (Volterrani et al. 2005; Perry and Davenport 2007; Samborski, Tremblay, and 55 

Fallon 2009; Caturegli et al., “Monitoring turfgrass”, 2014; Caturegli et al., “Turfgrass spectral 56 

reflectance”, 2014; Grossi et al. 2016). Thus, nitrogen (N) represents an important nutrient that 57 

contributes to maintain green color, density, recovery from drought diseases, and a general good 58 

turfgrass quality (Walters and Bingham 2007; Dordas 2008; Magni et al. 2014; Caturegli et al. 59 

2016). 60 

However, the excessive fertilization of N wastes fertilizers and leads to pollution of ground and 61 

surface water, not improving the quality of the turf (Bell and Xiong 2008; Bremer et al. 2011; 62 

Rhezali and Lahlali 2017). To avoid over-fertilization, site-specific nutrition management brought 63 

significant environmental and economic benefits (Huang et al. 2008). Indeed, a precise analysis of 64 

the plant nitrogen status is important to determine the amount of nitrogen fertilizer the plant really 65 

needs (Corwin and Lesch 2005; Li et al. 2015). 66 

Previous studies have focused on implementation of indirect sensing tools (chlorophyll meters, 67 

reflectance measurements, color analysis) to try to obtain an almost optimal quality by reducing the 68 

N inputs and the loss N to a minimum (Rorie, Purcell, Mozaffari et al. 2011; Caturegli, Casucci et 69 

al. 2015; Caturegli, Grossi et al. 2015; Caturegli et al. 2016). 70 

These concepts are the basis of Precision Agriculture (PA), which aims to obtain detailed site-71 

specific information by mapping the variation in important soil and plant properties in order to 72 

allow better site-specific management. Inputs such as water, fertilizers and pesticides are applied 73 

only where, when and in the amount needed by plant (Caturegli et al., “Turfgrass spectral 74 

reflectance”, 2014). Related to PA is Precision Turfgrass Management (PTM) that is useful to 75 

monitor pests, fertilization, salinity stress and irrigation deficiency on turfgrass (Carrow et al. 2010; 76 

Krum, Carrow, and Karnok 2010). The approach of PA implied the combined use of multispectral 77 
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sensors and vegetation indices associated with vegetation parameters (Trenholm, Carrow, and 78 

Duncan 1999; Jiang and Carrow 2007; Vergara-Díaz et al. 2016). Thus, vegetation indices were 79 

calculated by combining various reflectance bands of the spectrum and correlated with relevant 80 

turfgrass canopy parameters. Among the indices, the Normalized Difference Vegetation Index 81 

(NDVI) is the most widely used as reflectance-based plant stress indicator (Hansen and Schjoerring 82 

2003; Johnsen et al. 2009; Aguilar et al. 2012; Barton 2012; Fensholt and Proud 2012; Rhezali and 83 

Lahlali 2017). It is based on the relationship between the absorption of visible light and resilient 84 

reflectance of near-infrared light to the chlorophyll in vegetation (Bell et al. 2004; Caturegli, 85 

Casucci et al. 2015). The NDVI value ranges from -1 to 1, with higher values indicating greater 86 

plant health, and correlates positively with turfgrass quality (Trenholm, Carrow, and Duncan 1999; 87 

Fitz-Rodriguez and Choi 2002; Leinauer et al. 2014). This index is also influenced by differences in 88 

species, environmental stresses, fertilization and pest injuries (Xiong et al. 2007; Bremer et al. 89 

2011; Caturegli, Grossi et al. 2015). It can be obtained with hand-held ground-based instruments 90 

(Graeff and Claupein 2003; Ma, Morrison, and Dwyer 1996) and aerial vehicle-mounted sensors 91 

(Bausch and Duke 1996; Blackmer et al. 1996; Scharf and Lory 2009; Rorie, Purcell, Karcher et al. 92 

2011). In recent years, digital sensors have been successfully integrated on board Unmanned Aerial 93 

Vehicles (UAV) to assess crop vigor, vegetation coverage, and to quantify the “greenness” of 94 

foliage as indirect measurements of crop N status (White et al. 2012; Andrade-Sanchez et al. 2014). 95 

