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Abstract—The paper addresses one of the new and most 
important issues arising when Low Power Voltage Transformers 
(LPVTs) are used in power network substations for evaluating, 
among others, the residual voltage measurement. Conversely to 
open-triangle inductive instrument transformers, the use of phase 
voltage transformers for measuring the residual voltage gets 
challenging due to the very high accuracy required for the three 
LPVTs. In the paper, a general expression to estimate the residual 
voltage measurement uncertainty, starting from the LPVTs 
accuracy, is presented. The effectiveness of the proposed approach 
is then confirmed with both Monte Carlo simulations and actual 
measurements on a general three-phase system. 

Keywords — Voltage Transformer; Residual Voltage; Simulation; 
Low Power Instrument Transformer; Power Transformer; Accuracy 
Class; Uncertainty 

I.  INTRODUCTION 
The decarbonisation of energy systems has been a political 

decision taken in the recent years by all most industrialized 
countries in the world. European Commission’s energy and 
climate policy, such as the SET-Plan, foresees that the context 
of the future scenarios for electric power networks will be that 
of ensuring a stable and secure power supply as Renewable 
Energy Sources (RES) penetration increases up to 100 %. 

As a matter of fact, the wide-scale introduction of 
decentralized RES is causing significant and unprecedented 
changes in electrical power grids. Consequently, future 
electrical power grids will require real-time capable control and 
monitoring systems to ensure stability under increasingly 
complex and challenging conditions [1]. 

The generation of analogue measurement and control 
systems in power grid substations are approaching the end of 
their useful lifespan. More often their replacement is based on 
digital substation automation solutions according to IEC 61850 
[2] and the use of new technologies to perform in a more 
efficient way (like the massive use of Ring Main Units), 
measurements and control of the power network operation [3]. 

More specifically, Instrument Transformers (ITs) [4-6] are 
experiencing special attention by Utilities and private customers 
for different important reasons. Among the paramount ones, 
with the event of Smart Grids and Distributed Energy Resources 
(DER) new performance and features are requested to the IT in 
order to accomplish real-time network control with the highest 
efficiency, speed and accuracy [7]. For instance, the large use of 
power inverters for interconnecting large photovoltaic plants to 

the grid has led to the injection of high order harmonics, which 
can interfere with industrial frequency component or among 
them to give rise to intermodulation. All this, needs that such 
spectral components be correctly and accurately measured in 
order to let such systems run under real-time feedback control. 
Moreover, in case of off-nominal frequency, protection relays 
must now trip faster than before (in few ms, instead of tens of 
ms as in the past). Furthermore, given that energy is no more 
flowing in just one direction (multiple producers or prosumers 
are now interconnected to the same grid), very accurate energy 
and power measurements must be performed. This, to correctly 
split the energy production revenues among prosumers and for a 
proper accurate reactive energy injection into the grid. Again, 
the mass deployment of secondary substations and measurement 
nodes have also yield to have space and size constraints. 
Therefore, new requests for reduced dimensions of all electrical 
apparatus and systems have become a key parameter. Last but 
not least, the development and diffusion of digital 
communications between different nodes of the power network 
have requested for the ITs, as stated before, to feature also digital 
outputs [8]. 

In light of all this, one of the most important measurements 
for network stability and diagnostic still remains the residual 
voltage. Its measurement is mandatory for protection 
coordination, like the implementation of differential protections, 
to correctly classify ground faults, etc. Normally, such a 
measurement was and is presently performed by using inductive 
voltage transformers star-connected at the primary side and with 
open triangle at the secondary side. Typical accuracies required 
for the residual voltage measurements are in the order of some 
percent, while residual voltage values are in the order of few 
percent (4 %) [9]. 

In case the residual voltage is evaluated by using the line 
voltages (sum of the three ITs secondary voltages), reaching 
such an accuracy in its measurement gets very challenging. In 
particular, in the case of RES, where the power flow becomes 
bi-directional and the nodes voltages might suffer significant 
changes. Moreover, this is even worse if the ITs are not working 
at ambient temperature, as demonstrated in literature [10]. This 
is what is requested to the new devices used as voltage sensors, 
the Low Power Voltage Transformers (LPVT). This new kind 
of transformers have lower outputs (voltage in the order of few 
volt and a maximum power typically equal or lower than 1 VA) 
with respect to the traditional ones. Usually such devices reduce 
the phase-to-ground primary voltage to amplitudes of few volts. 
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Project no. 774613. 
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The secondary voltage is referred to ground as well. So, 
especially for LPVTs, the accuracy requirements for the residual 
voltage measurements need to be guaranteed. This results in the 
adoption of LPVTs with high accuracy classes (far better than 
those of the inductive voltage transformers). 

The paper is aimed to present a novel study developed from 
the results of the related paper [11] to correlate the uncertainty 
affecting the measurement of the residual voltage with the 
accuracy class of the LPVTs.  

First of all, a new easy-to-use expression for estimating the 
uncertainty on the residual voltage, for a generic 3-phase system, 
is derived. It will be shown that it provides accurate results 
without the use of complex and long calculation as it would be 
required by the application of analytical or numerical methods 
suggested by the Guide to the expression of Uncertainty in 
Measurement (GUM) [12] as well as its Supplement 1 [13]. 

Such a study is requested by industry and might be used for 
completing two important Standards: the IEC 61869-11 [14] on 
LPVTs, and the future IEC 61869-105 [15] document dealing 
with uncertainty in calibration of ITs. Moreover, it will result 
useful to power network and system designers and operators for 
selecting suitable LPVTs according also to the accuracy 
requested for the residual voltage measurement. 

