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Abstract—Drowsiness is a cause of accidents in industrial
and mining activities. A considerable amount of effort has been
put into the detection of drowsiness, and since then it has been
integrated into a large variety of wearable systems. Nevertheless,
the technology still suffers from high intrusiveness, short battery
life and lack of generality. An opportunity to address these
shortcomings arises from the use of physiological and behavioral
features for bio-signals like EEG and IMU sensors. In this work,
we propose an energy-efficient wearable platform for drowsiness
detection. Our platform features a minimally invasive setup,
based on dry EEG sensors to acquire neural data, and Mr.
Wolf, an 8-core ultra-low-power digital platform. The system
has been validated on three test subjects, achieving detection
accuracy of 83%, using a Nearest Centroid Classifier, modeled
with a semi-supervised algorithm from previously collected data.
This work further extends the capabilities of our previous
system, providing a more sophisticated classification mechanism
that includes real-time and onboard sensor fusion processing
while running into a highly efficient and unobtrusive hardware
platform, outperforming the current State of the Art (SoA) in
terms of wearability and battery lifetime.

I. INTRODUCTION
One of the leading causes of accidents in material handling

for the construction and mining industries can be ascribed
to the mental state of the operator, mostly drowsiness and
fatigue [1]. As operating machinery such as excavators, large
trucks and cranes require a significant mental effort and
stress, monitoring the operator attention level is a paramount
objective in minimizing the risk of accidents. Thanks to
recent developments in electronic systems and devices, sev-
eral systems have been proposed to monitor attention levels.
Most of them have been applied to the automotive sector
where systems for automated advanced driving support are
now available (e.g., lane assist, steering control, pedestrian
protection), as well as systems for monitoring the driver
attention (e.g., eye-trackers).

Systems capable of detecting drowsiness can be roughly
divided into behavioral and physiological. The former ana-
lyzes behavioral patterns (e.g., eye blinking, nodding or body
gestures) to determine the level of drowsiness while the latter
continuously monitors one or a few physiological parameters
for the same purpose. Behavioral systems make use of prox-
ies to determine drowsiness, such as changes in the driving
profile (e.g., skids, touching or crossing white lines) or in the
driver’s head gesture. Studies in [2] show how eye-blinking
frequency and duration can be correlated to drowsiness.
According to this, the duration is higher when the subject
is heavy-eyed, being categorized as drowsy if the blinking
duration is longer than 500 ms. Similarly, blinking duration
is used to detect micro-sleeps in [3]. Another significant
parameter is named PERCLOS (proportion of time the eyes
are at least 80% closed). The extraction of these parameters is
usually done from data acquired with high-resolution cameras
connected to the vehicle infotainment system. The main
drawbacks of these computer-vision methods reside on the
high-end expansive hardware required to process the images.

Moreover, these systems can work optimally only when the
angle between the subject’s eyes and the camera is inside
predefined limits and if light conditions are good enough.
These drawbacks make system portability almost impossible
as the cameras are fixed and require careful tuning of the
position [4].

To overcome these limitations, more direct approaches
can be used, which target the monitoring of physiological
parameters to determine the drowsiness level. It has also been
demonstrated that these approaches significantly improve
accuracy as well [5]. The main parameters whose use has
been investigated so far are heart-rate, blood pressure or
neural signals. Despite the fact that these systems can be
designed to be wearable, the actual setups are too bulky
to be considered socially acceptable for drivers and can
therefore hardly be commercialized as consumer solutions.
On the other hand, industrial applications can easily integrate
wearable devices for drowsiness monitoring in mandatory
personal protective equipment such as helmets and gloves.