Furthermore, small commercial Unmanned Aerial Systems (UAS) (< 50 kg) (Laliberte and Rango 96 

2011) have been available for PA for environmental and agricultural applications (Gupta et al. 97 

2013; Zhang and Kovacs 2012; Caturegli et al. 2016). However, the main negative issue when it 98 

comes to multi and hyper-spectral reflectance measuring tools is their high cost and complexity. 99 

Vegetation indices derived from Red-Green-Blue (RGB) cameras have been employed for remote 100 

sensing assessment, as a low-cost alternative (Vergara-Díaz et al. 2016). This method may provide 101 

data on different stress conditions in different crops (Casadesús et al. 2007; Casadesus and Villegas 102 

2014; Zhou et al. 2015) and turfgrass (Karcher and Richardson 2003; Karcher and Richardson 103 
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2013). Digital images are composed by pixels that record information as amounts of RGB light 104 

emitted. However, the greenness of an image can be often altered by the intensity of red and blue. 105 

To simplify the interpretation of data, Karcher and Richardson (2003) suggested converting RGB 106 

values to the more intuitive Hue, Saturation, and Brightness (HSB) based on human perception of 107 

color. Working with quality of turfgrass in response to N fertilizer, Karcher and Richardson (2003) 108 

processed HSB values into a single measure of dark green color, the Dark Green Color Index 109 

(DGCI).  110 

This method proposed by (Karcher and Richardson 2003) may represent a proper alternative to the 111 

spectroradiometric approaches that involves the use of NDVI from aerial platforms and from 112 

ground-based measurements (Vergara-Díaz et al. 2016). To facilitate the DGCI acquisition, 113 

recently, also a smartphone application called FieldScout GreenIndex+ Turf (Spectrum 114 

Technologies, Inc., Aurora, IL, USA) (Spectrum Technologies, Inc. 2018) has been developed and 115 

tested (O'Brien 2017; Xiang et al. 2017; Xiang et al. 2018) The application (APP) captures images 116 

with a smartphone or tablet, calculates the DGCI, and shows a turfgrass quality visual rating 117 

(Karcher and Richardson 2003). 118 

The aim of this research was to study an affordable easy-to-use tool evaluating the relationship 119 

among NDVI, DGCI and leaf nitrogen content on turfgrass. Trying to quantify the color of turfgrass 120 

that had received different N rates, NDVI acquired by a ground-based handheld crop sensor and by 121 

a multispectral camera mounted on board a UAV have been compared with DGCI calculated from 122 

images taken with a commercial digital camera on board a UAV.  123 

  124 
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Materials and Methods 125 

The trial was carried out in July 2017 in S. Piero a Grado, Pisa, at the Centre for Research on 126 

Turfgrass for the Environment and Sports (CeRTES) of the Department of Agriculture, Food and 127 

Environment of the University of Pisa (43°40’N, 10°19’E, 6 metres above sea level (m. a. s. l.). 128 

The turfgrasses selected for the study were a mature turfgrass stands of the warm-season 129 

bermudagrass hybrid (Cynodon dactylon [L.] Pers. (Linnaeus Persoon) variety dactylon x Cynodon 130 

transvaalensis Burtt-Davy) cultivar (cv) ‘Patriot’ and the cool-season tall fescue (Schedonorus 131 

phoenix [Scop.] (Scopoli) Holub) cv ‘Grande’.  132 

The swards were all established on a calcaric fluvisoil (Coarse-silty, mixed, thermic, Typic 133 

Xerofluvents) with pH 7.8 and 18 g kg-1 of organic matter.  134 

No fertilizer had been applied to the turfgrass before the trial started. In order to create a linear 135 

nitrogen gradient, on June 2017 fertilization was carried out applying ammonium sulphate (21-0-0) 136 

with a rotary spreader (ICL Specialty Fertilizers AccuPro 2000, Ipswich, UK). 137 

The experimental designs were:  138 

a) For tall fescue 8 nitrogen rates were applied, from 0 to 210 kg ha-1 of N with increases of 30 kg 139 

ha-1 (0 kg ha-1, 30 kg ha-1, 60 kg ha-1, 90 kg ha-1, 120 kg ha-1, 150 kg ha-1, 180 kg ha-1, 210 kg ha-1 140 

of N). The plot size was 3 m × 3 m, with 3 replications. 141 

b) For bermudagrass hybrid, which tolerates higher doses of fertilizer, 11 nitrogen rates were 142 

applied, from 0 to 300 kg ha-1 of N with increases of 30 kg ha-1 (0 kg ha-1, 30 kg ha-1, 60 kg ha-1, 143 