As for the proposed expression, its validity has been 
confirmed with both computer simulation and actual 
measurement. Tests are performed with a measurement setup 
developed for the specific purpose of the residual voltage 
measurement. 

The paper is structured as follows: in Section II the backbone 
concepts of [11] are recalled and the expression of the residual 
voltage is presented in the case of a generic (balanced or 
unbalanced) 3-phase system. Section III briefly summarize the 
uncertainty results obtained in [11] and provides the residual 
voltage uncertainty for the aforementioned case-study. In 
Section IV, the setup proposed for the residual voltage 
measurement is described. Tests and results of the performed 
measurements are presented in Section V. Finally, Section VI 
summarize the presented study along with some conclusions.   

II. RESIDUAL VOLTAGE 

A. Case-study definition 
According to the International Electrotechnical Vocabulary 

(IEV) the residual voltage 𝑣"(𝑡) is defined as “the sum of the 
instantaneous values of all three line-to-earth voltages, in a 
three-phase system” [16]: 

𝑣"(𝑡) = 𝑣'(𝑡) + 𝑣)(𝑡) + 𝑣*(𝑡)                 (1) 

where 𝑣'(𝑡), 𝑣)(𝑡) and 𝑣*(𝑡) are the instantaneous line-to-earth 
voltages of line 1, 2 and 3, respectively. In the case of a 
sinusoidal steady-state condition (1) turns into: 

𝑉,- = 𝑉,' + 𝑉,) + 𝑉,*                              (2)  

where 𝑉,. is the phasor of the generic quantity 𝑣.(𝑡). Either if the 
residual voltage is a phasor (as in (2)) or a waveform (as in (1)), 
in practical application only its module is used.   

Fig. 1 shows a typical setup for the measurement of such a 
quantity, referred to as 𝑉,-. It consists in three LPVTs and an 
Intelligent Electronic Device (IED), which acquires the LPVTs 
outputs and computes the residual voltage. Therefore, the value 

attributed to 𝑉,- is affected by the effect of the uncertainty 
sources (gain and non-linearity error, offset, noise, ratio and 
phase error, etc.) located in the LPVTs as well as in the IED. 
Usually, the latter can be considered negligible with respect to 
former one [3, 18]. 

B. Mathematic development 
In light of this, let us consider three LPVTs featuring ratio 

errors 𝜀', 𝜀) and 𝜀* and phase errors ∆𝜑' , ∆𝜑) , and ∆𝜑*  as 
defined in [6]. Therefore, starting from (2), the residual voltage, 
𝑉,- can be expressed as a function of such uncertainty 
contributions: 

𝑉,- = 3𝑉'(1 + 𝜀')𝑒6(789∆:8) + 𝑉)(1 + 𝜀))𝑒6(7;9∆:;) +
𝑉*(1 + 𝜀*)𝑒6(7<9∆:<)=                         (3) 

where the 𝑉. and 𝜗. are the generic RMS value and phase 
angle of the related phasor 𝑉,., respectively. 

For the sake of simplicity but without loss of generality in 
[11], as a first scenario, a balanced three-phase system condition 
has been assumed. This means that: 

𝑉' = 𝑉) = 𝑉* = 𝑉                                (4) 

and  

𝜗' = 0, 𝜗) =
)
*
𝜋 and 𝜗* = −)

*
𝜋.                 (5) 

Such assumption led (see [11] for details) to the following 
expression of the residual voltage module:  

|𝑉,-| = 𝑉 CD𝜀' −
√*
)
∆𝜑) −

'
)
𝜀) +

√*
)
∆𝜑* −

'
)
𝜀*F

)
+

D∆𝜑' −
'
)
∆𝜑) +

√*
)
𝜀) −

'
)
∆𝜑* −

√*
)
𝜀*F

)
G
'/)

.                   (6) 

 It can be noted that when all 𝜀. and ∆𝜑. are zero, (6) provides 
|𝑉,-| = 0, according to the assumption of balanced voltages. 
Therefore, the expression between square brackets represents 
the error on 𝑉,- when a balanced three-phase system of amplitude 
𝑉 is considered. Of course, such error can be computed only if 
the values of the accuracy parameters 𝜀 and ∆𝜑 are already 
known, for each VT. Otherwise, (6) can be also used to evaluate 
the uncertainty on 𝑉,- if 𝜀. and ∆𝜑. are treated as random 
variables and one of the methods, suggested by GUM [11] and 
its supplement 1 [13], is applied. 
 In this paper, a general expression of  |𝑉,-| is derived from 
(3), no matter the system is balanced or unbalanced. Hence, by 
considering the Euler formulae (3) turns into: 

𝑉,- = {𝑉'[(1 + 𝜀')	(cos(𝜗' + ∆𝜑') + jsin(𝜗' + ∆𝜑'))] + 

𝑉)[(1 + 𝜀))(cos(𝜗) + ∆𝜑)) + jsin(𝜗) + ∆𝜑)))] +  

𝑉*[(1 + 𝜀*)(cos(𝜗* + ∆𝜑*) + jsin(𝜗* + ∆𝜑*))]}           (7)  

By defining three parameters helpful to increase the reader 
comprehension: 

𝐿 = cos(𝜗' + ∆𝜑') + jsin(𝜗' + ∆𝜑')																	          

𝑀 = cos(𝜗) + ∆𝜑)) + jsin(𝜗) + ∆𝜑))            (8) 

N = cos(𝜗* + ∆𝜑*) + jsin(𝜗* + ∆𝜑*)																   

