
06 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Poggi, M., Agresti, G., Tosi, F., Zanuttigh, P., Mattoccia, S. (2020). Confidence Estimation for ToF and
Stereo Sensors and Its Application to Depth Data Fusion. IEEE SENSORS JOURNAL, 20(3), 1411-1421
[10.1109/JSEN.2019.2946591].

Published Version:

Confidence Estimation for ToF and Stereo Sensors and Its Application to Depth Data Fusion

Published:
DOI: http://doi.org/10.1109/JSEN.2019.2946591

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/715050 since: 2020-03-10

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JSEN.2019.2946591
https://hdl.handle.net/11585/715050


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh and S. Mattoccia, "Confidence Estimation for 
ToF and Stereo Sensors and Its Application to Depth Data Fusion," in IEEE Sensors 
Journal, vol. 20, no. 3, pp. 1411-1421, 1 Feb.1, 2020. 

The final published version is available online at: 
https://dx.doi.org/10.1109/JSEN.2019.2946591 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1109/JSEN.2019.2946591


IEEE SENSORS 1

Confidence Estimation for ToF and Stereo Sensors
and its Application to Depth Data Fusion

Matteo Poggi, Member, IEEE, Gianluca Agresti, Student Member, IEEE, Fabio Tosi, Student Member, IEEE,
Pietro Zanuttigh, Member, IEEE, and Stefano Mattoccia, Member, IEEE

Abstract—Time-of-Flight (ToF) sensors and stereo vision sys-
tems are two widely used technologies for depth estimation. Due
to their rather complementary strengths and limitations, the two
sensors are often combined to infer more accurate depth maps.
A key research issue in this field is how to estimate the reliability
of the sensed depth data. While this problem has been widely
studied for stereo systems, it has been seldom considered for ToF
sensors. Therefore, starting from the work done for stereo data,
in this paper, we firstly introduce novel confidence estimation
techniques for ToF data. Moreover, we also show how by using
learning-based confidence metrics jointly trained on the two
sensors yields better performance. Finally, deploying different
fusion frameworks, we show how confidence estimation can be
exploited in order to guide the fusion of depth data from the
two sensors. Experimental results show how accurate confidence
cues allow outperforming state-of-the-art data fusion schemes
even with the simplest fusion strategies known in the literature.

Index Terms—Time-of-Flight, Stereo Vision, Confidence Infor-
mation, Data Fusion, Deep Learning.

I. INTRODUCTION

Depth sensing is a challenging task for which many different
devices and approaches exist. However, none of them is
completely satisfactory, specially when dealing with dynamic
scenes. Structured light scanners are suitable only for the
acquisition of static objects in indoor environment while
laser-based methods such as LiDAR are generally expensive,
cumbersome, based on moving mechanical parts and only
partially suited to dynamic environments. Among the various
possible solutions for depth estimation, two techniques are
increasing their popularity due to their simplicity, low cost and
capability of handling dynamic scenes: stereo vision systems
and matricial Time-of-Flight (ToF) sensors. Even if widely
deployed in several practical applications, both approaches
have their specific shortcomings. Stereo vision uniquely rely
on images framed by standard imaging devices and thus
provides unreliable depth measurements when the matching
of corresponding points is ambiguous, like for instance when
dealing with low-textured regions. On the other hand, ToF
sensors have a limited resolution and suffer from mixed pixels
and Multi-Path Interference (MPI) artifacts [1], [2], [3].

Regardless of the depth sensing technique deployed, for
the reasons outlined, extracting reliable confidence metrics for
depth data is a relevant task. For stereo vision, confidence
estimation has been a widely explored research field and
recently traditional techniques have been outperformed by a
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large margin by machine learning approaches. On the other
hand, inferring confidence estimation from ToF sensors is an
almost unexplored field. Thus, in this paper we will present
different methods for this purpose, ranging from simple
traditional strategies to the adaptation of machine learning
(ML) approaches developed for stereo vision and ad-hoc ML
strategies explicitly targeted to ToF sensors.

Among the various applications, confidence data proved
to be very useful when depth data coming from the two
approaches needs to be combined together. For this task it is
important to ensure that the two confidence metrics are con-
sistent and we will show that by using deep networks able to
jointly estimate both confidence metrics yields the best results.
Finally, we will exploit the proposed confidence estimation
strategies into different depth data fusion frameworks. An
extensive experimental evaluation on three different datasets,
including both synthetic and real world scenes, has been
carried out for the confidence measures and for the data fusion
algorithms. The results show how the proposed deep learning
approaches, specially if jointly trained on both devices, allow
to obtain a very accurate confidence information. Furthermore,
state-of-the-art results on stereo-ToF fusion can be obtained by
exploiting the computed confidence data to guide the fusion
algorithm.

The rest of the manuscript is organized as follows: Section
II will discuss the related literature, Sections III, IV and
V will introduce in detail stereo, ToF and joint confidence
estimation respectively, Section VI will describe in detail
fusion strategies, Section VII will show the experimental
results for both standalone confidence estimation and depth
fusion, finally Section VIII will draw the conclusions.

We list here a few symbols recurring in the paper. We refer
to as d and z for disparity and depth values sourced by stereo
and ToF. We denote with ĈS and ĈT the estimated confidence
maps for stereo and ToF respectively, and as CS and CT the
corresponding ground truth confidence labels that range from
1 (when the error estimated on d or z is 0) to 0 (when the
estimated d or z is not reliable).

II. RELATED WORKS

Depth estimation using stereo vision is a long-standing
research field, and a large number of approaches have been
proposed and tested on public datasets like the Middlebury
[4] and KITTI [5] benchmarks. A comprehensive review of
stereo methods can be found in [6]. Despite the research
efforts and the continuous improvements, the depth estimation
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accuracy of a stereo system is primarily affected by specific
scene contents. In particular, the estimation is less accurate in
poorly textured regions or when the scene contains repetitive
patterns. Since the accuracy can vary considerably between
different scenes or even different regions of the same scene,
it is crucial to estimate the confidence of the inferred depth
data. The confidence information for stereo systems has been
traditionally estimated by analyzing some key properties of
the stereo matching cost function (see [7] for a comprehensive
review of approaches based on this strategy).

