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A Fully Programmable eFPGA-Augmented SoC
for Smart Power Applications

Francesco Renzini, Claudio Mucci, Davide Rossi, Eleonora Franchi Scarselli, Member, IEEE,
and Roberto Canegallo

Abstract—This paper proposes a reconfigurable System-on-
Chip (SoC) for smart power applications. The system is composed
of an ultra-low-power microcontroller for standard software
programmability, coupled to an embedded-FPGA (eFPGA) to
perform control-driven applications and lightweight digital signal
processing, at a lower power consumption and higher respon-
siveness than with processor-based execution. To the best of the
authors’ knowledge this is the first heterogeneous reconfigurable
SoC targeting smart power applications. The SoC targets BCD
technologies integrating Bipolar, CMOS and DMOS devices, typ-
ically featuring a small amount of metal layers when compared to
traditional CMOS technologies. The added value of the proposed
system is that the digital system is fully synthesizable, since the
eFPGA is based on a soft-core approach. The paper presents the
results of integrating an eFPGA with a computational capability
of ' 1k equivalent gates in STMicroelectronics 90 nm BCD
technology featuring five metal layers and high-k transistors. We
benchmarked our architecture on a wide range of applications
relevant to the smart power domain. eFPGA integration in SoCs
introduces a 20–27% area overhead, but has a straightforward
benefit in terms of energy consumption which proves reduced
from about 10× to 800×. In terms of latency, the eFPGA
implementation allows a gain from 8× to 145× comparing the
pure cycles count.

Index Terms—Embedded FPGA, Microcontroller, SoC, Smart
Power.

I. INTRODUCTION

AN increasing amount of applications, often referred to
as the “Internet of Things” (IoT), require deeply embed-

ded intelligent systems (a.k.a. the end-nodes of the IoT) to
connect to each other and interact with the real-world (cyber-
physical interaction). This paradigm requires systems capable
of sensing the environment, elaborating the data acquired,
transmitting compressed information and - last but not least -
providing feedback to physical objects [1].

The control and processing unit of the end-nodes can
be either software-programmable, hardware-programmable or
hardwired in an Application Specific Integrated Circuit (ASIC)
as well as a combination of these solutions, in a more general
scenario. Software-programmability is the most flexible op-
tion, as it allows one to employ microprocessor (µP) or Digital
Signal Processors (DSPs) which execute a software program,
implementing acquisition, processing, and wireless stacks.
The hardware-programmable devices are Programmable Logic
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Devices (PLDs), nowadays led by Field Programmable Gate
Arrays (FPGAs). This kind of device adapts its configurable
architecture, hence its functionality, based on applications
requirements and is typically more powerful and efficient than
software-based solutions for compute intensive tasks. On the
other hand, the development time for FPGA applications is
much longer than the software one. ASICs typically provide
the best performance in terms of power consumption and area
occupation; however their hardwired functionalities do not
allow these systems to be reused for different application do-
mains, entailing significant Non-Recurring Engineering (NRE)
costs, which somehow limits their utilization in generic IoT
applications.

Microcontrollers (µC) integrate microprocessor and/or DSP
architectures with some peripherals, which are useful to per-
form the physical world interaction, such as General Purpose
I/Os (GPIOs), Pulse Width Modulation (PWM) controllers,
analog-to-digital and digital-to-analog converters. System-on-
Chips (SoCs) which implement both microcontroller and em-
bedded FPGA (eFPGA) have been proposed to achieve a good
compromise in terms of flexibility and performance. Software-
programmable devices are probably the most commonly used
digital controllers, thanks to their computation unit, useful
configurable peripherals and relatively low cost. Since control
application requirements have become more stringent from the
viewpoint of processing time and the number of I/Os, many
designers have opted for a combination of both software-
programmable and hardware-programmable devices [2]. In
addition, software-programmable devices are not convenient
to perform compute-intensive kernels due to their inherent se-
quential mode of operation, whereas hardware-programmable
devices - thanks to their fixed parallel structure - enable one
to improve the efficiency and timing performance - switching
frequency - [3]–[5]. On the other hand, advanced FPGAs such
as the ones commercialized by Xilinx or Intel are significantly
more expensive than MCUs, hence not suitable for an IoT
scenario where smart power systems are massively deployed.

In this paper we focus on the smart power area where the
end-nodes need both to manage simple control policies and to
interact with the real world - e.g. motion and lighting control
[6] [7]. Among the numerous definitions of smart power, the
one presented in [8] is the coexistence of both “force” -
power electronic - and “intelligence” - CMOS circuits - in
the same chip. Compared to current commercial off-the-shelf
microcontroller systems, smart power technologies allow on-
chip integration of power devices which are typically hosted
on PCBs or Systems-in-Package in traditional systems, with a
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significant benefit in terms of miniaturization and cost. On
top of that, for an IoT scenario, Ultra Low-Power (ULP)
methods (e.g. sleep walking, power gating) can also be applied
to this kind of system to keep energy/power consumption
under control. In particular, BCD technology allows one to
integrate in a single die Bipolar, CMOS and DMOS transistors
for power circuits [9]. BCD technology has proven to be
suitable for sensors [10] and actuators [11]. Traditionally,
the systems realized in BCD technologies were implemented
as ASICs due to the less scaled nature of this technology
with respect to traditional CMOS and to the limited amount
of metal layers, which increase the overhead of the routing.
However, the scaling of BCD’s CMOS transistors, down to 90
nm and beyond, makes this technology suitable for integration
of mid-complexity digital circuits like µCs. This allows one to
enable BCD utilization in the IoT arena [12], which requires
additional features such as wireless stack implementation,
radio interfaces, etc.

To the best of the authors’ knowledge, in this paper we
present for the first time a heterogeneous smart power digital
core system integrating a microcontroller coupled with an
embedded FPGA. The whole digital core is fully-synthesizable
in standard cell libraries, in order to be both portable to
different technology and adaptable to a preexisting floorplan -
as with smart power BCD technology where area occupation is
dominated by power transistors. The digital core presented in
[13] - where an implementation in 130 nm BCD technology
was discussed - is implemented in 90 nm BCD technology
featuring 5 metal layers. The eFPGA is tailored for simple
controllers, hence it has small computational capability -
about 1k equivalent-gates. We evaluate several applications
relevant to a wide range of connected smart power devices
and we compare the eFPGA performance with respect to
open-source embedded microcontroller, commercially avail-
able microcontroller and ASIC solutions. In the energy-aware
analysis we demonstrate the energy efficiency of the eFPGA in
handling different kinds of smart power applications, achieving
a 10×–800× energy gain over microcontroller architecture.
Hence, the eFPGA can manage smart power tasks, while the
microcontroller can handle other computations such as high-
level communication stack or data processing or if this is not
required it can be switched to sleep-mode to reduce power
consumption.