(7) can be re-written as: 
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𝑉,- = 𝑉'𝐿 + 𝜀'𝑉'𝐿 + 𝑉)𝑀 + 𝜀)𝑉)𝑀 + 𝑉*𝑁 + 𝜀*𝑉*𝑁,    (9) 

which highlights the terms not affected by the ratio error of the 
LPVTs. Focusing on these terms (𝑉'𝐿, 𝑉)𝑀 and 𝑉*𝑁), in 
particular on the first, and by applying the addition sine 
formulae: 

𝑉'𝐿 = 𝑉'[cos(𝜗')cos(∆𝜑') − sin(𝜗') sin(∆𝜑')] + 𝑗𝑉' 

[sin(𝜗')cos(∆𝜑') + cos(𝜗') sin(∆𝜑')].         (10) 

Given that, in actual conditions, ∆𝜑. is small, cos(∆𝜑.) ≅ 1 and 
sin(∆𝜑.) ≅ ∆𝜑. is assumed; hence: 

𝑉'𝐿 = 𝑉,-(') + 𝑉'∆𝜑'[jcos(𝜗') − sin(𝜗')]         (11) 

where 𝑉,-(') is the term of the residual voltage, included in (10), 
not affected by the ratio and phase error of the LPVTs:  

𝑉,-(') = 𝑉'cos(𝜗') + 𝑗𝑉'sin(𝜗').                (12) 

Therefore, by writing all terms of (9) as it has been done in (11) 
for the term 𝑉'𝐿, and by neglecting all the second order terms 
(i.e. those which are a product of LPVT parameters 𝜀. and ∆𝜑. 
), (9) becomes: 

𝑉,- = 𝑉,-(')(1 + 𝜀') + 𝑉,-())(1 + 𝜀)) + 𝑉,-(*)(1 + 𝜀*) + 

𝑉'∆𝜑'[jcos(𝜗') − sin(𝜗')] + 𝑉)∆𝜑)[jcos(𝜗)) − sin(𝜗))]  

+𝑉*∆𝜑*[jcos(𝜗*) − sin(𝜗*)],                  (13) 

which represents the residual voltage general expression in the 
case of an unbalanced 3-phase system. Eq. (13) can be expressed 
in terms of module (14), real (15) and imaginary part (16): 

|𝑉,-| = [(𝑅𝑒[𝑉,-])) + (𝐼𝑚[𝑉,-]))                (14) 

𝑅𝑒[𝑉,-] = 𝑉'cos(𝜗')(1 + 𝜀') + 𝑉)cos(𝜗))(1 + 𝜀)) + 

𝑉*cos(𝜗*)(1 + 𝜀*) − 𝑉'sin(𝜗')∆𝜑' − 𝑉)sin(𝜗))∆𝜑) −  

𝑉*sin(𝜗*)∆𝜑*                               (15) 

𝐼𝑚[𝑉,-] = 𝑉'sin(𝜗')(1 + 𝜀') + 𝑉)sin(𝜗))(1 + 𝜀)) + 

𝑉*sin(𝜗*)(1 + 𝜀*) + 𝑉'cos(𝜗')∆𝜑' + 𝑉)cos(𝜗))∆𝜑) +  

𝑉*cos(𝜗*)∆𝜑*.                              (16) 

Of course, if all parameters 𝜀. and ∆𝜑. are equal to zero, (14) 
provides |𝑉,-| = 0 as for the case of a balanced 3-phase system. 
To summarise the overall procedure, (15) and (16) have been 
obtained by applying two simple and common assumptions: to 
consider ∆𝜑. a small angle and to neglect terms which are the 
product of two LPVT parameters (for example ∆𝜑. ∗ 𝜀.). As for 
the first assumption, errors of 2 ∙ 10bc on the cosine value and 3 
𝜇rad on the angle one are made if ∆𝜑. = 6	𝑚𝑟𝑎𝑑 is taken (limit 
for the 0.5 accuracy class, worst case). For the latter assumption 
instead, this turns into considering zero in place of 10bc (worst 
case for the 0.5 accuracy class). 

III. UNCERTAINTY EVALUATION 
As mentioned in Section II, the residual voltage error can be 

obtained only if the values of the accuracy parameters 𝜀 and ∆𝜑 
are already known for each VT. However, in practical situations, 
this is not possible and the uncertainty affecting |𝑉,-| must be 
determined. In this connection, parameters 𝜀 and ∆𝜑 are treated 
as random variables. The GUM and its Supplement 1 provide 
detailed explanation on how estimating such value, but the 
implementation of the methods they provided may be quite 
complex and not easy for technicians who are not metrologist or 
university professors. For this reason, in light of the experience 
gained by the authors on the topic [18] and considering the 
existing literature [19], two simplified expressions for the 
uncertainty evaluation of the residual voltage measurement are 
presented. The first one is recalled from [11] and can be applied 
when an (almost) balanced three-phase system is concerned. The 
second one is a new expression developed by the authors to be 
used with whatever 3-phase system. The aim is to provide an 
easy-to-use formula directly applicable in field, when only the 
accuracy class of the LPVTs is known. 