ToF cameras represent a quite robust solution for depth
acquisition and there are many consumer ToF depth cameras
able to acquire reliable depth data at interactive frame rates.
The technology behind these sensors has been analyzed in
various works [8], [9], [3], [10], [11], [12]: they are more
independent from the scene content w.r.t. stereo systems since
they are active devices and do not rely on the photometric
content of the scene but they have other limitations. First of
all, the resolution is typically low and the noise level is quite
high. The low resolution also causes pixels close to edges
to receive light from different regions, thus producing wrong
measurements (mixed pixel effect). Furthermore, light rays can
bounce multiple times in the scene causing an over-estimation
of the depth (Multi-Path Interference).

The estimation of confidence information for ToF sensors
is still a quite unexplored field. Some early works used
analytical approaches to estimate the reliability of ToF data
[13], [14], [15], [16], [17] typically exploiting ToF noise
models (specially the idea that the noise is proportional to
the amplitude of the received signal) and the assumption that
data is less reliable close to edges.

More recently, machine learning techniques emerged for
stereo and ToF confidence estimation. For stereo, confidence
has been estimated firstly with classifiers based on Random
Forests, then by using deep learning techniques (see [18]
for a recent review of learning-based confidence estimation
methods). In [19], a Convolutional Neural Network (CNN)
estimated confidence from image patches while a two-channel
image patch representation is used by [20] for the same
purpose. In [21], a deep network improved confidence mea-
sures by enforcing their local consistency. Machine learning
strategies have also been used for ToF sensors, even if the
limited availability of ToF data with depth ground truth has
limited their diffusion in this field. An early attempt for ToF
confidence estimation exploiting a Random Forest classifier
is [22]. Later on, [23] exploited a CNN trained on synthetic
data. A related task is ToF data denoising where the reliability
estimation is implicitly performed to decide where to apply the
refinement strategies. For this task, approaches based on deep
learning are [24], [25] and [26].

Since ToF cameras and stereo systems have different and
rather complementary shortcomings, the fusion of depth fields
coming from the two devices can lead to a more accurate
depth estimation and has been the subject of many research
works. Recent reviews on this topic can be found in [27]
and [3]. A first family of works exploits probabilistic ap-
proaches, from simple ML estimators [15] to more advanced
schemes based on MAP-MRF Bayesian frameworks [28],

[29], [30], [16]. A second family of approaches is based on
variational fusion frameworks, e.g., the approach of [17] (that
also exploits confidence measures to control the fusion), or
the more recent works of [31], [32]. Other solutions exploit
a local energy minimization formulation [33], the locally
consistent framework [34], [14], or bilateral filtering driven by
confidence information [35]. Deep learning for this task has
been introduced in [23] and [36], extending the work of [14]
by estimating the confidence with a CNN. Finally, the fusion
of multiple depth maps with deep learning has been considered
[37] in the context of multi-view 3D reconstruction.

III. CONFIDENCE ESTIMATION FOR STEREO VISION

Confidence estimation [7], [18] has a long history in the
field of stereo vision. Traditionally, confidence scores were
obtained by studying peculiar cues available from the cost
volume processed by stereo algorithms [7]. A popular example
is the Peak Ration measure (PKR), consisting into the ratio
between the minimum cost and the one closest to it: the
larger is such feature, the less ambiguous is the minimum
selection for the pixel and thus the more reliable is assumed the
disparity assignment. In literature, we find measures leveraging
matching costs, local or global properties of the per-pixel cost
curve, left-right consistency and distinctiveness [7].

Since different cues better encode different behaviors, each
measure has its strengths and weaknesses, resulting partic-
ularly effective at detecting unreliable disparities in certain
conditions while failing in others. For instance, the left-right
consistency check (LRC) is particularly useful in the presence
of occlusions but may fail at detecting mismatches due to
other challenging situations such as ambiguous or repetitive
patterns. Given such orthogonality between different measures,
an effective strategy to infer confidence estimation consists in
combining multiple measures using machine learning, and in
particular random forest classifiers [38], [39], [40], [41]. These
works proved that training a machine learning model fed with
multiple measures can significantly improve effectiveness at
detecting outliers.

Concerning learning-based measures, a particularly appeal-
ing strategy, referred to as O1, uses as single input cue only the
disparity map [41]. Such an approach is potentially suited with
any depth sensor providing dense disparity estimation even
when a cost volume is not available (e.g., consumer devices
such as the Intel RealSense stereo camera). The O1 approach
[41] combines random forest classifiers with disparity-based
measures (disparity agreement DA, disparity scattering DS,
disparity variance VAR, median disparity MED and median
disparity deviation MDD) and features on increasing neigh-
borhood windows proving to be more effective with respect
to features set extracted from the cost volume [38], [39], [40].

According to [18], some of the features computed by [41] in
the disparity domain, in particular DA and DS, turn out to be
particularly effective compared to traditional confidence mea-
sures computed from the cost volume. Specifically, for each
pixel p and its neighborhood N , DA and DS are respectively
obtained as the number of pixels sharing the same disparity
hypothesis of p and the total number of disparity hypothesis
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occurring in N . Thanks to their independence from the cost
volume, these features can be possibly deployed also to depth
maps obtained from different techniques, as in the case of ToF,
whereas measures leveraging the cost volume could not.

Finally, in [14] a confidence measure based on the rela-
tionship (within the Semi-Global Matching (SGM) framework
[42]) between matching costs after local aggregation and
global optimization has been proposed (we will denote it as
ST-DS). Despite not very effective to detect outliers [18], such
measure is particularly good for stereo and ToF fusion [14].

A further step towards better confidence estimation for
stereo vision relies on CNN based measures aimed at inferring
confidence scores from direct processing of the disparity map
as O1. Some CNN-based methods extracting simple features
[20] while others from scratch [19], [43]. Regardless of the
adopted strategy, as for O1 and its features, these techniques
are independent of intermediate representations such as match-
ing costs. Therefore, they can process any depth map obtained
by other means than stereo.