90 kg ha-1, 120 kg ha-1, 150 kg ha-1, 180 kg ha-1, 210 kg ha-1, 240 kg ha-1, 270 kg ha-1, 300 kg ha-1 144 

of N). The plot size was 3 m × 3 m, with 3 replications. 145 

Extreme N rates were applied in order to reach the nitrogen saturation level for both species, 146 

regardless of the agronomic drawbacks to the turfgrasses. 147 

After the fertilization, an irrigation of 5 mm was applied. During the trial period a turf height of 2.0 148 

cm was maintained by mowing with a walk-behind reel mower (John Deere 20SR7, Moline IL, 149 
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USA) with clippings removal. In the entire experimental area, in order to evaluate nitrogen 150 

fertilization as the only variability source, identical and maintenance practices were applied. 151 

Irrigation was applied as needed to avoid wilt, in order to maintain the soil moisture constant and 152 

equal in all areas. During the trial no weed or pest control was necessary. 153 

On each of the two experimental areas proximity and remote sensed readings were acquired starting 154 

from the unfertilized control to the highest nitrogen rate in each plot. 155 

The ground-based instrument used to acquire NDVI values was a Handheld Crop Sensor (HCS) 156 

(GreenSeeker, Model HSC-100, Trimble Navigation Unlimited, Sunnyvale, CA) while the remote 157 

sensed readings were collected with a UAV which was a VTOL (Vertical Take Off and Landing) 158 

DJI s900 hexacopter (DJI, Shenzhen, China) equipped with a digital commercial camera Sony Nex 159 

5 (Sony, Surrey, United Kingdom) and a lightweight multispectral sensor MAIA S2 (SAL 160 

Engineering, Modena Italy; EOPTIS, Trento, Italy). Spectral measurements (proximity and aerial) 161 

were taken on 6 July 2017 between 11:30 AM (ante meridiem) and 1:30 PM (post meridiem) (local 162 

time), in complete absence of clouds. The weather parameters of July 2017 were as follows: 163 

average air temperature 25 °C, average relative humidity 60%; July average of the noon 164 

Photosynthetic Photon Flux Density 1,482 μmol m-2 s-1; average wind speed 6 km h-1. Each ground-165 

based measurement was geo-referenced to sub-meter accuracy with a Global Positioning System 166 

(GPS) receiver Leica 1200 in Real Time Kinematic, in order to find the exact position on the UAV 167 

images and to compare data acquired with the two systems (Caturegli, Casucci et al. 2015; 168 

Caturegli, Grossi et al. 2015; Caturegli et al. 2016). 169 

Ground-based measurements 170 

Proximity sensed measurements of spectral reflectance were acquired with a HCS at a height 171 

of 110 cm from the ground, thus monitoring a surface of about 2,000 cm2 (Ø = 50 cm). The HCS 172 

has an active light source that makes readings unaffected by sunlight (Bell, Kruse, and Krum 2013). 173 

Reflectance was measured in the red region at 660 nm, and in the near infrared region of the 174 



9 
 

spectrum at 780 nm. The output is directly provided as NDVI, which is calculated using the 175 

equation:  176 

NDVI = ((NIR) – R)/((NIR) + R)      (1) 177 

where R is the reflectance in the red band and NIR is the reflectance in the near-infrared band. 178 

In the same day and in the same area also the following parameters were studied: 179 

- Color intensity (1 = very light green; 6 = acceptable green; 9 = very dark green): visual 180 

assessments (Morris and Shearman 2008); 181 

- Turfgrass Quality: (1 = poor; 6 = acceptable; 9 = excellent): visual assessments (Morris and 182 