The paper is organized as follows: Section II provides a
reminder of related works. In Section III we present the
proposed digital core architecture, while the implementation
results are described in Section IV. The energy efficiency and
computational base model are described in Section V. An
applications analysis and relative results are given respectively
in Sections VI and VII. The conclusions are summarized in
Section VIII.

II. RELATED WORK

The programmable devices scenario is summarized in Table
I, including all the solutions from standard µC to advanced
SoC augmented by eFPGAs which allow one to implement
digital control. In the remainder of this section an analysis of

Fig. 1. Programmable devices scenario.

those solutions will be presented. In Table I “eq. gates” is the
computational capability of the reconfigurable device, while
“soft/hard IP” means that the device is either synthesizable or
based on a hard-macro approach. Fig. 1 shows an analysis
of manufacturing costs versus system complexity with the
different solutions.

A. Microcontrollers

There exists a huge variety of microcontrollers with dif-
ferent peripherals and for different applications. Every µC
has almost a complete set of peripherals such as configurable
PWM controllers, timers, GPIOs, etc. In Table I we refer
to a commercial µC [14] and to an open-source solution
[15]. The main idea is to move the computational load for
a specific application from the processor to a more efficient
peripheral/IP connected to the microcontroller bus. Depending
on the application requirements there exists a huge variety
of microcontrollers equipped, for instance, with a Floating
Point Unit (FPU), LCD controller, camera controller, etc.
[29]. Microcontrollers have also been developed for exam-
ple with either ultrasonic sensing peripherals [30], brushless
motor controller [31] or radio communication interfaces [32].
Microcontroller complexity goes from an 8-bit core to a high-
end 32-bit multi-core µC [33] tailored for high-performance
computing, hence manufacturing costs are strongly related
to the circuit complexity as reported in Fig. 1. The main
advantage of microcontrollers is the ease of programmability,
but on the other hand they do not allow one to design an
ad-hoc dedicated controller.

B. FPGAs

Nowadays FPGAs are used in a wide range of applications.
They were historically used for high-density and parallel
computations as well as neural network accelerators [34],
but also for power electronics applications [2]. Typically,
FPGAs are designed with a hard-macro approach, repeating
the optimized basic block so as to realize a huge-sized IP with
enormous computational capability. The more commonly used
technologies are: CMOS from 130 to 40 nm, 22 nm FD-SOI
or advanced CMOS technology with FinFET. These kinds of
technology have a greater number of metal layers than standard
technologies for both routing and power distribution and for
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TABLE I
PROGRAMMABLE DEVICES SCENARIO

Applications Technology Metal Temp. IP Area embedded eq.
Layers Range [◦C] [mm2] MCU/FPGA gates

µC STM32 [14] Gen. Purpose CMOS n.a. -40–125 soft medium 3/7 n.a.
PULPinoa[15] Gen. Purpose CMOS 65 nm 9 -40–125b soft medium 3/7 n.a.

FPGA
Xilinx [16] Gen. Purpose Adv. CMOS > 10 -55–125 hard huge 7/3 ≤ M

Intel [17] Gen. Purpose Adv. CMOS > 10 -40–130 hard huge 7/3 ≤ M
QuickLogic [18] Gen. Purpose Adv. CMOS > 10 -55–125 hard huge 7/3 < M

µFPGA iCE40 [19] Rec. I/Os/Accel. CMOS 40 nm n.a. -55–125 hard small 7/3 0.4–8 k
IGLOO2 [20] Rec. I/Os/Accel. CMOS 65 nm n.a. -55–125 hard small 7/3 < 150 k

eFPGA

[18], [21], [22], [23] Accelerator Adv. CMOS n.a. -40–125 hard big 7/3 < M
Kim2017 [24] Accelerator CMOS 65 nm n.a. n.a. soft n.a. 7/3 n.a.

Cuppini2015 [25] Accelerator CMOS 65 nm 7 -40–125 soft 0.4/0.2c 7/3 1 k
Cuppini2015 [25] Smart Power BCD 110 nm 4 -40–150 soft 1.2/0.7c 7/3 1 k

SoC

Borgatti2003 [26] Reconf. I/Os CMOS 180 nm 6 n.a. hard 20 (8.2)d 3/3 15 k
XiSystem [27] Periph/Acceler CMOS 130 nm 6 -40–125b hard 42 (6)d 3/3 15 k
Morpheus [28] Periph/Acceler CMOS 90 nm 7 -40–125b hard 110 3/3 15–100 k

[16], [17] Gen. Purpose Adv. CMOS > 10 n.a. hard huge 3/3 ≤ M

Proposed SoC Smart Power BCD 90 nm 5 -40–150 soft 1.78 (0.347)d 3/3 1 k
a Imperio implementation (http://asic.ethz.ch/2015/Imperio.html)
b Personal communication
c Max speed/Min area implementations
d System area (eFPGA area)

this reason FPGAs tend to be expensive. These advanced
technologies have several metal layers for routing which
make the place and route easier. Nevertheless, these kinds of
technology are not typically qualified for high temperatures
such as 150 ◦C. The main drawback of FPGAs is the high
manufacturing cost of producing complex devices such as
shown in Fig. 1. Some companies such as [19] and [20] have
designed small FPGAs (µFPGA in Table I) in non-advanced
CMOS technologies in order to reduce the device costs; they
are tailored for reconfigurable I/Os and simple accelerators.
The FPGAs do not have an embedded microprocessor for
software-programmability, hence if one needs a processor one
has to implement a soft-processor in the FPGA - which is not
always possible in µFPGAs due to their small dimensions.
In addition, implementing a soft-processor will not guarantee
high energy efficiency because the processor is mapped in
programmable-hardware and not in custom circuits. Thus,
FPGAs are oversized for smart power applications - as shown
in Table I and Fig. 1 - and although µFPGAs are the right
size, they are still without processors.