We can classify deep learning based measures according to
the portion of data considered for confidence estimation.
• Local approaches. Approaches belonging to this cat-

egory estimate confidence scores by processing small
patches from the disparity map. CCNN [19] and PBCP
[20] follow this strategy, respectively processing 9 × 9
and 15 × 15 windows. While CCNN is computed from
a single disparity map alone, PBCP needs both left and
right disparity maps to learn a left-right consistency, thus
being strongly customed to stereo and not suited for
ToF data. Specifically, CCNN consists of four 3 × 3
convolutional layers extracting 64 features and further
three 1 × 1 layers extracting respectively 100, 100 and
1 features. The framework by Agresti et al. [23] belongs
to this category as well.

• Local-Global approaches. This category combines local
information processed by patch-based CNNs with global
context extracted by the larger receptive fields of encoder-
decoder architectures. LGC [43] effectively carries out
this combining CCNN [19] and ConfNet [43]. More
specifically, ConfNet is made of 3 × 3 layers extracting
64, 128, 256, 512 features respectively and 2 × 2 max-
pooling operations adopted in order to decimate deep
features. Then 3 × 3 deconvolutional layers with stride
2 extract 256, 128, 64, 32 features and predict a final
confidence map restoring the original input resolution.
Since the right disparity map is not required, LGC is
suited for general purpose depth maps, thus for ToF data
as well. In particular, LGC combines in a cascade manner
the output of both local and global networks, the depth
map and the reference image employing a final module
of the same structure of CCNN [19] to improve the final
confidence prediction.

IV. CONFIDENCE ESTIMATION FOR TOF SENSORS

The acquisition of Time-of-Flight depth data is affected
by multiple error sources [3], including thermal noise, multi-
path interference and the mixed-pixel effect. Confidence es-
timation should take into account all these issues and how

they are related to the scene characteristics. For this task,
different strategies can be considered, from simple traditional
approaches to learning-based solutions.

A. Confidence from amplitude and intensity values

The noise on the depth map is strictly related to the ampli-
tude A of the received signal, that depends on the distance of
the acquired points, and on the surface reflection property (the
reflection is stronger for brighter surfaces). Thus, the noise can
be approximated with a Gaussian model [9], [3], [16] where
the mean is 0 and the standard deviation is given by:

σz =
c

4πfmod

√
I/2

A
(1)

where, z represents the depth, fmod is the modulation fre-
quency of the signal sent by the ToF emitters, A is the
amplitude value at the considered pixel, I is the corresponding
intensity value and c is the speed of light.

It is clear from (1) that the precision grows with the ampli-
tude A while it is inversely related to intensity I . Notice that
the intensity depends on two factors: the received amplitude A
and the background illumination. When the amplitude of the
received signal increases, the overall precision also increases
(the dependency is with the square root w.r.t I and linear
w.r.t. A), while the background illumination affects only I
and reduces the precision.

The standard deviation of the error can be mapped into
confidence values ĈA for the point p under examination. A
simple approach [14] is to define two thresholds, σmin and
σmax, and then linearly map the values between them to the
[0, 1] interval as follows:

ĈA(p) =


1 if σz ≤ σmin
σmax−σz

σmax−σmin
if σmin < σz < σmax

0 if σz ≥ σmax
(2)

B. Confidence from depth variance

Another critical issue for ToF sensors is the mixed pixel
effect [16], [3], occurring when a ToF sensor deals with points
close to a depth edge. In this circumstance, the sensor can
capture data relative to different surfaces at different distances
estimating a depth value that is typically a convex combination
of the two depth values. This issue leads to the fact that depth
data is less reliable in the proximity of edges; this problem is
amplified by the fact that current ToF sensors have a quite
low resolution. A simple way to model this issue consists
in using the local variance or the average absolute difference
w.r.t. the considered point p in the 8-neighborhood N (p) of
p. A possible approach (ST-DT , introduced in [14]) is to
compute the confidence ĈV by selecting a threshold Th and
then linearly mapping the absolute differences from the [0, T ]
interval into [0, 1] as follows:

ĈV (p) = max

 0; 1− 1

Th · |N (p)|
∑

j∈N (p)

|z(p)− z(j)|


(3)
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where z(p) is the depth of the point p under examination
and z(j) are the depth values within N (p).

Notice that also DA and DS measures exploit the idea that
range image estimation is not reliable on depth discontinuities,
but these work on the disparity domain and not in the depth
one. Therefore, by converting the ToF depth in a disparity
map, and by assigning each floating point disparity value d̂
from the ToF sensor to a bin bd̂c : dd̂e, DA, DS and other
features used by O1 (see Section III) can be easily adapted to
ToF data enabling their deployment on this sensor as well.

C. Confidence from machine learning approaches

An alternative strategy relies on machine learning ap-
proaches modeling confidence estimation, similarly to the
stereo case reported in Section III.

However, a critical issue for this family of approaches is the
lack of large datasets with ground truth needed for training. A
possible workaround for this is to use synthetic data to train
the ML algorithms [23], [44]. The method of [23] uses both
amplitude and disparity information as input features and feeds
them to a CNN in order to estimate confidence. The approach
uses a CNN with 6 layers using ReLU activation functions.
The first 5×5 layer extracts 64 features while the other layers
use 3 × 3 kernels respectively producing 128, 128, 128, 256
and 2 features. There is no pooling operation in order to
preserve the original resolution. The method of [23] introduces
a confidence estimation strategy developed explicitly for ToF-
stereo fusion feeding also stereo data to CNN (see Section V).
As aforementioned, [23] uses a synthetic dataset built with a
ToF simulator [45] in order to perform training. We followed
the same training approach in this paper.

A more complex deep network with a coarse-fine structure
has been exploited in [36] to estimate the noise of the ToF
sensor. This work also uses features extracted from multi-
frequency data to estimate the multi-path interference, a criti-
cal issue strongly reducing the confidence of ToF data. Even
if the target of the work is the estimation of the noise, it can
be mapped to a confidence value.