A. Balanced 3-phase system 
In [11], (6) has been re-written in terms of 2 new random 

variables X and Y: 

𝑋 = 𝜀' −
√*
)
∆𝜑) −

'
)
𝜀) +

√*
)
∆𝜑* −

'
)
𝜀*              (17) 

𝑌 = ∆𝜑' −
'
)
∆𝜑) +

√*
)
𝜀) −

'
)
∆𝜑* −

√*
)
𝜀*,           (18) 

whose variances 𝜎l) and 𝜎m), pending that the 3 LPVTs have the 
same accuracy class, are: 

𝜎l) =
*
)
n𝜎∆:) + 𝜎o)p                             (19) 

 
Fig. 1.   Schematic of a typical setup for the measurement of three-phase system of symmetric voltages 
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𝜎m) =
*
)
n𝜎∆:) + 𝜎o)p.                               (20) 

Then, it is: 
𝜎l) = 𝜎m)                                           (21) 

In (19) and (20) 𝜎o) and 𝜎∆:)  are the variances of the random 
variables 𝜀 and ∆𝜑 representing the chosen accuracy class for 
the LPVTs. Therefore, the probability distribution associated to 
the random variable |𝑉,-| defined by (6), is a well-known 
Rayleigh one [11]. Hence, the variance 𝜎-) of |𝑉,-| is: 

𝜎-) = D2− q
)
F𝜎),                               (22)  

where 𝜎) = 𝜎l) = 𝜎m). 

B. Generic 3-phase system 
The balanced 3-phase condition cannot always be met. 

Hence, an easy-to-use expression applicable in all cases is 
required. To this purpose, let us start from (15) and (16). Both 
are a linear combination of six zero-mean random variables 𝜀', 
𝜀), 𝜀*, ∆𝜑', ∆𝜑)  and ∆𝜑* . It is well known that, given a random 
variable f defined as:  

𝑓 = 𝑎𝑔 + 𝑏ℎ,                                   (23) 
where g and h are generic independent random variables and a 
and b are numerical coefficients, its variance 𝜎v) is given by: 

𝜎v) = 𝑎)𝜎w) + 𝑏)𝜎x),                             (24) 

where 	𝜎w) and 𝜎x) are the variances of g and h, respectively. 
Therefore, by applying (24) to (15) and (16): 

𝜎y) = 𝑉')cos)(𝜗')𝜎o') + 𝑉))cos)(𝜗))𝜎o)) + 𝑉*)cos)(𝜗*)𝜎o*) +
𝑉')sin)(𝜗')𝜎∆:') + 𝑉))sin)(𝜗))𝜎∆:)) + 𝑉*)sin)(𝜗*)𝜎∆:*)              

(25) 
𝜎z) = 𝑉')sin)(𝜗')𝜎o') + 𝑉))sin)(𝜗))𝜎o)) + 𝑉*)sin)(𝜗*)𝜎o*) +
𝑉')cos)(𝜗')𝜎∆:') + 𝑉))cos)(𝜗))𝜎∆:)) + 𝑉*)cos)(𝜗*)𝜎∆:*) .           

(26) 

Where: 

𝑈 = 𝑅𝑒[𝑉,-]                                       (27) 

𝑉 = 𝐼𝑚[𝑉,-]                                      (28) 

In light of (27) and (28), (14) can be rewritten as: 

 |𝑉,-| = 𝑊 = √𝑈) + 𝑉) .                       (29) 

If 3 LPVTs with the same accuracy class are assumed, hence 
𝜎o') = 𝜎o)) = 𝜎o*) = 𝜎o) and 𝜎∆:') = 𝜎∆:)) = 𝜎∆:*) = 𝜎∆:) , (25) 
and (26) turn into: 
𝜎y) = 𝜎o) D𝑉')cos)(𝜗') + 𝑉))cos)(𝜗)) + 𝑉*)cos)(𝜗*)F + 

𝜎∆:) D𝑉')sin)(𝜗') + 𝑉))sin)(𝜗)) + 𝑉*)sin)(𝜗*)F  (30) 

𝜎z) = 𝜎o) D𝑉')sin)(𝜗') + 𝑉))sin)(𝜗)) + 𝑉*)sin)(𝜗*)F + 

𝜎∆:) D𝑉')cos)(𝜗') + 𝑉))cos)(𝜗)) + 𝑉*)cos)(𝜗*)F. (31) 
Hence: 

𝜎y) = 𝑎𝜎o) + 𝑏𝜎∆:)                                (32) 
𝜎z) = 𝑏𝜎o) + 𝑎𝜎∆:) ,                               (33) 

where 

𝑎 = 𝑉')cos)(𝜗') + 𝑉))cos)(𝜗)) + 𝑉*)cos)(𝜗*)   (34) 

𝑏 = 𝑉'
)sin)(𝜗') + 𝑉))sin)(𝜗)) + 𝑉*)sin)(𝜗*)    (35) 

are completely known to in-field operators. 
From (32) and (33) it is clear that the variances of U and V 

are different, hence the Rayleigh distribution adopted in [9] 
cannot be applied anymore. Consequently, a different strategy is 
to be applied. 

In light of (15) and (16), U and V are the sum of several 
random variables. Therefore, according to the Central Limit 
Theorem, they are two normal random variables 𝑈(𝜇y, 𝜎y)) and 
𝑉(𝜇z, 𝜎z)), respectively. It is: 

𝜇y = 𝑉'cos(𝜗') + 𝑉)cos(𝜗)) + 𝑉*cos(𝜗*)      (36) 

𝜇z = 𝑉'sin(𝜗') + 𝑉)sin(𝜗)) + 𝑉*sin(𝜗*).       (37) 

 The squares 𝑈) and 𝑉) of U and V have a chi-square 
distribution (𝜒)) with one degree of freedom [20, 21]. Therefore, 
it is: 

𝜎y;
) = 2 ~1 + 2D��

��
F
)
�𝜎y�                    (38) 

𝜎z;
) = 2 ~1 + 2D��

��
F
)
�𝜎z�                    (39)  

and 
𝜇y; = 𝜎y) + 𝜇y)                                (40) 

  𝜇z; = 𝜎z) + 𝜇z)                                (41) 
  