Shearman 2008); 183 

- Total N content of leaves: samples of clippings were collected on each sampling area with a 184 

walk-behind reel mower from a surface of 0.5 m2 (1.0 m × 0.5 m). Fresh clippings were put 185 

in a ventilated stove at 70 °C, dried to constant weight, and the total N was determined by 186 

the micro-Kjeldahl method (Bremner 1965); 187 

- Plant water content  (PWC): calculated as follows:       188 

                            PWC (%) = 189 

(FW) − (DW)

(FW)
 × 100                                                                           (2) 190 

where FW is the leaf fresh weight and DW the leaf dry weight. Leaves were cut and quickly 191 

put into a plastic bag with hermetic closure. The bags were refrigerated and kept in the dark 192 

until arrival to the laboratory, where they have been weighed. 193 

UAV flight and analysis of UAV derived imagery 194 

The UAV system used for surveying was a DJI s900 hexacopter (Figure 1 (a)) with Global 195 

Navigation Satellite System (GNSS), with L1 code solution and a 3 axis accelerometer based 196 

stabilization system. The hexacopter was equipped with a digital commercial camera Sony Nex 5 197 

(Sony, Surrey, United Kingdom) and a lightweight multispectral camera MAIA S2 (SAL 198 

Engineering, Modena Italy; EOPTIS, Trento, Italy) (Figure 1 (b)). The images were acquired at 90 199 
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m of altitude to guarantee a GSD (Ground Sample Distance) of less than 5 cm and a FOV (Field Of 200 

View) of about 58 m × 43 m. The direction and altitude of the aircraft were controlled by the 201 

rotation speed or by the direction of the propellers (Li et al. 2015). Real-time images, and other 202 

information such as altitude and battery voltage, were transmitted to a ground monitor through a 203 

radio link. 204 

Please insert Figure 1 near here 205 

  206 
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UAS derived imagery NDVI  207 

The UAS derived imagery NDVI was obtained using the UAV cited above equipped with a 208 

multispectral camera MAIA S2 (SAL Engineering, Modena Italy; EOPTIS, Trento, Italy), which 209 

features an array of nine sensors with 1.2 Megapixel resolution: specifically, one RGB color and 210 

eight monochrome sensors are available for analysis of the visible and near infra-red (VIS-NIR) 211 

spectrum from 390 nm to 950 nm, operating with a frame rate of 5 Hz per sensor. Each of the eight 212 

sensors is provided with a band-pass filter (Table 1). Global shutter technology is so such that all of 213 

the pixels in each sensor start to collect charge simultaneously, allowing images to be scanned in 214 

“one shot” for synchronized multiband measurements. The extremely fast exposure times of the 215 

nine global shutter complementary metal-oxide semiconductor (CMOS) sensors (up to 10-4 s) and 216 

the low travel speed (< 0.5 m  s-1) guarantee the absence of the blur effect. The images obtained 217 

were geometrically corrected with calibrated optics, and radiometrically corrected with the 218 

acquisition of the reflectance values of the incident light through a calibrated white panel. After the 219 

corrections, the 9 images for each shot were registered using the proprietary MAIA software based 220 

on photogrammetric method (Dubbini et al. 2017). Every pixel of the image contained coordinates 221 

and an NDVI value that was extracted using Quantum GIS (Geographic Information System) 2.18 222 

software. 223 

Please insert Table 1 near here  224 

 225 

Dark Green Color Index (DGCI) 226 

A common digital camera, Sony Nex 5 (Sony, Surrey, United Kingdom) was used to capture 227 

RGB images of the selected area. The Sony Nex-5 is a mirrorless interchangeable-lens camera, with 228 

the Advanced Photo System-Classic (APS-C) Exmor CMOS sensor and a maximum image 229 

resolution of 4,912 × 3,264 and a pixel size of 5 µm in both x and y directions (Remondino and 230 

Fraser 2006; Fryskowska et al. 2016). To reduce the effect of vibration during the flight and capture 231 
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clear images, the camera was mounted on a pan-tilt set which keeps the lens horizontal. In the same 232 

day as the ground NDVI readings and the NDVI by the multispectral camera, the digital camera 233 

recorded UAS derived imagery RGB images above the interested area, always in a zenithal plane. 234 

Images were taken with auto-focus, auto-white balance and an automatic exposure, and they were 235 

saved in Joint Photographic Experts Group (JPEG) format. Subsequently, images were analyzed 236 

with the open source Quantum GIS 2.18 software  to extract the RGB values of the pixels where the 237 