C. Embedded FPGAs

There are several semiconductor companies developing em-
bedded FPGA IPs, such as [18], [21]–[23] to increase system
flexibility based on the applications requirements. These kinds
of eFPGA are large-size devices - up to about 1M equivalent
gates - optimized at transistor level for speed and area density.
The eFPGAs are designed by the vendors for a specific
technology - from standard to advanced CMOS as reported in
Table I and Fig. 1 - in order to both employ as few metal layers
as possible - to reduce the manufacturing costs - and increase
density to improve the yield. Typically, these large eFPGAs
are designed with a hard-macro approach, but smart power

SoCs are typically analog-on-top - because area occupation is
dominated by both analog and power circuits - and therefore
a soft-core approach is mandatory.

The commercially available eFPGAs are usually used as
hardware accelerators e.g. sensor interface preprocessors for
machine learning or security algorithms, etc. The eFPGAs
available on the market are useful for high-density computing
and they allow one to fit computing architecture to specific
tasks, thus improving the performance in terms of speed and
efficiency. On the other hand, there also exist synthesizable
FPGAs, e.g. [24], which uses the open-source Verilog-to-
Routing (VTR) tool. Nevertheless, VTR is only able to model
island-style FPGAs - two dimensional arrays of logic blocks
with horizontal and vertical routing channels. One also finds
synthesizable eFPGAs with a datapath-oriented structure [35].
Our proposed eFPGA is fully-synthesizable - soft IP as re-
ported in Table I - as shown in [25] and the interconnection
network is based on a multi-stage switching network [36].
This type of interconnection network allows full-routability
and provides sustainable area overhead in small-size devices.

D. System-on-Chips

System-on-chips are very attractive as digital controllers
because they integrate both a microcontroller and an eFPGA
in the same integrated circuit. Hence SoCs provide the best
system flexibility, combining software- and hardware- pro-
grammability. In one pioneering work [26] the eFPGA is used
for reconfigurable I/Os while in the systems proposed in [27]
and [37] the eFPGA is adopted for custom peripherals and
accelerators e.g. binarization and Ethernet MAC. As reported
in Table I, these SoCs are too complex - hence expensive - for
smart power applications and they are based on a hard-macro
eFPGA approach just like the SoCs available on the market

http://asic.ethz.ch/2015/Imperio.html
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Fig. 2. Reconfigurable SoC.

[16] [17], for which most of the considerations previously
made for standalone FPGAs still apply.

The proposed SoC allows both software- and hardware-
programmability allowing the system to be flexible. It uses
a soft-core approach to adapt its floorplan for smart power
devices and is realized using 5 metal layers reducing the man-
ufacturing costs. The eFPGA has a computational complexity
of 1k equivalent gates and hence is tailored for smart power
applications. Thus, to the best of our knowledge the proposed
SoC is the first heterogeneous integrated circuit, including both
a microcontroller and an eFPGA and targeting smart power
IoT applications.

III. SYSTEM-LEVEL ARCHITECTURE

In this section we describe our proposed system architecture.
We propose a digital circuit, as introduced in [13], which
consists of a PULPino microcontroller [15] coupled with an
embedded FPGA template [25] [38]. The interfacing is done
through an AMBA Advanced Peripheral Bus (APB) as shown
in Fig. 2. The processor manages the eFPGA like any other
standard peripheral. Thus, when reading and writing registers
at certain addresses defined in the RTL code, the micropro-
cessor is able to fully-program the eFPGA. It is possible to
set a frequency-divider (prescaler) to divide the system-clock-
frequency for the eFPGA according to application needs. The
processor can select the source and the destination of the
eFPGA I/Os, which can be either primary I/Os or internal
registers. The core can also reprogram the eFPGA at any time,
writing the configuration bit-stream into the configuration
memory of the eFPGA. The whole digital structure is soft-
core, which means it is described by a synthesizable HDL
code, useful for a standard cell design flow.

A. Microcontroller

PULPino is an open-source ultra-low-power microcon-
troller. It has a single-core processor, based on an implemen-
tation of the RISC-V instruction set architecture optimized
for low-power and high-energy-efficient computing. Regarding
processor implementation, it is possible to use either a 32-bit
4-stage RI5CY pipeline or a 32-bit 2-stage Zero-riscy pipeline
or a 32-bit 2-stage Micro-riscy pipeline without any hardware
multiplier. In this work we used the 4-stage core. Since
PULPino is a microcontroller, it also has traditional peripherals

Fig. 3. The eFPGA subsystem interfaced through APB bus.

such as serial communication interfaces, timers, an interrupt
controller and general purpose I/Os. The implemented system
has 32-bit 4k-word static RAM for both instruction and data
memory.

B. Embedded FPGA Sub-System

The embedded FPGA is a soft-core Intellectual Property
(IP). Unlike commercial embedded FPGAs that use a hard-
macro approach to optimize area occupation and performance
at a transistor level, the proposed eFPGA is fully-synthesizable
in standard cell libraries. Fig. 3 illustrates the eFPGA subsys-
tem which consists of the actual Programmable Logic Device
(PLD) which has 64 I/Os, a prescaler, a configuration loader
and configuration registers accessible by the bus. The PULPino
core addressing the CONFIG-LOADER REG register via the
bus writes the configuration bit-stream into the configura-
tion memory of the PLD thanks to the configuration loader
(CONF. LOADER of Fig. 3). Depending on the application
requirements, the processor can configure both the eFPGA
clock frequency - programming the prescaler through the
CONFIG-PRESCALER REG - and the source of the PLD
inputs - writing the CONFIG-PLD REG selecting primary
inputs or a register. The prescaler is used to divide the system-
clock frequency by a factor ndiv = 1–216 based on both
application reactivity needs and critical-path. The prescaler
can also switch-off the eFPGA clock when it is not required,
in order to reduce the dynamic power consumption. During
task execution, the microprocessor can both program the 64
eFPGA inputs writing in eFPGA-IN REG (with 8-bit banks),
and read the 64 eFPGA outputs (with 8-bit banks) to check
or interact with the eFPGA - if required by the application.