Where 𝜎y;

) , 𝜇y; and 𝜎z;
) , 𝜇z; are the variance and the mean 

value of the two random variables 𝑈) and 𝑉), respectively.  
Finally, 𝑊) = 𝑈) + 𝑉) is the sum of two generic random 

variables, which variance 𝜎�;
)  is, according to (24): 

𝜎�;
) = 𝜎y;

) + 𝜎z;
) + 2𝑐𝑜𝑣(𝑈), 𝑉)).                 (42)  

and which mean 𝜇�; is:           
𝜇�; = 𝜇y; + 𝜇z;                             (43)        

 Eq. (42) is more genera than (24). In fact, the covariance 
term 𝑐𝑜𝑣(𝑈), 𝑉)) has been added to consider also the case of 
non-independents variables. In the presented case, 𝑈) and 𝑉) 
are surely related. However, as it is confirmed in the result 
Section, neglecting their covariance does not affect the overall 
results. Of course, further studies can be performed to deep 
analyse such a behaviour.  

The distribution associated to 𝑊) is still a chi-square one, 
which is a special case of the gamma distribution [20, 21]. 
According to [22, 23] and in light of the aforementioned results,  
𝑊 = √𝑊) follows a Nakagami distribution with the shape and 
the spread parameters m and W, respectively:  

𝑚 =
D��;F

;

��;
;                                    (44) 

W = 𝜇�;                                      (45) 

Considering that terms inside (44) and (45) are well-known from 
the previous steps, 𝜇� and 𝜎�)  can be computed as: 

𝜇� = �(�9'/))
�(�)

�W

�
                              (46) 

𝜎�) = W C1 − '
�
D�(�9'/))

�(�)
F
)
G.                   (47) 
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 TABLE I.  LIST OF THE PHASORS VALUES FOR THE 15 
TESTS 

Test Acc. 
class 𝑽𝟏 [V] 𝑽𝟐 [V] 𝑽𝟑 [V] 𝝑𝟏 

[°] 
𝝑𝟐 
[°] 

𝝑𝟑 
[°] 

#1 0.1 11547 11547 11547 0 -120 120 
#2 0.1 12124 12124 11547 0 -120 120 
#3 0.1 12124 10392 11547 0 -120 120 
#4 0.1 11547 11547 11547 0 -120 135 
#5 0.1 12124 10392 11547 0 -110 130 
#6 0.2 11547 11547 11547 0 -120 120 
#7 0.2 12124 12124 11547 0 -120 120 
#8 0.2 12124 10392 11547 0 -120 120 
#9 0.2 11547 11547 11547 0 -120 135 

#10 0.2 12124 10392 11547 0 -110 130 
#11 0.5 11547 11547 11547 0 -120 120 
#12 0.5 12124 12124 11547 0 -120 120 
#13 0.5 12124 10392 11547 0 -120 120 
#14 0.5 11547 11547 11547 0 -120 135 
#15 0.5 12124 10392 11547 0 -110 130 

 

 
Fig. 2.   PDF of |𝑉,-| when three 0.1 class LPVTs are considered (case #1) 

 

 
Fig. 3.   PDF of |𝑉,-| when three 0.2 class LPVTs are considered (case #6) 

 
Γ(𝑚) is the gamma function with m degrees of freedom. These 
two expressions allow, at a glance, to determine the mean value 
and the variance of the residual voltage module |𝑉,-| = 𝑊 (see 
(29)). As a further comment, the term �(�9'/))

�(�)
 in both (46) and 

(47) is also known as the Pochhammer function. Such a function 
can be used in some softwares, instead of the Gamma one, to 
prevent computational issues that may occur when m takes high 
values. 
 Summarizing, (46) and (47) allow to determine the mean 
value and variance of the residual voltage module, by simply 
measuring the 3 voltage phasors by means of three LPVTs with 
given accuracy class. It should be noted that, the provided  

 
Fig. 4.   PDF of |𝑉,-| when three 0.5 class LPVTs are considered (case #11) 

 

expression can also be used even in the case of non-sinusoidal 
waveforms. As a matter of fact, a Fourier transform is usually 
applied to extract the phasor component at power frequency (50 
Hz), in the case of non-sinusoidal condition. Hence, the 
proposed expression application can be extended also to this 
case, by replacing the ratio and phase error of the LPVT with the 
corresponding ones derived by their propagation through the 
Fourier transform algorithm [24]. In particular, in presence of 
noise affecting the input voltage, the application of the Fourier 
transform allows to neglect the effect of the noise on the phasor 
estimation in all the practical situations. As a matter of fact, in 
[25] it was shown that already with a signal to noise ratio of 20, 
the error due to the noise on the estimate of the signal 
components is a fraction of percent. Hence, by considering that 
a typical signal-to-noise ratio in power system is below 1 %, it 
results that the noise contribution to the overall uncertainty can 
be considered negligible.      

C. Monte Carlo results. 
Monte Carlo (MC) method is applied to validate (46) and 

(47). Usually, the LPVTs manufacturers do not provide 
information regarding the probability distribution of ratio and 
phase errors. Therefore, in accordance with [12, 13], this lack of 
knowledge leads to assume the 6 random variables in (15) and 
(16) as uniformly distributed within the intervals which limits 
are defined by the accuracy class specified by the LPVTs 
manufacturers. To assess the proposed expressions in actual 
conditions, LPVTs featuring 20/√3 kV – 3.25/√3 V have been 
considered. In particular, three different set of LPVTs have been 
simulated. In each set all of them present the same accuracy 
class: 0.1, 0.2 or 0.5. For the three above sets, 5 combinations of 
three voltage phasors of a three-phase system have been tested. 
The values have been chosen according to the voltage limits 
provided by the EN 50160 [26] and are listed in Table I. Then, 
1 million MC trials are computed to estimate the probability 
density function (PDF), the mean and the variance of |𝑉,-|.  As 
for |𝑉,-|, Fig. 2, 3 and 4 show its PDFs in the case of test #1 and 
accuracy class 0.1, 0.2 and 0.5, respectively. From these figures, 
it can be highlighted that the PDF shape is consistent with the 
Nakagami distribution (plotted in the graphs along with |𝑉,-|) 
adopted in the previous subsection to represent the |𝑉,-|. The 
same observation holds for all the other cases, which PDF are 
not reported for the sake of brevity. 