NDVI values by the ground and by the multispectral camera were calculated. To simplify the 238 

interpretation of data, RGB values were converted into HSB values, using the method suggested by 239 

(Karcher and Richardson 2003), to finally calculate the DGCI. DGCI value is on a scale from 0 240 

(very yellow) to 1 (dark green) (Rhezali and Lahlali 2017). DGCI was calculated as:  241 

DGCI  = [((Hue) – 60)/60 + (1 – (Saturation)) + (1 – (Brightness))]/3   (3) 242 

 243 

Statistical analysis 244 

The correlations between the two different NDVI reading methods (ground-based sensing 245 

with a HCS and remote sensing with UAV) and DGCI were studied using CoStat software (CoHort, 246 

Monterey, CA, USA) and Pearson’s correlation coefficients (r) were calculated in order to verify 247 

whether: (a) NDVI-ground data and NDVI-UAV were suitably correlated with DGCI obtained from 248 

RGB images captured by the digital camera on board a UAV; (b) UAV imagery with a low cost 249 

digital camera could be a diagnostic tool to identify variation in N status of turfgrass, comparable to 250 

a more expensive multispectral camera. Linear relationships were studied for the correlations 251 

showing statistically significant coefficients.  252 
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Results and discussion  253 

Relationship between DGCI, NDVI and observed parameters 254 

In bermudagrass hybrid, considering r among NDVI values obtained with the two different 255 

instruments (proximity sensed with the  HCS GreenSeeker and remotely sensed with the 256 

multispectral camera MAIA mounted on board a UAV), and the measured parameters, the r values 257 

were highly significant. The r values ranged between 0.92 for PWC-NDVI of both the instruments 258 

and 0.97 for turfgrass quality-NDVI GreenSeeker. Comparing DGCI and all the measured 259 

parameters, the index was significantly correlated with color intensity, turfgrass quality and plant 260 

water content with r values ranging between 0.83 for color intensity and 0.84 for turfgrass quality 261 

and PWC (Table 2). 262 

In tall fescue the correlations between NDVI obtained with GreenSeeker and with UAV and color 263 

intensity (r = 0.96 and r = 0.95) has showed higher r values than the same in bermudagrass hybrid 264 

(r = 0.94). Also PWC-NDVI (GreenSeeker and UAV) showed a degree of association significantly 265 

higher in tall fescue (r = 0.98) than bermudagrass hybrid (r = 0.92). 266 

Furthermore, observing the correlations, the DGCI was highly correlated with all the measured 267 

parameters with r values ranging between 0.92 for DGCI-Quality and 0.98 for DGCI-PWC. These 268 

relationships were all significantly higher in tall fescue than bermudagrass hybrid (Table 2) also in 269 

the case of DGCI-turfgrass color (r = 0.95). Previous reports by Zhang and Kovacs (2012), and 270 

Leinauer et al. (2014) also indicated this trend of values between DGCI and turfgrass quality and 271 

turfgrass color. As in our study also in the report by Leinauer et al. (2014), the association between 272 

DGCI and turfgrass quality in tall fescue showed higher r values than the same association in 273 

bermudagrass hybrid. As for the turfgrass color, Zhang and Kovacs (2012) also studied the 274 

relationship between visual color rating and DGCI, with higher Pearson correlation coefficient in 275 

tall fescue than bermudagrass hybrid. Previous reports by Karcher and Richardson (2003) also 276 
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confirm that visual ratings can be used to separate treatment effects on turf color. Frequently raters 277 

ranked the turf plots similarly although differences in color existed. Therefore, visual color rating 278 

remains a valid evaluation tool if data are not compared across raters. However, the accuracy of 279 

DGCI, as demonstrated in previous studies, enables researchers to record reflected turfgrass color 280 

on a standardized scale rather than using arbitrary rating values.  281 

Please insert Table 2 near here 282 

  283 
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Relationship between DGCI and NDVI 284 