1) Embedded FPGA Architecture: The soft-core of the
embedded FPGA (PLD block of Fig. 3) has 64 inlets/outlets
and a dimension of about 100k equivalent-gates. The PLD is
provided by 16 Configurable Logic Blocks (CLBs) and the
configuration memory is made of latches replacing traditional
SRAM cells so as to guarantee synthesizability. The eFPGA
interconnection network is a Multi-Stage Switching Network
(MSSN) with a butterfly-oriented topology (Fig. 4). This kind
of network provides synthesizability and non-blocking routing
features. Each CLB has 12 I/Os and 3 Basic Logic Elements
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Fig. 4. Diagram of the eFPGA.

Fig. 5. eFPGA CLB structure [25].

TABLE II
API FUNCTION PROTOTYPES

Function Name Description

reset efpga() resets the efpga
setup efpga(efpga addr, data ptr) manages configuration registers
set in efpga(bank addr, value) writes eFPGA inputs
read out efpga(bank addr) reads eFPGA outputs

(BLEs), which can be used as either 2×LookUp Table (LUT)
4:2, 2×LUT 5:1 or 1×LUT 6:1 as shown in Fig. 5. [25] and
[36] respectively describe the eFPGA structure and the MSSN
characteristics. The computational capability of the eFPGA
is about 1k equivalent-gates and this under exploitation of
the occupied area - 100k eq. gates area occupation and 1k
eq. gates of computational availability - is clearly due to the
reconfigurability.

2) eFPGA Software Tools: A complete CAD flow for
the proposed eFPGA was implemented as explained in [25].
The flow starts with an HDL code technology independent
presynthesis in logic operators and flip-flop functionalities
using Synopsys Design Compiler [39]. Then VTR provides
the logic synthesis and LUT mapping and Versatile Place and
Route (VPR) tool provides LUT packing and placement, while
a custom tool is used to configure routing.

C. Application Programming Interface

In the proposed heterogeneous system, the task partitioning
between microcontroller and eFPGA is arranged by the appli-
cation designer. We developed the procedures for the PULPino
code summarized in Table II. The reset efpga function resets

Fig. 6. Digital core BCD 90 nm implementation.

TABLE III
IMPLEMENTATION RESULTS

Implementation

Technology BCD 90 nm
Frequency 50 MHz
System Area 1.78 (1.3) mm2

eFPGA Area 0.347 mm2

eFPGA Area % 19.39 (26.69) %

the eFPGA, while setup efpga configures both the inter-
connection network and the CLBs writing in the CONFIG-
LOADER REG of Fig. 3. The setup function programs the
prescaler setting and the PLD inlets writing in both CONFIG-
PRESCALER REG and CONFIG-PLD REG of Fig. 3. The
microcontroller can handle eFPGA inputs by writing in the
eFPGA-IN REG through the set in efpga function and reads
the eFPGA outputs by reading the eFPGA-OUT REG with the
read out efpga function.

IV. IMPLEMENTATION RESULTS

We implemented the digital core of the system-on-chip in
STMicroelectronics BCD technology at 90 nm with 5 metal
layers for the routing, using a standard cell design flow. Fig.
6 shows the whole digital core layout implemented with a
target frequency of 50 MHz. The overall area occupation
is 1.78 mm2 with about 75% of row utilization - 1.3 mm2

without considering the memory area. Fig. 6 shows two 16 kB
SRAM for data and instructions - bottom side big rectangles
- the soft-core eFPGA which has an area occupation of 0.347
mm2 - and the PULPino microcontroller which includes RISC-
core, standard peripherals and other control logic blocks. The
eFPGA area overhead is 19.39% (26.69% without considering
the memory area). The implementation results are summarized
in Table III where the values in brackets do not consider the
memory area.

V. ENERGY EFFICIENCY MODEL

In this section we analyze the energy performance of the
proposed architecture in carrying out various kinds of applica-
tion. We evaluated the energy-efficiency of the eFPGA in man-
aging a specific task compared to PULPino. We also consider
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Fig. 7. Measurement setup and current profile.

other solutions, such as both the commercial microcontroller
- STM32L152RE which integrates dedicated peripherals - and
ASIC solutions - to give an idea of a dedicated solution that
has the best achievable performances - implemented in the
same technology as our proposed digital core.

At the beginning we considered control applications, then
streaming tasks and in the end ultra-low-power application.
Through this comparison, we evaluated how energy-efficient
the proposed embedded FPGA is in managing different kinds
of application and in general the efficiency of the proposed
digital system as a system-on-chip core. The results are
summarized in Table IV and Fig. 12.

The energy data of both the PULPino-eFPGA system and
the ASIC implementation were obtained after parasitic back-
annotation, coming from physical synthesis. The average
dynamic powers PeFPGA, PPULP and PASIC were esti-
mated by annotating simulation-based switching activity using
Value Change Dump (VCD) files including also Clock Tree
Synthesis (CTS) power estimation. The physical synthesis
flow adopted was industrially qualified by the foundry to
correlate well with implementation - Section IV - and silicon.
The physical synthesis was performed in STMicroelectronics
BCD technology at 90 nm using Synopsys Design Compiler
Graphical, while the power estimation was computed using
Synopsys PrimeTime-PX in typical conditions (1.2 V and 25
◦C).

For the STM32, power estimation was performed from
experimental measurements. The STM32 was configured with
a Multi-Speed Internal (MSI) clock in Range 3 at 524.288
kHz, with a supply voltage of 1.8 V which corresponds to a
core supply voltage of 1.2 V [14]. We measured the average
supply current - keeping the processor in low-power sleep
mode - and then we computed the average power consumption
PMEAS . Fig. 7 shows the measurement setup used, mostly
based on STM LPM01A which is capable of both supplying
power and measuring current consumption. The STM32L1
microcontrollers are realized in 130 nm technology [40] so,
to compare its energy performance with our implemented
digital core (1.2 V at 90 nm), we scaled the measured power
consumption following the generalized scaling theory [41]

with: 
κ =

VDDMEAS

VDDBCD

=
1.8V

1.2V

λ =
LMEAS

LBCD
=

130nm

90nm

(1)

Hence, the power consumption comparable with BCD tech-
nology power consumption PSTM32 is:

PSTM32 =
PMEAS

λ · κ2
(2)

In order to make a right comparison between the different
implementation efficiencies - eFPGA, PULPino, STM32 and
ASIC - we needed to evaluate the average energy per task.
For the eFPGA solution, following the model in [13], from the
eFPGA average power consumption we obtained the eFPGA
energy per task as power density PdeFPGA

multiplied by the
number of clock cycles:

EeFPGA = PdeFPGA
· ntick =

PeFPGA

feFPGA
· ntick (3)

where PeFPGA is the average power consumption estimated
with PrimeTime-PX back-annotating switching activity from
VCD file, feFPGA is the operating clock frequency of the
eFPGA and ntick is the number of clock cycles to execute the
specific task.