Afterwards, mean value and variance of |𝑉,-| resulting from 
MC are compared with the ones obtained by applying (46) and 
(47). Test results are reported in Table II, where the subscripts  
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TABLE II.  MEAN VALUE AND VARIANCE 
OF |𝑉,-| FOR THE #15 TESTS APPLYING THE MC 

METHOD AND THE PROPOSED EXPRESSION 

Test Acc. 
Class 

𝜇��  
[V] 

𝜎��)  
[V2] 

𝜇�  
[V] 

𝜎�) 
[V2] 

#1 0.1 19 82 18 93 
#2 0.1 577 234 577 232 
#3 0.1 1528 214 1528 210 
#4 0.1 3014 217 3014 213 
#5 0.1 1471 196 1471 208 
#6 0.2 38 328 37 372 
#7 0.2 578 936 578 925 
#8 0.2 1528 857 1528 838 
#9 0.2 3015 867 3015 852 
#10 0.2 1471 783 1471 833 
#11 0.5 81 1561 80 1745 
#12 0.5 581 4338 581 4268 
#13 0.5 1529 3983 1529 3931 
#14 0.5 3015 4072 3015 4032 
#15 0.5 1472 3804 1472 3921 

 

 
Fig. 5.    Schematic of the measurement setup adopted for the 

residual voltage measurement 

 
 
MC and N refer to the Monte Carlo and the analytical expression 
based on the Nakagami distribution, respectively. The 
comparison shows that, for each accuracy class, mean values 
and variances provided by (46) and (47) are full consistent and 
substantially equal to the ones obtained by the MC trials. This 
holds for all the performed tests (range 19 – 3000 V, which 
contains all the actual MV residual voltage values). In other 
words, the developed expression may be conveniently adopted 
in whatever power network conditions and for whatever absolute 
value of the residual voltage. It only requires the knowledge of 
the measured voltages and the accuracy classes of the LPVTs 
installed in the network. As a further comment, as expected, the 
variance significantly increases with the accuracy class. 
Moreover, aside from case #1, #6 and #11 (where the residual 
voltage is not greater than 0.7 % of the rated voltage), the 
variance is substantially independent of the residual voltage 
value.  

IV. EXPERIMENTAL SETUP 
An experimental setup has been designed to generate a 

programmable (in amplitude and phase) low-voltage 3-phase 
system and to evaluate the residual voltage module |𝑉,-|. The 

choice of a low-voltage (LV) system, instead of a medium-
voltage (MV) one, is due to the availability of programmable LV 
sources. This does not affect the assess of the proposed 
expressions, that can be used no matter the input voltage. The 
system, depicted in Fig. 5, consists of: 

• Agilent 6834B AC programmable Power source, 
featuring maximum values of 300 Vrms and 4500 VA, 
a frequency range 45÷5000 Hz. 

• Yokogawa WT3000 Wattmeter featuring 0.01 % of 
reading (%R) + 0.03 % of range accuracy (%FS) on the 
voltage measurement and 1 digit on the phase 
measurement. It acts as a reference for |𝑉,-| 
measurement. 

• 3 VT LEM CV-3-1000, featuring conversion ratio 
10000 V / 10 V, rated voltage of 700 V and 0.2 accuracy 
class. It introduces a negligible phase delay according to 
its datasheet. As for the noise introduced by the VT, the 
datasheet does not report any value, hence it has been 
considered negligible in terms of uncertainty 
computation. 

• A 24-bit NI 9239 Data AcQuisition board (DAQ), and a 
Personal Computer (PC). Its related uncertainty has 
been neglected in the measurement chain due to its very 
little contribute with respect to the others measurement 
chain components (0.03 % of reading, 0.008 % of 
range). In particular, its accuracy parameters are at least 
one order of magnitude lower than the LPVTs ones. 
Furthermore, the DAQ has an input noise of 70 𝜇V, 
which is approximately 10-4 lower than the secondary 
outputs obtained (about 1 V) as detailed in the following 
Sections. Such effect is negligible compared to the 
contribution of the LPVT, which is at least one order of 
magnitude greater.  

 In a nutshell, the 3-phase Power Source feeds both the 
Wattmeter and the 3 LPVTs. Then, the voltages needed for the 
residual voltage computation are acquired via LabView from the 
Wattmeter and via DAQ from the 3 VTs. Afterwards, data are 
collected and processed through a PC. 

V. EXPERIMENTAL TESTS & RESULTS 
In this Section tests and results of the residual voltage 

measurement in actual condition are presented. Twenty different 
tests have been performed. In each of them amplitude and phase 
of the 3 phasors have been varied within the limits defined by 
the Standard EN 50160 [26]. Hence, the resulting #20 test 
conditions, that have been used has input quantities, are listed in 
Table III whereas Table IV reports the relevant results. For each 
test, the absolute value of the residual voltage |𝑉,-| has been 
measured 100 times by both the Wattmeter and the DAQ. Thus, 
such measurements have been used to compute |𝑉,-| mean value 
and standard deviation of the mean. 