Focusing on the analysis of neurological signals, different
rythms can be separated from the raw EEG traces and used
to determine drowsiness conditions, using machine learning
algorithms [6]. However, inter-subject variability suggests
that physiological analysis by itself is not sufficient to provide
a strong enough generalization the drowsiness detection algo-
rithms [7], and many proposed solutions rely on supervised
and user-dependent approaches [8]. Furthermore, many of the
aforementioned approaches are based on bench-top compu-
tational platforms, which are not suitable for wearable form-
factored solutions. Keeping this in mind, this work, moving
from the system developed in [9] introduces a fully wearable
system capable of providing drowsiness alerts combining
physiological and behavioral features analysis. The two major
novels of the work are:

• the design and implementation of a wearable form-
factored board (Biowolf) capable of acquiring up to 8
EEG channels and process the real-time neural data via
a multicore chip (Mr. Wolf)

• the design of a semi-supervised learning algorithm based
on K-means clustering, that allows detecting drowsiness
levels in a user-independent fashion,

By fusing information coming from the acquisition and
processing of EEG signals (for monitoring of brain rhythms
and eye blinking ) and an Inertial Measurement Unit (IMU,
for monitoring head movements indicative of drowsiness,
such as nodding), the proposed approach detects 4 levels of
drowsiness, relying on the Nearest Centroid Classifier (NCC),
a Machine Learning (ML) algorithm that offers a compelling
trade-off between performance and computational power. The
system is capable of detecting in real-time drowsiness levels
with 83% accuracy, consuming only 6.1mW and offering up
to 60h of autonomy. It can easily be integrated into safety
protection devices like bump caps and helmets.



Fig. 1. PCB and hardware block diagram of BioWolf

II. SYSTEM SETUP

The system presented in this work is based on the detection
of behavioral and physiological indicators of drowsiness
extracted from three EEG and IMU sensors. EOG artifacts
on the EEG signals provide information about the blink
duration that increases when drowsiness is present. On the
other hand, the head gesture can also provide information
about drowsiness. We extract these features and process them
to ranks the drowsiness in four levels as indicated in Table
I. The classification relies on the Nearest Centroid Classifier
(NCC), a Machine Learning (ML) algorithm trained using
k-Means, an unsupervised clustering method, from data col-
lected experimentally of three test subjects, while meeting
the drowsiness parameter criteria for each level, as reported
in [9]. The entire classification is performed online on the
Biowolf platform.

In this section, we present details of the system, including
the feature extraction techniques, the training and classifica-
tion, and the deployment on BioWolf.

A. Embedded Architecture and Algorithm Implementation
BioWolf is a highly-configurable platform for acquisition

and embedded processing of biopotentials, supporting up
to 8 differential channels. It is based on a multichannel
commercial Analog Front End (AFE) and the Mr. Wolf
SoC [10]. It also integrates a Nordic nRF52832 SoC for
energy-efficient BLE connectivity to external devices and a
Texas Instruments BQ25570 power management IC for ultra-
low power conversion and energy harvesting. The application
makes use of three active EEG dry-electrodes placed accord-
ing to the standard 10-20 system in PO7, Oz and PO8. The
common reference electrode is placed in Fpz. Locations are
chosen to maximize SNR in the acquisition of both relevant
brain activity rhythms and eye blinking as needed by the ap-
plication and to be compatible with integration on head caps,
helmets and, headbands. The contact with the subject skin is
obtained through commercial dry-contacts (g.SAHARA from
g.tec Gmbh). Signal buffering is performed on the electrode
by a low-power, low-noise, rail-to-rail Operational Amplifier
(O.A., AD8603 from Analog Devices) connected in a non-
inverting configuration. This allows maximizing the SNR and
resilience to interference even when contact quality is low,
a typical occurrence in non-clinical settings. A protection
resistor is used to limit patient current in case of system
faults. To minimize the number of cables, the output signal
of the amplification stage is used also for providing power
supply to the O.A. with a forward-biased diode connecting

the output pin of the O.A. to the power supply [11]. The
output is biased by the following stage which entails a 10
kΩ resistor toward a 3 V power supply.