The energy per task of PULPino is defined as power density
PdPULP

multiplied by the number of instructions:

EPULP = PdPULP
· ninsn =

PPULP

fPULP
· ninsn (4)

where PPULP is the PULPino average power consumption,
fPULP is the clock frequency of PULPino and ninsn is the
number of assembly instructions to execute a specific task.

For the energy per task of the second microprocessor
architecture, the idea is the same as equation (4), multiplying
the power density PdSTM32

by the number of instructions
needed for the specific task:

ESTM32 = PdSTM32
· ninsn =

PSTM32

fSTM32
· ninsn (5)

where PSTM32 is the measured power consumption scaled to
BCD technology using equation (2) and fSTM32 is the STM32
clock frequency.

The ASIC implementation is similar to eFPGA - equation
(3) - for energy estimation, that is: the power density PdASIC

multiplied by the number of clock cycles ntick:

EASIC = PdASIC
· ntick =

PASIC

fASIC
· ntick (6)

where PASIC is the ASIC average power consumption, fASIC

is the ASIC operating clock frequency and ntick is the number
of clock cycles to execute a specific task.

Considering the energy per task and not the power, it is
possible to compare the performances of the different solu-
tions. Table IV summarizes all the application results where
the equivalent gates are computed comparing a 4 transistor
standard cell area. Obviously, the ASIC implementation is the
best feasible solution in terms of energy efficiency and area
occupation - compared to Table III - even though it is not
programmable.
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We define the energy gain between PULPino and the eFPGA
as:

EGAIN =
EPULP

EeFPGA
(7)

This model is clearly pessimistic for the eFPGA because, in
our estimation EPULP does not take into account processor
pipeline stalls, assuming that the microprocessor executes
one instruction per cycle. This ratio evaluates whether a
specific task is better managed in the microprocessor or in
its programmable peripheral to increase the energy efficiency
of the proposed system-on-chip. Furthermore, the energy gain
is useful to justify the non-negligible area overhead due to
reconfigurability through adding the eFPGA, as shown in
Table III.

VI. APPLICATION RESULTS

A. Control Applications

Control applications are a class of application where the
computational base model is well described through a Finite
State Machine (FSM). Hence, the digital controller has to
generate specific outputs based on the inputs and the internal
state. For this reason, control applications are event-driven
applications. Typically, in this case it is necessary to manage
certain physical quantities - e.g. average voltage or current
based on some kinds of input - for switching regulators, motor
controllers, smart-switches. As we will analyze, the eFPGA
is more efficient than a processor in handling FSMs because
the microprocessor is oversized for a simple FSM with few
states, inlets and outlets. The whole processor pipeline also
has to work to update even a few bits and it needs to access
the instruction memory. The processor reads which instruction
has to be executed every clock cycle. Potentially it might have
to read and write-back data. Since control applications are
event-driven ones, the most efficient way to implement them
with a microprocessor is based on the interrupt paradigm.
However, in this approach Interrupt Service Routines (ISRs)
have a prologue and epilogue which significantly affect power
consumption. The system latency depends on both clock
frequency and the number of clock cycles to execute the task -
ntick and ninsn in Table IV. For this reason, implementations
based on the hardware-paradigm, be it ASIC or FPGA-based,
are more reactive than processor-based solutions, since they
respond in just 1 cycle. To achieve the same latency a proces-
sor needs to increase the operating working frequency by an
' ninsn factor (assuming 1 instruction per cycle) producing
a straightforward drawback in terms of power. As control
application examples we considered: Pulse-Width Modulation,
RGB LED and both brushed and stepper motor controller.

1) Pulse-Width Modulation: Pulse-Width Modulation
(PWM) is probably the most popular and simple technique to
modulate a physical quantity. PWM consists in the generation
of a rectangular waveform - with both a programmable period
and a duty cycle - to modulate the average value of the
physical quantity.

We implemented a PWM controller with an 8-bit pro-
grammable period and duty cycle in the eFPGA using 7 of
the 16 CLBs. We synthesized the same HDL code in an

ASIC version and obtained a block of 156 equivalent gates.
Since PULPino does not have a PWM peripheral, in order to
implement a PWM controller we needed to use two timers to
make the timing and the ISRs manage I/Os while the core was
in sleep mode to reduce the power consumption.

In order to have an idea of a commercial microcon-
troller equipped with a PWM peripheral, we measured the
power consumption of the ultra-low-power microcontroller
STM32L152RE, setting the processor in low-power sleep
mode. Initially, we carried out the measurements switching
off all the peripherals and setting GPIOs in analog mode,
then we activated only timer 3 (TIM3) and GPIO port B.
The power consumption change is due to the peripheral used
to implement the PWM controller and is scaled in BCD
technology following equation (2). The resulting energies per
task are: 16.69 pJ for eFPGA, 7576.8 pJ for PULPino, 0.267
pJ for ASIC and 3.185 pJ for STM32 as reported in Table IV.

Obviously, ASIC has the best energy efficiency despite
lacking programmability. The absence of a PWM peripheral in
PULPino has a negative impact on energy efficiency because
the core has to wake up from sleep mode, fetch and execute
instructions just to update a few bits of the FSM. Implementing
a PWM controller employing an eFPGA rather than PULPino
allows one to achieve an energy gain EGAIN of 454. Use of
the STM32 peripheral yields good performances in terms of
both power consumption and programmability - these kinds
of peripheral have many configuration parameters - without
achieving the wide reconfigurability of the eFPGA.