As highlighted before, some machine-learning strategies
introduced for stereo matching can be applied seamlessly
to ToF data as well. In particular, methods processing only
depth information (i.e., O1 and CCNN) and eventually RGB
image (i.e., LGC, when a side color image is available) are
compatible for our purpose. In this paper, for the first time,
we apply such strategies to ToF data as well, both studying
how they behave when dealing with outliers detection and
how they perform at fusion compared to prior proposals
from literature. As for the strategies mentioned above [23],
[36], since other datasets are not available, synthetic training
samples are required in order to achieve good performance on
both tasks. Finally, differently from [23], [36], we point out
that these techniques minimize a binary-cross entropy loss. We
will show with extensive experimental results, the impact of
the two different loss functions on both outlier detection and
fusion problems.

V. JOINT ESTIMATION OF STEREO AND TOF
CONFIDENCE

In order to combine stereo and ToF information, it is
paramount to have two consistent ways of evaluating con-
fidence. Even if the two confidence maps can be estimated
separately, we will show in Section VII that the best results
are achieved by jointly estimating the two maps.

The first work to introduce this idea was [23], where a
CNN taking in input a multi-channel representation containing
stereo and ToF data, projected on the reference camera of
the stereo system, was in charge of estimating confidence
scores for both sensors. This approach has been refined in
[44]: we will refer to it as ST-CNN* in the results section.
From now on the * is used to highlight methods jointly
estimating confidence for both sensors together. In [44] the
CNN takes in input multiple clues, i.e., the two disparity
maps, the ToF amplitude information (used also by [14] but
not by the other strategies considered in this work) and the
difference between the left image of the stereo system and the
right one warped over it using the stereo disparity. As shown
in [44], the two additional channels allow to obtain a slight
improvement in the confidence estimation w.r.t. using only
disparity information. This network has two outputs and can
be trained on synthetic data by minimizing a loss containing
two components, one for each sensor. More in detail, the
confidence is computed as a negative exponential function
of the error, i.e., C(p) = e−|d̂(p)−d(p)| and the loss to be
minimized is:

L =
∑(

ĈT (p)− CT (p)
)2

+
∑(

ĈS(p)− CS(p)
)2

(4)

where CS(p) and CT (p) are the ground truth confidence values
for stereo and ToF while ĈS(p) and ĈT (p) are the ones
estimated from the network.

Consistently, to account for both sensors, the state-of-the-
art CNN-based confidence measures CCNN [19] and LGC
[43] originally proposed for stereo can be modified to jointly
infer confidence scores for stereo and ToF by doubling the
inputs and outputs of the network. In the next of this paper
we will refer to their joint confidence estimation respectivelly
with CCNN* and LGC*. Nonetheless, in contrast to ST-CNN*
[25], their training relies only on depth data provided by
the two sensors without any additional feature. Moreover,
since approaches developed for stereo traditionally minimize
a binary cross-entropy loss and, in this case, both modalities
could be correct in terms of inlier vs outlier classification, we
convert the task to a multi-labeling classification problem [46]
and minimize for the following objective loss:

L =
∑(

CT (p) log ĈT (p) + (1− CT (p))) log(1− ĈT (p)
)

+
∑(

CS(p) log ĈS(p) + (1− CS(p))) log(1− ĈS(p)
)

(5)

where in this case CT (p) and CS(p) are binary labels that can
be 0 or 1 depending if the corresponding sensor has an error
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Fig. 1. Sensor arrangements: a) setup used in the SYNTH3 dataset; b) setup used in the REAL3 dataset; c) setup used in the LTTM5 dataset.

smaller than a pre-defined threshold, while ĈT (p) and ĈS(p)
are the ones estimated from the network.

Concerning O1 [41], the joint training is not feasible without
significant modifications, and hence, it has been trained to infer
confidence estimation independently for stereo and ToF.

VI. FUSION OF STEREO AND TOF DATA

Data fusion is a widely adopted strategy in many appli-
cation fields such as wireless sensor networks [47], remote
sensing [48], and network traffic analysis [49] to name a few.
Concerning depth sensor fusion, as previously pointed out in
Sections III and IV, these two sensor technologies have rather
complementary strengths and drawbacks making data fusion
based on such setup quite appealing to obtain reliable depth
information. Specifically, we will consider a trinocular setup
like the ones depicted in Figure 1.

We will assume that the setup has been calibrated (we
used the approach of [15] for this purpose) and that ToF data
has been reprojected to the stereo viewpoint and interpolated
to the same resolution of the stereo information. For the
interpolation, we used the method of [34] based on an extended
version of the cross bilateral filter.

In the considered setup, two different depth (or disparity)
fields relating to the same viewpoint and at the same resolution
are available. Different strategies can be exploited to combine
the output of the two sensors taking into account confidence
estimation. Purposely, we consider two simple approaches and
a more advanced fusion strategy.

A first straightforward solution, referred to as Highest
Hypothesis (HH), consists of selecting at each pixel location,
the disparity source (stereo or ToF) that has the highest
confidence. Despite its simplicity, this strategy is fast, and,
provided that confidence information is reliable, allows to
significantly reduce artifacts when one of the two approaches
is entirely unreliable (e.g., in case of wrong matches for the
stereo system).

A second strategy, referred to as Weighted Average (WA),
consists of a weighted average of the two disparity values
dT and dS , computed according to the estimated confidence
values as follows:

d =
(ĈT + ε) ∗ dT + (ĈS + ε) ∗ dS

ĈT + ĈS + 2ε
(6)

where ε is a small constant introduced to avoid issues when
both acquisition systems have confidence close to 0. Compared
to the previous one, this strategy is more flexible and can
output any depth value in the middle between the 2 measures.
It typically yields better results when the two depth values

are both reliable. However, if one sensor provides a wrong
value and its confidence score is low but not close to 0 can
easily lead to artifacts. It is worth observing that although not
very reliable, as reported next, an additional strategy, referred
to as Average, can be obtained by neglecting the confidence
contribution in WA (i.e., assuming the same weight for both
sensors).