The AFE is the de-facto standard used in biopotential
acquisition platforms and presents a very favorable trade-
off between performance (especially noise level) and power
consumption. As only 3 channels are used for the application,
the other 5 are turned off to minimize power consumption.

Mr. Wolf SoC features eight near-threshold computing
RISC-V programmable processors and up to 64+512kB of
memory (L1 and L2, respectively), which provides the com-
putational power to the embedded platform. The SoC also
features a full set of peripherals managed by a multi-channel
I/O DMA to minimize CPU utilization. The two SoCs and
the AFE share the same SPI bus for data transfer.

An InvenSense MPU-9150 Motion Processing Unit (MPU)
is used to capture the user motion. The MPU is a 9-
axis motion tracking device that combines a 3-axis MEMS
gyroscope, a 3-axis MEMS accelerometer, 3-axis MEMS
magnetometer and a Digital Motion Processor hardware ac-
celerator. A 4×2 cm four-layer Printed Circuit Board (PCB)
assembles the described components. A block diagram and
PCB layout of the complete hardware is presented in Fig. 1.

B. Feature extraction of drowsiness indicators

EEG data are acquired using a three-channel configuration.
The first step of the preprocessing is to merge all the
information contained in the channels using the Principal
Component Analysis. PCA is a linear transformation which
represents data into a new reference system by maximizing
the variance contained in the original signals [12]. In this
case, we reduce the dimensionality of the input matrix to
a single vector, retaining up to 90% of the information.
From this 1-D vector, we extract the features used for the
drowsiness detection. Several features may reflect the state
of drowsiness in EEG signals, but they are mostly related
to the power in the lower bands of the EEG spectrum [13].
In this work, the first two features are based on the power
of the signal in the alpha band (i.e. 8-13 Hz). The first,
called Cumulative Alpha Power (CAP) accounts for bursts
of alpha waves, which are increasingly present as drowsiness
raises [13]. CAP is calculated by computing the alpha-band
power spectrum over a moving-average filter with a large size
(n = 2k, or 2 seconds).

The second feature, called Constant Alpha Waves (CAW),
aims to detect the closure of the eyes that is characterized
by a constant presence of alpha waves with a relative large
amplitude (1̃00µV) and it is extracted by evaluating the
signal power on the alpha band over a shorter moving-
average window (n=500 or 500 ms). In Fig. 3, an example of
the Alpha Waves power signal behavior is presented, which
occurs when a subject closes the eyes.

TABLE I
SYSTEM DROWSINESS LEVELS

Levels of alarms with meeting criteria

Level Description Parameters
- Fully awake subject (morning test) BD<0.5s & AW<Th1a
1 Increase of the blink duration BD>0.5s
2 Increase of the alpha wave activity AW>Th1a
3 Head gesture IMU
4 Closure of eyes AW>Th2b

Th1a AW over given threshold over a time window of 20 seconds.
Th2b AW over given threshold over a time window of 3 seconds.

Data samples were stored after reaching some drowsiness criteria (pre-
viously acknowledged [9]) for each level. Physiological parameters were
evoked by exposing the subject to drowsiness conditions or simulation.



Fig. 2. Block diagram of the feature extraction and classification

The third feature, namely Blink Duration (BD) is also
extracted from the EEG signal trace but it derives from an
artifact related to an extra-ocular muscles movements. BD
increases under drowsy conditions [2] and can be measured
by exploiting the EOG artifacts introduced in the EEG
signals. Fig. 4 shows the time-domain EEG signal (blue) and
the power associated with the 1 Hz component (red). BD is
estimated by calculating the time difference between a high
and low peak (generated in correspondence with the blink
duration) of the resulting signal.

The final feature is obtained by processing data from the
IMU sensor, in particular, we compute the magnitude of
the acceleration vector form the three cardinal coordinates,
smoothed out using a moving average window (n=1000). The
output values are used to assess the movement of the head,
where a low value characterizes a quietness, a high value
represents sudden gestures (like a sudden tilt of the head),
both present in drowsy conditions. Fig. 5 shows an example
of the feature output signal including four sudden tilts.