2) RGB LED Controller: An RGB LED controller has to
generate three different PWM signals for any colour compo-
nent (Red, Green and Blue) [42]. Modulation of a channel
duty-cycle produces an alteration in a colour component.
Moreover, the RGB LED controller is very similar to the
previous application, hence the analysis is the same. We
designed a controller with an 8-bit programmable period and
3 × 8-bit programmable duty cycles for the three colour
components. The controller needs 11 CLBs and the energy
per task of the eFPGA EeFPGA is 22.76 pJ. The ASIC
implementation requires just 260 equivalent gates and its
energy per task EASIC is 0.373 pJ. This controller was not
implemented in PULPino because of the lack of required
hardware support (e.g. PWM and enhanced timer) resulting in
a too inefficient implementation making the processor busy all
the time producing a straightforward additional energy waste.
On the contrary, the exploitation of available peripherals makes
the implementation on STM32 very efficient. In this solution,
we used the previous approach, keeping the processor in low-
power sleep mode and using TIM4 timer with 3 channels and
port B of GPIOs. The energy performance ESTM32, computed
as for the PWM controller, is 5.282 pJ. The whole application
data are summarized in Table IV.

3) Brushed Motor Controller: Brushed motors are very
common DC motors and are typically controlled by half or
full H-bridge circuits [43]. Semiconductor companies have
developed many dedicated ICs for brushed motor control either
with or without power devices. We designed the HDL code
of a brushed motor controller for full H-bridge. The controller
generates the four driver signals for forward, reverse, coast and
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TABLE IV
APPLICATIONS RESULTS

Applications
PWM RGB LED BRUSHED STEPPER CRC16 LFSR WUR

eF
PG

A
feFPGA [MHz] 1.25 1.25 1.25 1.25 1.25 1.25 1.25

CLBs 7 11 7 4 4 15 5
PeFPGA [µW] 20.86 28.45 22.75 21.86 64.85 110.95 34.05

PdeFPGA [µW/MHz] 16.69 22.76 18.2 17.49 51.88 88.78 27.24
ntick

c 1 1 1 1 1 1 1
EeFPGA [pJ] 16.69 22.76 18.2 17.49 51.88 88.78 27.24

PU
L

Pi
no

fPULP [MHz] 10 n.a.a 10 10 10 10 n.a.b
PPULP [µW] 984 n.a. 1082.5 1058.4 1050 886 n.a.

PdPULP [µW/MHz] 98.4 n.a. 108.25 105.84 105 88.6 n.a.
ninsn

c 77 n.a. 110 145 8 42 n.a.
EPULP [pJ] 7576.8 n.a. 11907.5 15346.8 840 3721.2 n.a.

A
SI

C

Area [µm2] 442.3 732.1 512.6 340.26 554.3 1174.4 367.7
Eq. gates 156 260 179 125 201 442 134

fASIC [MHz] 10 10 10 10 10 10 0.1
PASIC [µW] 2.67 3.73 2.41 4.19 11.3 29.3 0.0398

PdASIC [µW/MHz] 0.267 0.373 0.241 0.419 1.13 2.93 0.398
ntick

c 1 1 1 1 1 1 1
EASIC [pJ] 0.267 0.373 0.241 0.419 1.13 2.93 0.398

ST
M

32

fSTM32 [MHz] 0.524288 0.524288 0.524288 0.524288 0.524288 0.524288 n.a.b
PSTM32 [µW] 1.67 2.769 69.785 70.892 82.523 75.877 n.a.

PdSTM32 [µW/MHz] 3.185 5.282 133.1 135.22 157.4 144.724 n.a.
ninsn

c sleep sleep 79 111 10 15 n.a.
ESTM32 [pJ] 3.185 5.282 10515.24 15009 1574 2170.86 n.a.

a PULPino implementation is too inefficient
b µC implementations are not used for ultra-low-power applications
c it corresponds to latency in an isofrequency case

0

0

1

1 0

0

Forward

Reverse

0

0

0

1 1

0

Coast

Brake

0

0

(a) (b)

Fig. 8. Brushed controller H-bridge operating modes. (a) forward - red - and
reverse - blue - mode. (b) coast - red - and brake - blue - mode

brake mode as shown in Fig. 8. For forward and reverse mode
- Fig. 8(a) - one needs a PWM signal - 8-bit programmable
period and duty cycle - to modulate the motor rotation features.
In stop mode, the motor is free to relax in coast mode or is
abruptly stopped in brake mode - Fig. 8(b).

The HDL code is synthesized by the eFPGA tool and uses
7 eFPGA CLBs with an energy per task EeFPGA of 18.2
pJ. The PULPino solution uses timers, an interrupt controller
and GPIO peripherals to generate both a PWM signal and
output signals. To update the FSM states PULPino executes
110 assembly instructions, and the resultant energy per task
is 11907.5 pJ. The ASIC implementation has 179 equivalent
gates and the energy per task EASIC is 0.241 pJ. The
STM32 implementation uses a timer, interrupt controller and
GPIO peripherals and to update the FSM state it executes
79 assembly instructions corresponding to an energy per task
ESTM32 - scaled in our technology - of 10515.24 pJ. Both

!C !D

C

(a) (b)

D

A B

!A !B

A B C D

Fig. 9. Driver circuits for stepper motors. Two full H-bridges - respectively
red and blue inputs - for bipolar stepper motors (a). Transistor scheme for
unipolar stepper motors (b).

microcontroller implementations are comparable in terms of
architecture - RI5CY and ARM Cortex-M3 respectively 4-
stage and 3-stage [44] RISC pipeline in Harvard architecture.
Thus, they have similar energy per task as reported in Table
IV. The eFPGA energy gain EGAIN is 878.

4) Stepper Motor Controller: Stepper motors are brushless
DC electric motors [45]. They have full rotation divided
into equal steps. For this reason stepper motors are typically
driven in open-loop without a negative feedback. There exist
both bipolar and unipolar stepper motors that have the same
controller but different electronic power circuits. Fig. 9(a)
shows two H-bridge circuits for bipolar stepper motors and
each H-bridge has red or blue inlets - where !x means not(x).
Figure 9(b) shows a power circuit for unipolar stepper motors.
We designed a controller for full-step, half-step and wave-drive
control modes and its generated signal patterns are reported in
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(b)

(a)

(c)
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B-C

C-B

D-D

A-A

B-C

C-B

D-D

A-A

B-C

C-B

D-D

Fig. 10. Signals patterns for unipolar - red - and bipolar - blue - for: full-step
(a), half-step (b) and wave-drive control modes.