Both in bermudagrass hybrid (Figure 2 (a)) and tall fescue (Figure 2 (b)) DCGI significantly 285 

related to the average NDVI values measured with a  HCS (GreenSeeker) and with the multispectral 286 

camera MAIA mounted on board a UAV, although data have been collected by instruments that 287 

measure at different heights and spatial resolutions. In fact DGCI has been collected only with RGB 288 

camera mounted on board a UAV, while NDVI has been measured by a multispectral camera on 289 

board a UAV and also by a ground based HCS. 290 

As shown in the Figure 2, DGCI values were linearly associated with NDVI, as also demonstrated 291 

by Leinauer et al. 2014. In Figure 2 (a) bermudagrass hybrid has performed a higher degree of 292 

association in NDVI GreenSeeker-DGCI (r = 0.91) than with UAV (r = 0.85), while in the case of 293 

tall fescue the degree of association was statistically the same (Figure 2 (b)). Comparing the two 294 

species, it was interesting to note that in tall fescue the correlation coefficients (Table 2) between 295 

both NDVI (GreenSeeker and UAV) and DGCI were higher than in Bermudagrass (Table 2; Figures 296 

2 (a) - (b)).  297 

 298 

Please insert Figure 2 near here  299 

 300 

  301 
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Relationship between DGCI and clipping nitrogen content 302 

Figure 3 showed the linear relationship between DGCI and clipping nitrogen content 303 

percentage in bermudagrass hybrid (a) and tall fescue (b) and it was of interest to note that the 304 

coefficients were high for both the species. However, DGCI in tall fescue showed a higher degree of 305 

association with clipping N content (r = 0.95), than in bermudagrass hybrid (r = 0.86) (Figures 3 (a) 306 

- (b)). DGCI values were linearly associated with clipping nitrogen content, as also demonstrated in 307 

other crops (Rorie, Purcell, Mozaffari et al. 2011; Vergara-Díaz et al. 2016). Thus, DGCI values 308 

could predict the average nitrogen concentrations of tall fescue and bermudagrass hybrid clippings 309 

in different plots and with different application rates.  310 

The close association between DGCI and leaf nitrogen therefore provided an additional tool for the 311 

assessment of leaf nitrogen content. Our research was consistent with previous work by Karcher and 312 

Richardson (2003) who found that DGCI values were able to differentiate among turfgrass cultivars 313 

receiving various N treatments.  314 

 315 

Please insert Figure 3 near here  316 

 317 

  318 
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Conclusions 319 

DGCI values were highly correlated with the nitrogen clipping content and NDVI with a 320 

highly significant degree of association. The results suggested that UAS derived imagery RGB 321 

photography by UAVs had a great potential in supporting decisions. Thus, DGCI could be a 322 

promising remote-sensing tool for mapping the crop nitrogen status or NDVI at large scale with 323 

high precision and low cost (Li et al. 2015). This method could be used by farmers operating in 324 

large-scale farms to precisely manage the application of fertilizers, although the farmers especially 325 

in the developing and underdeveloped counties, they do not have enough knowledge to operate the 326 

UAV and manage the technology. As turfgrass, especially in the most developed countries, this 327 

method could allow golf course superintendents and turf management specialists to make critical 328 

decisions in real time without high up-front costs. Differences in camera quality and settings and 329 

lighting conditions could affect DGCI and limit their utility in diagnosing N deficiencies. 330 

Furthermore, disease, water status, nutritional deficiencies other than N, or different uniformity, 331 

texture and growth habit may affect greenness regardless of N status as suggested also by Rorie, 332 

Purcell, Karcher et al. 2011 and by Leinauer et al. 2014. More research is required on this 333 

technology and on the Smartphone APP FieldScout GreenIndex+ Turf (Spectrum Technologies, 334 

Inc., Aurora, IL, USA) (Spectrum Technologies, Inc. 2018) to study and overcome possible 335 

discrepancies between the APP and the Smartphone camera. Although the accuracy of a 336 

Smartphone camera is not comparable to a digital camera, the precision of a Smartphone camera 337 

could still help to detect minor changes in turf greenness over time and-or relative to other areas of 338 

the golf course or sports field. In fact, if the imagery was conveyed quickly to the user, a broader 339 

usage of this technology could allow golf course superintendents and turf management specialists to 340 

make critical decisions in real time without high up-front costs, in small areas. To use efficiently 341 

this technology on large scale, DGCI could be use directly on board an UAV and could serve as an 342 

indicator of N deficiency on turfgrass, thus increasing turfgrass nitrogen fertilization efficiency. 343 