C. Semi-supervised training and classification
The classification is based on the Nearest Centroid Clas-

sifier, where the output will depend on the distance from the
average center of the labeled data (centroids). The learning
process relies on finding the positions of such centroids, and
it is performed automatically using the k-Means algorithm.
K-Means clusters data by an iterative process where it
first assigns a class label to all observations, as a function
of the distance from the current class centroids and then
reassigns such centroids to a new position in function of
the average position of the recently labeled data. We run
this on experimental data from three subjects simulating four
different drowsy conditions (k = 4 + 1).

The initial positions of the centroids play a crucial role
in the clustering. We compared two methods, the first one
based on random assignment, the second one providing a
portion of labeled data for fixing the initial centroid positions,
which has been demonstrated to be helpful in increasing the
robustness of this approach [14]. This is confirmed by our
results presented in section III. Fig. 2 summarizes the process
of feature extraction and classification.

Our proposed algorithm for the detection of the four
levels of drowsiness was implemented taking advantage of

Fig. 3. Average normalized signal power in the Alpha band (8-13 Hz)
computed on moving windows of 500 ms

Fig. 4. Blinks in time/frequency domain. In blue, the original EEG signal
with blinks artifacts. In red, 1-Hz signal energy, extracted using the STFT

the parallel capabilities of the hardware. The parallelization
was performed using the OpenMP directives to distribute
the workload of the kernels among the cores. Some of the
PCA kernels are mostly executed sequentially due to iteration
dependencies and workload unbalance, while the remaining
are executed using four cores due to the small quantity of
data. On the other hand, the FFT is fully parallelizable. Based
on a radix-8 algorithm, each FFT butterfly performs a single
Discrete Fourier Transform among eight samples in three
stages. In this case, the speed-up performance is only limited
by the number of FPUs (2) available on the MCU.

III. EXPERIMENTAL RESULTS

Complete testing of a drowsiness detection system is a
complex task, which requires to be performed in a real-
case scenario, possibly exposing test subjects to dangerous
conditions, and it is therefore outside the scope of this paper.
While simulators could provide a similar experience, it is
acknowledged that the reactions of the subjects may not be
trustful due to the awareness of being in a safe environment
or distractions created by the experiment itself [18]. On the
other hand, general guidelines for drowsiness detection have
been introduced in previous investigations [19] and we can,
therefore, rely on these results. The sampling and labeling of
our datasets has been performed by carefully checking that
drowsiness criteria are satisfied by the subject for each level,
as indicated in Table I.

A. Classification performance
As introduced before, the NCC classification depends on

the distance of the observation with respect to the class
centroids, which contains information about the model of
the classifier. K-means is used to determine the centroids’
positions from the data collected from three test subjects
simulating four different drowsiness levels. Nevertheless, the
model can perform adversely if the initial conditions are
not chosen adequately during the training phase. Using two-
fold cross-validation, we test two different training strategies.
The first trains the model starting from randomly-initialized
centroids, while in the second we provide a certain amount
of labeled data to help the clustering. Table III demonstrates
that the second approach leads to significant advantages. This
is further confirmed by the online testing results reported in

Fig. 5. Four nodding gestures extracted from the IMU sensors



TABLE II
COMPARISON BETWEEN THE DIFFERENT SOA SYSTEMS AND THE CURRENT IMPLEMENTATION

Author Method Advantage Disadvantage Accuracy[%] Platform Intrusive
[15] EOG, NNA Online Single feature 87 Embedded NO
[6] EEG, Neural Network Single EEG Channel Training, Offline 83 L. Computer -
[16] Camera, AdaBoost classifier No training Single feature 94 Emb. Computer YES
[17] NIRS, EEG, Alpha Pw Portable Noise, Redundant Measurements 65-88 Microcontroller NO