Fig. 10 for unipolar stepper motor - red - and bipolar - blue.
When stop input is activated, the controller generates no more
signals even though one or two remain active - depending on
the control policy. Hence, to avoid motor short circuit current
while keeping the torque, programmable PWM signals - 8-
bit period and duty cycle - are generated replacing the active
phases.

The controller is implemented in the eFPGA using 4 CLBs
and by acting on the prescaler it is possible to set the time
unit - vertical grey dashed line of Fig. 10 - and the latency of
the controller. The eFPGA energy per task EeFPGA is 17.49
pJ. The same HDL code is synthesized in an ASIC solution
and the resultant area is 340.26 µm2 with 125 equivalent gates.
The corresponding energy per task EASIC is 0.419 pJ. For the
PULPino solution we used the previous approaches. Timers
were used to generate the phase time unit and the processor
handled the FSM state. GPIOs and interrupt controller were
also used. The assembly instructions to manage FSM are 145
and the energy per task EPULP is 15346.8 pJ. In this case
the energy gain EGAIN is 877. The STM32 core executes
111 assembly instructions to manage the controller FSM,
also employing a timer, interrupt controller and GPIOs. The
corresponding energy per task is 15009 pJ.

B. Bitwise Streaming Applications

In bitwise streaming applications the goal is to make some
kinds of operation to compute data. Thus, unlike control appli-
cations, the streaming application computational base model is
data flow and not a finite state machine. Microprocessors have
an intrinsic data flow in their pipeline while eFPGA circuits
and ASIC have to be configured as a specific elaboration unit.
Hence, a processor in this case exploits its structure better,
especially if a necessary operation is mapped in the instruction
set architecture. As examples we considered the generation
of both an error-detecting code (Cyclic Redundancy Check)
and pseudo-random numbers. These sample applications are

commonly used in communication protocols, storage devices
and cryptography.

1) Cyclic Redundancy Check: Cyclic Redundancy Check
(CRC) is an error-detecting code. We considered CRC16 with
a programmable polynomial - as an example we used x16 +
x15 + x2 + x0 polynomial, typically used in both Modbus
industrial communication protocols and USB.

The CRC16 block generator is synthesized in the eFPGA
using 4 CLBs and at every clock cycle it generates a CRC
with an energy of 51.88 pJ.

For the PULPino implementation we used a fast-CRC
algorithm based on hash tables [46]. In this case to compute
the CRC one needs 8 assembly instructions ninsn with an
energy per task EPULP of 840 pJ as shown in Table IV. The
energy gain EGAIN achieved is 16 which is smaller than that
reached in control applications. To obtain the same throughput
as the eFPGA, supposing execution of one instruction per
clock cycle, PULPino requires a clock frequency fPULP of:

fPULP =
feFPGA

ntick
· ninsn (8)

The STM32 µC has quite constant power consumption when
the pipeline is working and in this case, to compute CRC -
using hash tables - one needs 10 assembly instructions ninsn,
which corresponds to an energy per task ESTM32 of 1574 pJ.

The ASIC solution of CRC is no more expensive than other
applications in terms of area occupation - 554.3 µm2 and
201 equivalent gates but it is hungrier in terms of power
consumption, its energy per task EASIC being 1.13 pJ as
reported in Table IV. This means that the increase in average
power consumption is due to an increase in switching activity.
Obviously the ASIC implementation still allows the best
energy performances, but if you want to change the CRC
polynomial or data-width you have to redesign the whole
circuit while for reconfigurable solutions you only need to
reprogram the circuit.

2) Pseudo-Random Number Generation: The easiest way
to generate pseudo-random numbers is through Linear Feed-
back Shift Registers (LFSRs). We designed a 16-bit pseudo-
random number generator with an LFSR. The generator is
implemented in the eFPGA using 15 of the whole 16 CLBs
with an energy per task EeFPGA of 88.78 pJ.

The technique used for the PULPino solution is the same
as used for the CRC16 and is based on fast-LFSR which uses
hash tables executing 42 assembly instructions. The generator
mapped on the PULPino has 3721.2 pJ energy per task EPULP

and the corresponding eFPGA energy gain EGAIN is 42 which
is smaller than control applications. As for the CRC example,
to achieve the same throughput as the eFPGA, the PULPino
clock frequency has to be defined by equation (8) - much
higher than 10 MHz.

The STM32 executes 15 assembly instructions to generate
a pseudo-random number with an energy per task ESTM32

of 2170.86 pJ. Due to task complexity, ASIC implementation
needs both more area - 1174.4 µm2 - and more equivalent gates
442 - than previous applications. The power consumption of
the ASIC also increases. The greater device area causes an
increase in power consumption - PASIC Table IV - in terms
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Fig. 11. Wake-up radio correlator architecture.

of the dynamic contribution, since power leakage is negligible
in this technology. In this case, the overall power consumption
is 29.3 µW and only 10.3 nW is due to power leakage - about
1/3000.

C. Ultra-Low-Power Applications

In this type of application the main aim is to have the
smallest possible power consumption, which makes software-
programmed processors unsuitable due to the intrinsic energy
overhead. Hence, for this kind of application ASICs are
typically used. Nowadays, every object has to be connected
to every other one using as little energy as possible. For
this reason, communications systems have to reduce their
power consumption since they strongly affect the overall
system power consumption. One possible solution is to use
Wake-Up Radio (WUR) [47], an always-on circuit capable of
recognizing an address/keyword in the received bitstream as
well as waking up the system. We designed the 8-bit correlator
shown in Figure 11. It receives the serial bitstream from the
analog WUR front-end and bitwise compares the bitstream
with a predefined keyword - xor gates. The comparator outputs
are connected to the combinational logic checker - Fig. 11.
The checker block counts how many “1”s are at comparator
xor outputs - that means how many received bits are equal to
the keyword - and if the resulting number is greater than a
defined threshold - THR of Fig. 11 - the controller generates
the wake-up signal - blue line of Fig. 11. The correlator
was implemented in the ASIC solution targeting a 100 kHz
synthesis clock frequency and the estimation was computed
at 100 kHz clock frequency as reported in Table IV. This
slow clock frequency was chosen to reduce the dynamic
power consumption. The HDL code of the correlator was
synthesized in standard cells and the resulting area occupation
was 367.7 µm2 with 134 equivalent gates. The energy EASIC

necessary to compare 8-bits is 0.398 pJ. This is the best
solution in terms of energy performance and area occupation,
even though it is not reconfigurable. Hence, the eFPGA could
be a solution if you need to reuse the circuit with a different
address/keyword width or correlation technique. The circuit
in Fig. 11 synthesized in the eFPGA uses 5 CLBs and the
resulting energy to compare 8 bits is 27.24 pJ.