Table IV contains: 
• |𝑉,-| mean value |𝑉,-|� and its combined 

uncertainty 𝑢� for the measurements performed 
with the wattmeter. The latter has been computed 
as: 
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TABLE III.  LIST OF THE PHASORS VALUES FOR EACH OF THE 
20 TESTS PERFORMED  

Test 𝑽𝟏 
[V] 𝑽𝟐 [V] 𝑽𝟑 [V] 𝝑𝟏 

[°] 𝝑𝟐 [°] 𝝑𝟑 [°] 

#1 230 230 230 0 -120 120 
#2 207 230 230 0 -120 120 
#3 218.5 230 230 0 -120 120 
#4 253 230 230 0 -120 120 
#5 241.5 230 230 0 -120 120 
#6 207 218.5 230 0 -120 120 
#7 207 207 230 0 -120 120 
#8 207 241.5 230 0 -120 120 
#9 207 253 230 0 -120 120 

#10 218.5 218.5 230 0 -120 120 
#11 218.5 241.5 230 0 -120 120 
#12 218.5 253 230 0 -120 120 
#13 230 230 0 0 -120 0 
#14 230 230 230 0 -120 130 
#15 230 230 230 0 -120 125 
#16 230 230 230 0 -120 115 
#17 230 230 230 0 -120 110 
#18 230 230 230 0 -120 121 
#19 230 230 230 0 -121 121 
#20 230 230 218.5 0 -120 121 

 

TABLE IV.  RESIDUAL VOLTAGE MEASUREMENT RESULTS 
COMPARISON BETWEEN SIMULATIONS AND ACTUAL TESTS 

Test |𝑉,-|� 
[V] 𝑢� [V] |𝑉,-|��� [V] 𝜎���  

[V] 
|𝑉,-|� 
[V] 

𝑢� 
[V
] 

#1 0.22 5 ∙ 10b) 0.6542 3∙ 10b� 1.0 0.5 
#2 22.78 8∙ 10b) 22.6130 1∙ 10b� 22.6 0.6 
#3 11.23 7∙ 10b) 11.15434 4∙ 10bc 11.2 0.6 
#4 23.22 7∙ 10b) 23.43270 3∙ 10bc 23.4 0.6 
#5 11.78 7∙ 10b) 11.85376 4∙ 10bc 11.9 0.6 
#6 19.54 8∙ 10b) 19.31514 3∙ 10bc 19.3 0.6 
#7 22.59 7∙ 10b) 22.33561 4∙ 10bc 22.3 0.5 
#8 30.29 7∙ 10b) 30.26731 3∙ 10bc 30.3 0.6 
#9 39.75 6∙ 10b) 39.80380 4∙ 10bc 39.8 0.6 
#10 11.07 7∙ 10b) 10.8727 3∙ 10b� 10.9 0.6 
#11 19.80 6∙ 10b) 19.91989 4∙ 10bc 19.9 0.6 
#12 30.48 6∙ 10b) 30.54182 5∙ 10bc 30.5 0.6 
#13 230.21 8∙ 10b) 230.23121 3∙ 10bc 230.2 0.5 
#14 39.99 6∙ 10b) 40.02377 5∙ 10bc 40.0 0.6 
#15 20.04 6∙ 10b) 20.0049 1∙ 10b� 20.0 0.6 
#16 20.19 6∙ 10b) 20.09044 5∙ 10bc 20.1 0.6 
#17 40.19 6∙ 10b) 40.15524 5∙ 10bc 40.2 0.6 
#18 3.93 6∙ 10b) 4.03867 5∙ 10bc 4.1 0.6 
#19 6.65 7∙ 10b) 6.6032 1∙ 10b� 6.6 0.6 
#20 12.61 7∙ 10b) 12.69038 4∙ 10bc 12.7 0.6 

 

 

𝑢� = [𝜎��) + 𝜎��)                              (48) 

where 𝜎�� is the standard deviation of the mean 
and 𝜎�� is the standard uncertainty evaluated with 
type B method as explained in [12, 13], starting 
from the wattmeter nominal accuracy 
specifications reported in Section IV;  

•  

TABLE V.  95 %-CONFIDENCE 
INTERVAL LIMITS FOR THE MEAN VALUES 

|𝑉,-|��� AND |𝑉,-|� 

Test |𝑉,-|� |𝑉,-|�  
-L [V] +L [V] -L [V] +L [V] 

#1 0.11 0.31 0.0 1.9 
#2 22.63 22.93 21.5 23.8 
#3 11.08 11.37 10.0 12.3 
#4 23.07 23.37 22.2 24.6 
#5 11.63 11.93 10.7 13.1 
#6 19.39 19.69 18.2 20.4 
#7 22.45 22.73 21.3 23.4 
#8 30.16 30.43 29.1 31.4 
#9 39.62 39.87 38.6 41.0 
#10 10.92 11.21 9.8 12.0 
#11 19.67 19.93 18.8 21.1 
#12 30.35 30.61 29.4 31.7 
#13 230.04 230.38 229.3 231.2 
#14 39.86 40.11 38.9 41.2 
#15 19.92 20.17 18.8 21.2 
#16 20.07 20.32 18.9 21.3 
#17 40.06 40.31 39.0 41.3 
#18 3.82 4.05 2.9 5.2 
#19 6.51 6.80 5.5 7.8 
#20 12.47 12.75 11.5 13.9 

 
• |𝑉,-| mean value |𝑉,-|���  and standard deviation of 

the mean 𝜎��� for the measurements performed 
with the 3 LPVTs and acquired by the DAQ. Such 
test wants to represent an actual condition where 
typical LPVTs are adopted. In 𝜎��� evaluation, 
the contribution due to the data acquisition system 
has been neglected has explained before.  