Finally, we consider a more advanced fusion strategy re-
ferred to as LC, based on the Locally Consistent fusion
framework, introduced in [50] for stereo disparity refinement
and extended to stereo-ToF fusion in [34], [14]. In its original
formulation [50], the Locally Consistent framework aimed
at inferring depth from a stereo pair exploiting a patch-
based strategy and assuming piece-wise smooth surfaces in
the sensed scene. Specifically, it analyzes the multiple depth
hypotheses enforced for each point during the local processing
in order to determine the most likely one accordingly. When
tackling sensor fusion, the rationale behind this strategy can
be exploited for reasoning about multiple depth maps, for
instance, obtained by stereo and ToF as in [34]. Moreover,
such an approach for sensor fusion can be further improved
by taking into account confidence estimation as done in [14]
and in the experiments reported in the next section.

VII. EXPERIMENTAL RESULTS

The experimental evaluation has been carried out on three
different datasets, a synthetic dataset and two smaller sets of
real-world scenes. Since this work proposes both a new set
of confidence measures and various data fusion strategies, we
divide the experimental evaluation into two parts: we firstly
assess confidence estimation and then analyze the data fusion
results according to standard evaluation protocols.

A. Datasets

The first dataset is the SYNTH3 dataset [23]: it contains
55 synthetic scenes created using the Blender 3D rendering
software and the Sony ToF Explorer simulator from Sony
EUTec (that is based on the work of [45]). The parameters of
the virtual cameras and their arrangement have been chosen in
order to resemble an acquisition system composed by a Kinect
v2 ToF sensor below a ZED stereo camera. Fig. 1a shows the
camera setup: the stereo system has a baseline of 12 cm and
the ToF sensor is placed below the right stereo camera at a
distance of 4 cm. The data is split into a training set with
40 scenes and a test set with the remaining 15 scenes. The
scenes have a large variability and include indoor and outdoor
environments of very different sizes with objects of various
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ST-CNN* CCNN / CCNN* LGC / LGC*
Learning rate 10−1 10−3 10−3

Epochs 500 14 14/1600/14
Optimizer AdaDelta [51] SGD SGD

Regularization l2 (λ = 10−2) - -
TABLE I

ST-CNN, CCNN AND LGC TRAINING HYPER-PARAMETERS.

shapes, material and color. Notice that this is the only dataset
large enough to perform training of ML-based approaches in
a ToF-stereo fusion framework. Hence, all the learning-based
confidence measures have been trained on this dataset.

The second dataset is the REAL3 dataset [44]; it contains
8 real-world scenes, and due to its small size has been used
only for testing purposes. In contrast to the previous one, it
contains real-world data. The scenes have been acquired with a
Kinect v2 ToF sensor and a ZED stereo camera, deploying the
SGM algorithm [42], while ground truth information has been
obtained using two synchronized color cameras and a line laser
(see [44] for more details on how the dataset has been created).
The ToF and stereo camera placement is depicted in Fig. 1b, it
is as in the previous dataset but with the ToF sensor below the
left camera. The scenes are all indoor scenarios and include
both simple flat surfaces and objects with a more complex
geometry made of different materials.

The last dataset is LTTM5 [16]: it is a real-world dataset
containing only 5 scenes all depicting various objects put on a
table acquired with a stereo system and a ToF camera arranged
as in Fig. 1c, i.e., with a larger baseline of 17 cm and the ToF
sensor placed between the two color cameras (closer to the
left one). Despite its small size, it is interesting since it has
been used to evaluate many stereo-ToF fusion approaches and
allows to compare with the state-of-the-art in the field.

B. Training of Learning-based Approaches

Some of the stereo and ToF confidence estimators employed
in this paper rely on machine learning techniques. In particular,
the deep learning approaches ST-CNN, CCNN and LGC have
been trained using the training split of the SYNTH3 dataset
and the hyper-parameters shown in Table I. Please notice
that the different methods have different parameters, but the
networks jointly estimating ToF and stereo confidences (ST-
CNN*, CCNN* and LGC*) share the same hyper-parameters
of their base implementation. For what concerns the LGC
method, CCNN, ConfNet and the final module have been
trained for 14, 1600 and 14 epochs, respectively.

C. Confidence Evaluation

We start from evaluating confidence measures on stereo and
ToF data according to the standard protocol used in this field
[7], [18] on the 3 datasets. Tables II, III and IV show the
AUC values of the different considered confidence metrics for
both stereo and ToF with the error threshold set to 1, 2 and
4 respectively. All tables report, in different columns, results
on the three datasets mentioned above. On the bottom, we
also report both the optimal AUC obtained according to [7],
[18]. The scores have been multiplied by a factor 102 to ease
readability.

SYNTH3 REAL3 LTTM5
Stereo ToF Stereo ToF Stereo ToF

ST-D 12.97 14.71 53.53 79.35 10.00 31.56
DA 4.95 12.68 44.52 72.15 4.29 29.25
DS 5.46 18.05 45.46 70.30 4.67 30.53
O1 4.10 10.45 42.91 72.08 3.85 22.81

ST-CNN* 3.26 11.05 45.02 66.85 4.47 22.16
CCNN 5.24 20.63 44.35 69.94 3.20 20.84
CCNN* 2.59 10.41 40.19 75.10 2.84 15.28

LGC 3.34 16.40 43.88 67.33 3.13 18.82
LGC* 2.75 12.08 41.03 76.41 2.25 18.50

Opt.AUC 1.54 3.84 34.96 48.09 0.77 8.76
Err.rate (%) 15.16 21.10 67.04 78.11 12.09 37.08

TABLE II
CONFIDENCE EVALUATION: AUC VALUES (×102) WITH THRESHOLD 1.

SYNTH3 REAL3 LTTM5
Stereo ToF Stereo ToF Stereo ToF

ST-D 9.96 5.26 47.18 51.91 6.72 14.13
DA 3.46 4.69 37.92 42.19 2.69 11.67
DS 3.87 11.02 38.82 39.34 3.00 14.84
O1 2.60 2.39 36.12 41.61 2.33 7.24

ST-CNN* 1.95 7.12 35.25 36.00 2.06 4.67
CCNN 3.56 8.96 37.74 37.20 2.04 5.73

CCNN∗ 1.38 2.21 30.63 44.22 0.90 3.50
LGC 2.28 6.00 37.47 30.79 1.91 4.88

LGC∗ 1.35 2.20 31.13 44.12 0.73 4.18
Opt.AUC 0.94 0.82 26.91 18.22 0.39 2.06

Err.rate (%) 11.85 11.91 60.24 49.31 8.60 18.52
TABLE III

CONFIDENCE EVALUATION: AUC VALUES (×102) WITH THRESHOLD 2.