18 
 

Indeed, applications installed in drones could be good solutions for farmers or golf course 344 

superintendents and turf management specialists so they can adopt and benefit from DGCI 345 

technology. 346 
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Captions 523 

Table 1. Instrument monochrome sensors with relative band-pass filters of the multispectral camera 524 

MAIA. 525 

Table 2. Pearson product-moment correlation coefficients (r) among clipping nitrogen content, 526 

color intensity, turfgrass quality, plant water content (PWC), NDVI measured with a handheld crop 527 

sensor (GreenSeeker) and NDVI measured with multispectral camera mounted on an unmanned 528 

aerial vehicle (UAV) and dark green color index (DGCI) on a) bermudagrass hybrid; b) tall fescue. 529 

For each species correlation coefficients are calculated across all entries.  530 

All values are significant at the 0.010 level, except for DGCI color intensity, quality and PWC for 531 

bermudagrass hybrid and DGCI quality for tall fescue, whose values are significant at the 0.001 532 

level. 533 

Figure 1. (a) UAV during flight operations (6 July 2017; Pisa, Italy; 43°40’N, 10° 19’E, 6 m. a. s. 534 

l.); (b) The multispectral camera MAIA mounted on the UAV. 535 

Figure 2. Linear relationship between NDVI measured with a handheld crop sensor (GreenSeeker) 536 

and NDVI measured with a multispectral camera mounted on UAV and DGCI on (a) bermudagrass 537 

hybrid; and (b) tall fescue. Values represented the 3 replications. 538 

Figure 3. Linear relationship between DGCI and the clipping nitrogen content (%) on (a) 539 

bermudagrass hybrid; and (b) tall fescue. Values represented the average of 3 replications.  540 

 541 
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Tables 543 

Table 1. Instrument monochrome sensors with relative band-pass filters of the multispectral camera 544 

MAIA. 545 

Wavelength (nm) 

Start Central Stop 

395.0 422.5 450.0 

455.0 487.5 520.0 

525.0 550.0 575.0 

580.0 602.5 625.0 

630.0 660.0 690.0 

705.0 725.0 745.0 

750.0 785.0 820.0 

825.0 887.5 950.0 

 546 

Table 2. Pearson product-moment correlation coefficients (r) among clipping nitrogen content, 547 

color intensity, turfgrass quality, plant water content (PWC), NDVI measured with a handheld crop 548 

sensor (GreenSeeker) and NDVI measured with multispectral camera mounted on an unmanned 549 

aerial vehicle (UAV) and dark green color index (DGCI) on a) bermudagrass hybrid; b) tall fescue. 550 

For each species correlation coefficients are calculated across all entries.  551 

All values are significant at the 0.010 level, except for DGCI color intensity, quality and PWC for 552 

bermudagrass hybrid and DGCI quality for tall fescue, whose values are significant at the 0.001 553 

level. 554 

r 

Color 

intensity 

 

Quality 

 

PWC 

 

NDVI 

GreenSeeker  

NDVI 

UAV  
DGCI 

a) Bermudagrass hybrid       

N clipping (%) 0.97 0.97 0.95 0.94 0.92 0.86 

Color intensity (1-9) N/A 0.94 0.99 0.94 0.94 0.83 

Quality (1-9) N/A N/A 0.97 0.97 0.94 0.84 

PWC (%) N/A N/A N/A 0.92 0.92 0.84 

NDVI GreenSeeker (780,660) N/A N/A N/A N/A 0.96 0.91 

NDVI UAV (830,660) N/A N/A N/A N/A N/A  0.85 

b) Tall fescue       

N clipping (%) 0.99 0.99 0.99 0.95 0.94 0.95 

Color intensity (1-9) N/A 0.99 0.99 0.96 0.95 0.95 

Quality (1-9) N/A N/A 0.98 0.94 0.93 0.92 

PWC (%) N/A N/A N/A 0.98 0.98 0.98 

NDVI GreenSeeker (780,660) N/A N/A N/A N/A 0.99 0.95 

NDVI UAV (830,660) N/A N/A N/A N/A N/A 0.96 

 555 

 556 