VII. RESULTS AND DISCUSSION

A. Energy Efficiency Consideration

All computed energies per task of each implementation -
eFPGA, PULPino, ASIC and STM32 - for any application are
reported in Fig. 12 and the data presented in Table IV show the
computational base model of both eFPGA and microprocessor
implementations.

The average power consumption of the eFPGA PeFPGA is
closely related to the application and its dynamic behavior.
As shown in Table IV, eFPGA power consumption goes from
20.86 µW - for the simplest task PWM - to 110.95 µW -
for the larger and more dynamic LFSR application - which
corresponds to about a 5× increase.

On the other hand, the microprocessor has a defined struc-
ture, hence its average power consumption is almost constant
- for a single-datapath RISC processor - as shown in Table
IV where PPULP and PSTM32 are indeed roughly constant
- respectively from 886 µW to 1082.5 µW and 68.123 µW
to 70.338 µW. Thus, if the processor’s average power con-
sumption is almost constant, the processor energy efficiency
depends on how many instructions it has to execute and hence,
how the instruction set architecture fits the applications. As
reported in Table IV and Fig. 12, the eFPGA energy per
task EeFPGA increases with the computational complexity
of the application - solid bars of Fig. 12 - from control
applications - a simple FSM computational base model - to
bitstream applications - data stream. By contrast, PULPino’s
energy per task EPULP decreases from control to streaming
applications, as shown in Table IV and diagonal bars in Fig.
12. For control applications, processor architecture has an
instruction overhead due to prologue and epilogue of the
routines necessary for computation consistency, as already
shown in [13].

The energy per task gap between eFPGA and PULPino
reduces - Fig. 12 - in streaming applications where the pipeline
structure is better exploited than control applications, where
the processor structure is oversized for the tasks. These energy
gaps are defined as an energy gain in equation (7) and are
reported in Table V - for each application implemented in both
eFPGA and PULPino - in order to justify the area overhead
due to the eFPGA peripheral being added in the system-on-
chip. The computed energy gains are also reported in the
chart in Fig. 13 showing that use of the eFPGA for control
applications allows one to increase the energy efficiency of
the system-on-chip quite markedly - right side of Fig. 13.

The STM32 results - cross bars of Fig. 12 - show how
exploitation of a dedicated peripheral for a specific task -
going towards ASIC implementation, dotted bars - enhances
the system energy efficiency. For example, in the PWM
application STM32 uses almost entirely dedicated peripherals
and the processor is switched to sleep mode. Hence, STM32
achieves better energy efficiency than eFPGA. On the other
hand, brushed and stepper controller need to use the processor,
in addition to dedicated peripherals, to handle the whole FSM,
with a straightforward drawback in terms of energy efficiency.
However, one may conceivably replace some dedicated pe-
ripherals - such as timers, PWM controllers, small pre/post-
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TABLE V
IMPLEMENTATIONS ENERGY GAIN

Applications
PWM Brushed Stepper CRC16 LFSR

EGAIN 454× 878× 877× 16× 42×

Fig. 13. Energy gain - in log scale - defined by equation (7) for applications
implemented in both eFPGA and PULPino.

processing accelerators - with a more reconfigurable peripheral
- like the proposed embedded FPGA - extending the usage
of peripherals instead of a processor for different kinds of
application, which proves more efficient in some cases.

B. Latency Consideration

The eFPGA implementation follows a hardware-paradigm,
hence it responds in just 1 clock cycle (ntick = 1) just like the
ASIC implementation. Microprocessors can achieve the same
latency - supposing to execute 1 instruction per cycle which is
slightly optimistic - increasing the operating clock frequency.
Fig. 14 reports the latency in the number of clock cycles.

Fig. 14. PULPino and eFPGA latency (in clock cycles) for the applications
under analysis.

The eFPGA latency is hence 1 cycle (trace with triangles).
Considering the applications in Table IV, if both eFPGA and
PULPino have the same clock frequency, PULPino latency is
ninsn times the eFPGA latency (isofrequency plot with circle
symbols). The plot with diamonds reports the case described
in Table IV, where PULPino clock frequency is 8 times
the eFPGA frequency. As expected, the minimum PULPino
latency is achieved when working at the maximum frequency
which is the implementation frequency reported in Table III.
The corresponding plot is the one with square symbols.

The filled region of Fig. 14 represents the “unreachable la-
tency” zone. This area is out of the PULPino domain since the
required clock frequency upscaling is over the implementation
frequency.

VIII. CONCLUSION

In this paper we have evaluated the energy benefit of a
reconfigurable and fully synthesizable System-on-Chip based
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on an open-source low-power microcontroller PULPino aug-
mented with a soft-core embedded FPGA. To the best of our
knowledge the proposed heterogeneous system which embeds
a microcontroller and FPGA is the first SoC suitable for
smart power IoT applications. We compared the energy per-
formances of the proposed digital core with ASIC implemen-
tations and commercially available STM32 microcontrollers.
The analysis focused on the smart power application area such
as control-driven, bitwise streaming applications and a wake-
up radio correlator for IoT end-nodes. Starting from physical-
synthesis results, we analysed the different power consumption
models of microprocessors, eFPGAs and ASICs, to arrive at a
comparison between the energy required to execute the same
task. The embedded FPGA proves to be an excellent solution
in terms of both energy efficiency and latency - despite its non-
negligible area overhead - until reaching about three orders
of magnitude energy gain. The proposed system-on-chip is
very flexible, and thanks to its synthesizability it is portable
to different technologies. In addition, combining a micro-
processor and eFPGA guarantees wide reconfigurability and
efficiency since it is possible to map applications in the best
hardware implementation - switching off the processor while
using eFPGA and vice versa, or using interaction of both.
We have demonstrated how a soft-core eFPGA may efficiently
be used for unconventional FPGA tasks such as smart power
applications, unlike high-density parallel computing.
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