Starting from the SYNTH3 dataset, it is possible to see
how learning-based approaches (O1 [41], CCNN [19], LGC
[43], ST-CNN* [44]) have in general better performance than
traditional ones (ST-D, DA and DS although these latter two
methods are rather effective). Here, we refer to the joint
application of the stereo and ToF confidences ST-DS and
ST-DT with ST-D as introduced in Sections III and IV.

Focusing on CCNN and LGC approaches: they have been
trained both independently on stereo and ToF and jointly on
the two sensors (tagged in this case, respectively, as LGC*
and CCNN* in the tables). ST-CNN* has instead always been
trained jointly as initially proposed in [44]. We can note that
the joint training on the stereo and ToF data consistently
yields much better performance. Moreover, as reported later,
such a strategy will be particularly helpful when dealing with
the fusion problem where the consistency between the two
confidence metrics is a fundamental requirement for achieving
high performance.

According to tables II, III and IV, on the SYNTH3 dataset
the two best performing approaches, for both stereo and ToF,
are CCNN* and LGC* jointly trained on both modalities.
However, it is worth noticing that these two approaches are
trained to minimize a classification loss function that is ideal
for reducing the AUC, while ST-CNN* is trained with a
regression loss where the ground truth confidence measure
has been computed as a function of the sensor disparity error
thorugh Equation (4). The CCNN* approach is the best when
the AUC threshold is set to 1 while LGC* leads to better
performance on both stereo and ToF data when considering
larger thresholds. Thus, LGC is less effective with smaller
errors but better when dealing with higher magnitude outliers.
In particular, in these latter cases (Tables III and IV) LGC
gets quite close to the optimal AUC. The ST-CNN* approach
has a relatively good performance on this dataset, especially
for what concerns the stereo data, demonstrating again that
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SYNTH3 REAL3 LTTM5
Stereo ToF Stereo ToF Stereo ToF

ST-D 7.79 3.58 40.27 3.95 5.67 3.68
DA 2.35 3.56 32.10 3.35 2.39 7.22
DS 2.76 10.01 32.75 3.25 2.68 11.69
O1 1.59 1.56 29.89 3.44 2.04 1.84

ST-CNN* 1.31 6.09 25.92 3.63 1.58 2.11
CCNN 2.15 6.43 31.65 3.85 1.78 1.74

CCNN∗ 0.86 1.48 21.64 3.60 0.62 1.23
LGC 1.47 4.22 31.65 2.79 1.63 1.51

LGC∗ 0.78 1.41 21.88 2.72 0.51 1.08
Opt.AUC 0.58 0.45 19.05 0.54 0.30 0.64

Err.rate (%) 9.36 9.01 51.87 7.43 7.41 11.03
TABLE IV

CONFIDENCE EVALUATION: AUC VALUES (×102) WITH THRESHOLD 4.

learning-based approaches jointly trained on stereo and ToF
are the best family of solutions. Although O1 performs rela-
tively well, it is always outperformed by LGC* and CCNN*
with all thresholds.

A fundamental problem for deep learning approaches is the
risk of focusing too much on the training dataset, that in this
case, for the reasons outlined before, is entirely composed
of synthetic data. Therefore, it is essential to assess how
they can generalize to real-world scenarios represented by
datasets REAL3 and LTTM5. The tests on the REAL3 dataset
show how the learned confidence measure keep excellent
performance even if the gap with traditional ones gets smaller
compared to the synthetic dataset.

On the REAL3 dataset, as on synthetic data, the competition
is still between LGC* and CCNN* jointly trained on the stereo
and ToF data. Nonetheless, considering the smallest threshold,
ST-CNN* turns out to be the best on ToF data. Moreover, the
gap between traditional DA and DS confidence measures and
learning-based ones is reduced if compared to SYNTH3.

Finally, on the other real-world LTTM5 dataset LGC* and
CCNN* approaches are overall the best ones. In particular,
LGC* is always the best on stereo data and with the ToF sensor
with threshold 4. CCNN* is the best in the other 2 cases with
ToF data. ST-CNN* and O1 have overall good performance
and again DA and DS are less reliable but with a smaller gap
compared to the synthetic case.

From this exhaustive evaluation we can notice how results
are consistent on all the experiments, showing that learning
approaches jointly trained for estimation of ToF and stereo
confidences are the best solution and that, on average, LGC*
is the best technique.

D. Fusion of Stereo and ToF data

Once assessed the performance of confidence measures, we
leverage this cue for the fusion of the two disparity fields
generated by stereo and ToF sensors. Specifically, we evaluated
all the confidence measures considered in Sections III, IV
and V with the fusion strategies outlined in Section VI. The
outcome concerning the Root Mean Square Error (RMSE)
between the fused disparity maps and ground truth data is
shown in Table V. We also report in the table the RMSE
for raw ToF and stereo data and the simple fusion scheme
averaging the two disparity values at each location.

On the SYNTH3 dataset, the ST-CNN* approach allows
obtaining excellent results deploying simple fusion strategies,

SYNTH3 REAL3 LTTM5
LC WA HH LC WA HH LC WA HH

ST-D 2.02 2.13 2.59 2.97 3.04 3.33 2.79 2.78 3.04
DA 2.40 2.01 2.33 3.91 5.12 3.66 3.23 2.91 3.58
DS 2.39 2.15 2.46 3.96 5.42 4.99 3.46 3.36 3.94
O1 1.99 1.77 1.98 3.23 4.60 3.90 3.25 2.97 3.49

ST-CNN* 1.97 1.66 1.80 2.88 4.05 3.78 2.70 2.70 3.12
CCNN 2.04 1.80 2.03 3.24 4.00 3.25 3.44 2.90 3.42

CCNN∗ 1.92 1.91 2.03 2.40 2.75 2.60 2.74 2.91 3.00
LGC 2.00 1.74 1.95 3.21 3.77 2.87 3.53 3.13 3.53

LGC∗ 1.83 1.89 2.03 2.49 2.65 2.60 2.75 2.85 2.95
Average 2.34 7.50 3.04
Stereo 3.67 14.19 4.47
ToF 2.18 3.28 3.40

TABLE V
FUSION ACCURACY MEASURED WITH RMSE.