• |𝑉,-| mean value |𝑉,-|� and combined uncertainty 
𝑢� obtained starting from (46) and (47). The test 
consisted in using the three voltage phasors, 
measured with the LPVTs, as input for the 
proposed expression along with their accuracy 
class parameters. The 𝑢� has been computed has: 

𝑢� = �𝜎���) + 𝜎�)                         (49) 

where 𝜎�) is the variance obtained from (47).  
From Table IV, several comments arise. By comparing the 

results from the wattmeter measurements with the ones obtained 
from the proposed expression, it can be confirmed the latter 
efficiency. In detail, to assess the obtained results by comparing 
them with the reference ones obtained with the wattmeter, limits 
(±L) of 95 %-confidence interval have been calculated for |𝑉,-|� 
and |𝑉,-|� mean values. Such intervals limits are listed, for all 
the tests, in Table V. Both intervals have been computed by 
considering a coverage factor k = 2. Such assumption is justified 
also for the Nakagami distribution as explained at the end of the 
Section. As it emerges from Table V, for each test the two 
different intervals superimpose one each other, confirming the 
goodness and applicability of the simple method presented. For 
the sake of clarity, Fig. 6 shows, for the cases #2, #3 and #4 a 
graphical representation of the mean values along with their 
confidence intervals. For all the cases, the two intervals, referred 
as N and W to be consistent with Table V, have been graphed 
one next to the other to better highlight the superimposition.  
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Fig. 6.    Graphical representation of the measurements and their 95 % 

confidence intervals, in the case of tests #2, #3 and #4 

 

 
Fig. 7.   PDF of |𝑉,-|�  for case #2 

 

 
Fig. 8.   PDF of a generic Nakagami distribution for several m and 𝜔 (o) 

parameters. 
 
The high non-linearity of the residual voltage module 

expression (29) leads to a non-symmetrical probability density 
function associated to the |𝑉,-| random variable. As a matter of 
fact, the Nakagami distribution may exhibit a non-symmetrical 
shape for particular values of its parameters. The asymmetry is 
caused by the module which converts positive and negative real 
and imaginary terms of 𝑉,- into always positive terms. This 
results in a shift of the |𝑉,-| mean value from the measured value 
of |𝑉,-|. Moreover, this effect is considerable when the latter is 
close to zero (case #1), while it becomes negligible as far as it 
increases. Such a conclusion can be verified with two examples. 
They both deal with the case #1 where a balanced three-phase 
system is considered. Hence, the |𝑉,-| is ideally zero. The first 
example refers to Table II, where the proposed expression is 
compared to the MC method. As it emerges from the 𝜇�� and 
𝜇� values, they largely differ from the theoretical null one. The 
reason is explainable by the effect of the ratio and phase errors, 

treated as random variables with zero mean. This correctly leads 
to the shift of  |𝑉,-| mean value as detailed before. 

The second example refers instead to case #1 in Table IV. A 
little discrepancy can be noted between |𝑉,-|��� and |𝑉,-|�, 
although they are computed starting from the same voltage 
phasors. The only difference from the previous example is that 
it refers to an actual measurement and not to a simulation.  

As for the |𝑉,-|� distribution, it can be stated that it tends to 
a normal distribution (Fig. 7 shows the case #2 PDF of |𝑉,-|�). 
This holds for all the tests which means are far higher than zero. 
This occurs for all of them except for case #1 (as confirmed by 
Fig. 2, 3 and 4). As a matter of fact, high mean values turn into 
an 𝑚 > 1 parameter inside (46) and (47). Therefore, in a 
balanced three-phase system, which feature 𝑚 = 1, the effect is 
a probability density function far from being a normal one. Fig. 
8 confirms the previous statement showing the Nakagami 
distribution for several m values. In light of the aforementioned, 
the 95 %-confidence intervals, previously described, have been 
computed assuming a symmetric distribution. 

VI. CONCLUSIONS    
The introduction of the LPVT technology has allowed to 

implement many new operating and measurement functions due 
to their better performance with respect to inductive ITs 
(bandwidth, accuracy, linearity, etc.). However, one critical 
value, still widely used for the diagnostic and the operation of 
the power networks, namely the residual voltage, requires that 
LPVTs feature higher accuracies with respect to those of ITs 
with open triangle. The correlation of the accuracy class of 
LPVTs to the uncertainty affecting the residual voltage is not 
straightforward. However, this relationship is strongly 
demanded by practitioners and all people involved in network 
design and operation. 

To this end, the presented paper extended a study began in a 
companion paper where an expression for the correlation 
between the LPIT accuracy class and the residual voltage 
uncertainty was presented. In that work a symmetrical 3-phase 
system was studied. In this paper an expression for a general 3-
phase system has been proposed by authors. 

The aim of this study has been to put all such operators in a 
condition to simply evaluate and know which is the expected 
uncertainty affecting the residual voltage when employing 
LPVTs with a given accuracy class.  

To this purpose, a simplified expression based on the 
Nakagami distribution has been derived. Results demonstrated 
the effectiveness of this assumption in whatever power network 
condition. Simulation results have been also confirmed by the 
measurements performed in an actual 3-phase system deployed 
in the laboratory. In light of the aforementioned, the proposed 
expression can become a simple and common way to predict the 
uncertainty related to the residual voltage measurement in all the 
actual situations and with an high accuracy.  
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