This Work EEG, IMU Mult. features, Low-power Noise 83 Microcontroller NO

Table IV, showing an average accuracy of 83%, with L3 and
L4 above 90%, ensuring the detection of the most critical
drowsiness states.
B. Power consumption

As the majority of the wearable systems, an important
aspect to take into account is the battery duration. In our
system, the total power of the device is around 6.17 mW,
which is a contribution of the three main chips mounted on
the board. The AFE is responsible for 36% of the power
whether the Nordic MCU employs 43%. The remaining
power consumption derives from Mr. Wolf, and it is the
result of the parallelization, the optimizations, and several
power management techniques. Each 8ms a new window of
data is elaborated (8 samples overlap). The cluster elaborates
the entire processing chain in less than 1ms working with
an operative frequency of 100MHz at 0.8V. During the
processing, only the required cores of the cluster are clocked
up avoiding energy loss. When the MCU is in idle, we
power off the cluster and part of the SoC (sleep mode) to
further reduce the power consumption. As a result, our system
delivers up to 60h of autonomy with a 200mAh battery,
which can be further extended using the energy harvester
subsystem. The resulting system exceeds the autonomy of
current SoA systems [17], while providing an unobtrusive
and fully wearable device for the detection of the drowsiness.
C. Comparison with SoA

Table II presents a comparison between the current drowsi-
ness detection devices and the one presented in this work.
Newer implementations make use of bench-top PCs to
evaluate the drowsiness indicators since they require more
computational effort, like in [6] where a Neural Network is
used to detect the drowsiness. Our proposed implementation
leverages a nimbler algorithm while exploiting behavioral and
physiological parameters from many sources, thus, increasing
the robustness of the detection. Indeed, systems in [15]
and [16] only achieve higher accuracy on a single drowsi-
ness parameter, hence they lack multi-parametric robustness.
Moreover, the BD feature can estimate blink parameters with
the same accuracy as camera-based systems like [16], while
offering portability and unobtrusiveness at a much lower
power budget. Our current system can be easily integrated
into safety devices used in industry and mining activities,
extending the battery life much further than other already
available systems [17].

Nevertheless, our system can benefit from further improve-
ments regarding accuracy, number of features, sensor fusion,
and classification techniques. Also, advanced noise filtering
can be adopted to provide robustness to EEG signals. As a
matter of fact, the CPU utilization of the current application

TABLE III
K-MEANS OFFLINE TEST PER LEVEL

Method L0 L1 L2 L3 L4 Avg
Random 0.54 0.65 0.40 0.85 0.95 0.67
Pre-labeled 0.73 0.71 0.71 1.00 1.00 0.83

TABLE IV
ONLINE ACCURACY PER LEVEL

Method L0 L1 L2 L3 L4 Avg
T1 0.83 0.72 0.74 1.00 0.95 0.84
T2 0.79 0.75 0.64 0.95 0.93 0.81
T3 0.82 0.74 0.70 0.96 0.94 0.83
Avg 0.81 0.74 0.69 0.97 0.94 0.83

on Mr. Wolf is extremely low (<10%), leaving plenty of
room for more advanced computational analysis. Similarly,
the system could be scaled to body-worn fashion by making
use of in-ear/out-the-ear electrodes.

IV. CONCLUSIONS

This work presents a drowsiness detection system featuring
BioWolf, a Parallel Ultra Low Power platform, for biosignal
processing that allows on-board, online and real-time clas-
sification. The system provides a high degree of wearability
and embedded capabilities that can be easily integrated into
safety protection devices. Our system, as demonstrated in
the previous chapters, is in line with current SoA systems
while consuming only 6.1mW, allowing a significant boost
in battery life that can be further extended using the energy
harvesting subsystem of BioWolf. This work further increases
the capabilities of our previous system being more efficient,
less intrusive, paving with it the way for a complete and
universal wearable solution for drowsiness detection.
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