SYNTH3 ε = 1 ε = 2 ε = 4
LC WA HH LC WA HH LC WA HH

ST-D 14.05 13.96 13.57 4.93 4.99 4.72 2.26 2.23 2.24
DA 9.89 8.95 7.58 4.74 4.57 4.50 2.54 2.41 2.47
DS 9.88 8.94 8.49 4.79 4.72 4.41 2.57 2.57 2.47
O1 9.98 8.94 8.86 4.35 4.19 4.08 2.25 2.12 2.13

ST-CNN* 8.26 8.13 6.88 3.77 4.02 3.50 1.94 1.81 1.72
CCNN 9.79 9.35 10.36 4.63 4.69 4.03 2.40 2.30 1.72

CCNN∗ 9.61 8.94 7.54 4.20 3.52 3.69 1.94 1.71 1.72
LGC 9.84 9.62 6.69 4.67 4.79 3.74 2.40 2.32 1.81

LGC∗ 9.35 7.78 9.69 3.92 3.15 3.75 1.71 1.65 1.65
Average 11.30 6.30 3.42
Stereo 10.12 6.80 4.22
ToF 14.92 5.35 2.25

TABLE VI
FUSION ACCURACY MEASURED AS THE PERCENTAGE OF WRONG

PIXELS ON THE SYNTH3 DATASET.

especially with WA. On the other hand, with LC, the LGC* ap-
proach performs better. This behavior changes on the REAL3
dataset where LC achieves the best results with CCNN*
although straightforward fusion strategies coupled with LGC*
and CCNN* do pretty well. A similar trend is observed on
the LTTM5 dataset, with LC and WA coupled with ST-CNN*
yielding the best results although CCNN* and LGC* allow to
obtain slightly worse accuracy. A first thing to notice from the
table, and experiments on other datasets reported next, is that
the simple average of the two disparity fields is often unable to
improve the accuracy of the output disparity map compared to
the raw depth maps coming from the ToF and stereo devices,
resulting in between the two in terms of accuracy. Moreover,
the use of confidence maps in the fusion process helps to
reliably combine the two depth data sources. By using accurate
confidence maps, provided by learning-based methods, and
very accurate data like the synthetic one available in SYNTH3
even the straightforward fusion strategies WA and HH allow
getting excellent results. However, the more complex LC
fusion strategy turns out quite useful on real-world datasets
(especially with REAL3). Moreover, a second thing to notice
is that training ST-CNN* by minimizing a regression loss turns
out not optimal concerning AUC evaluation, but it helps to
obtain a better granularity when dealing with small errors in
the LC framework. ST-CNN* however also exploits additional
features that help in driving the fusion process, as pointed out
in Section IV.

Tables VI, VII and VIII report for the three datasets the
fusion outcome in term of percentage of wrong pixels. The
error bound set to discriminate the goodness of the disparity
estimation is respectively set to 1, 2 and 4 pixels as for
confidence evaluation.

Concerning the evaluation on the SYNTH3 dataset, from
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REAL3 ε = 1 ε = 2 ε = 4
LC WA HH LC WA HH LC WA HH

ST-D 74.07 81.77 81.58 47.11 49.24 53.13 6.04 6.49 7.06
DA 57.93 70.41 51.16 33.11 38.76 27.98 3.68 22.41 4.17
DS 55.56 66.53 51.61 31.27 38.27 28.90 3.77 23.63 6.88
O1 57.89 69.53 55.91 33.06 39.91 32.27 3.94 22.13 6.68

ST-CNN* 54.75 61.06 51.22 30.35 37.53 30.03 3.93 16.89 8.45
CCNN 60.13 77.00 76.42 35.52 39.10 49.83 4.70 17.74 6.64

CCNN∗ 57.55 69.63 48.35 32.54 29.26 26.63 3.11 6.79 5.46
LGC 60.49 77.24 58.71 36.00 38.97 35.26 5.26 15.21 6.13

LGC∗ 57.14 66.04 48.58 32.15 27.73 26.96 3.25 5.65 5.50
Average 81.33 50.12 34.17
Stereo 57.44 50.13 42.17
ToF 83.67 55.37 7.93

TABLE VII
FUSION ACCURACY MEASURED AS THE PERCENTAGE OF WRONG

PIXELS ON THE REAL3 DATASET.

LTTM5 ε = 1 ε = 2 ε = 4
LC WA HH LC WA HH LC WA HH

ST-D 28.94 33.56 33.85 10.69 13.74 14.78 3.87 5.18 5.03
DA 18.36 18.07 13.54 6.84 8.73 7.32 4.53 5.62 5.27
DS 15.13 14.70 13.37 6.56 9.00 7.72 5.09 7.01 6.12
O1 16.55 19.49 16.46 6.88 9.55 8.53 4.59 6.08 5.20

ST-CNN* 17.24 20.68 20.05 5.40 9.11 7.50 3.59 6.01 5.24
CCNN 19.94 23.69 31.01 7.77 10.84 13.50 4.96 6.64 5.50

CCNN∗ 17.54 18.07 18.04 5.82 6.57 5.99 3.54 4.59 4.34
LGC 20.64 25.17 23.02 8.01 10.15 10.56 5.19 6.62 5.95

LGC∗ 17.48 18.28 10.79 5.75 6.77 5.70 3.53 4.58 4.28
Average 24.03 12.46 8.85
Stereo 13.72 9.31 7.67
ToF 37.14 17.27 6.66

TABLE VIII
FUSION ACCURACY MEASURED AS THE PERCENTAGE OF WRONG

PIXELS ON THE LTTM5 DATASET.

Table VI we can notice that the trend is substantially the
same observed when evaluating the RMSE. The simple fusion
strategies WA and HH yield the best performance when
coupled with LGC with threshold 1 and with LGC* with the
other thresholds. On the REAL3 dataset (Table VII), HH with
CCNN* is the best fusion method regarding the percentage of
pixels with error less than 2 pxl, instead LC in combination
with the same confidence measure is able to reduce the most
the error higher than 4 pxl. In all cases, CCNN* is the
confidence measure yielding the best results. Regarding the
LTTM5 dataset (Table VIII), results are more variegate: LC
achieves the lowest percentage of bad pixels with threshold
2 and 4, respectively coupled with ST-CNN* and CCNN*,
while HH confirms to be the best method with threshold 1,
especially when coupled with LGC*.

From the results reported so far, we can notice that the
confidence measure with the best AUC is not necessarily
the best method for depth fusion. On the other hand, it is
quite evident that the best results are typically obtained by
confidence measures showing good performance according to
the AUC metric. Moreover, the joint training of confidence
measures turns out to be very useful as done for ST-CNN*,
CCNN* and LGC*.

In Table IX we also report the evaluation on the LTTM5
dataset of 4 state-of-the-art approaches: namely, [34] that
was the first to use LC for stereo-ToF fusion, the MAP-
MRF Bayesian frameworks proposed in [28] and [16], and the
approach based on bilateral filtering of the cost volume intro-
duced in [52]. The results clearly show how the best strategies
proposed in this paper outperform previous approaches known
in the literature.

LC WA HH [34] [52] [28] [16]ST-CNN* ST-CNN* LGC*
RMSE 2.70 2.70 2.95 3.17 3.31 3.34 3.49

TABLE IX
COMPARISON WITH STATE-OF-THE-ART FUSION METHODS ON THE

SYNTH3 DATASET.

ST-D DA DS O1 ST-CNN* CCNN* LGC*
Runtime [ms] 480.6 868.9 868.9 3534.2 102.6 26.7 131.9

TABLE X
RUNTIME OF THE CONFIDENCE ESTIMATION TECHNIQUES.

E. Qualitative Results

Figures 2, 3 and 4 report qualitative experimental results
on a sample scene extracted respectively from the SYNTH3,
REAL3 and LTTM5 datasets. The first row contains the
disparity maps coming from the ToF and stereo sensors and
the results of the LC fusion using the ST-CNN* and the LGC*
confidences. We selected these fusion strategies since they are
on average the best performing on the 3 datasets. The second
row contains the disparity error maps computed as the true
disparity minus the target disparity. The color map encodes
the correct estimation with green, the disparity overestimation
with colder colors and disparity underestimation with warmer
colors. From the figures, it is possible to notice well known
issues of ToF and stereo. Specifically, concerning stereo, we
can observe poor performance on textureless regions and in
case of repeating patterns like the green box with the white
grid in Fig. 4. On the other hand, the main issues of the ToF
sensor arise on the object sides, due to the original low spatial
resolution of the sensor, and the disparity underestimation
near to corners, due to the multi-path interference. The error
maps related to the two fusion strategies show a large overall
reduction of the error: the proposed approaches are able to
take the best from the 2 depth sources thus avoiding the
stereo artifacts on un-textured regions and greatly reducing the
MPI corruption in the ToF data. The third and fourth column
contain the ST-CNN* and LGC* confidence maps which have
values in the range from 0 (not reliable pixels) to 1 (highly
reliable pixels). Both of of them follow quite accurately the
error distribution, but with different behaviour. LGC* is more
binarized, since it is trained using a classification loss, instead
ST-CNN* has a smoother transition, since it is trained with a
regression loss.

F. Runtime analysis

In order to asses the computational complexity of various
fusion methods considered, we report the runtime of all the
steps of the various fusion methods on the REAL3 dataset.
These tests have been carried out on a PC with an Intel i7-4790
CPU and an NVIDIA Titan X GPU (used only for CNN-based
techniques). Starting from pre-processing steps, the stereo
disparity map computation with SGM [42] takes 1.49 s and
the reprojection and interpolation of the ToF depth on the
reference camera of the stereo system takes 4.47 s. These two
operations are carried out for all the fusion techniques.

Table X collects the runtime for confidence estimation. They
range from just 26 ms for CCNN* to more than 3 s for O1. For
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Fig. 2. Qualitative results on the SYNTH3 dataset.

Stereo ToF LC, ST-CNN* LC, LGC*

di
sp

er
r

conf. Stereo conf. ToF RGB

ST
-C

N
N

*
L

G
C

*

Fig. 3. Qualitative results on the REAL3 dataset.

methods allowing the joint confidence estimation of ToF and
stereo, the separate estimation of the two confidences roughly
doubles the computation time compared to the joint estimation
since two inferences on two different networks are required.

Concerning the final fusion step, the simplicity of the
average, HH and WA schemes allows us to perform these tasks
in less than 5 ms. In contrast, LC is much more complex and
requires about 35 s.

VIII. CONCLUSIONS

Time-of-Flight and stereo are two popular depth sensing
technologies with quite complementary strengths and limita-
tions. For this reason, they are often combined to infer more
accurate depth maps. Therefore, inspired by recent advances
in stereo confidence estimation in this paper we introduce
and evaluate learning-based confidence estimation strategies
suited for depth data generated by ToF and stereo sensors
showing how a joint training of such methods yields in general
better performance. Moreover, deploying three fusion frame-
works, we report how confidence estimation can effectively
guide the fusion of data generated by the two depth sensing
technology. Exhaustive experimental results show how the
accurate confidence cues obtained allow to outperform state-
of-the-art data fusion schemes even deploying straightforward
fusion strategies. Future work will focus on the extension of
the considered fusion strategies to video sequences, exploit-
ing Recurrent Neural Networks (RNN) or dynamic system
modeling strategies like the Kalman filter. Moreover, we will
also consider the exploitation of an end-to-end deep learning
approach for joint confidence estimation and depth fusion.
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Fig. 4. Qualitative results on the LTTM5 dataset.
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