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On the onset of convection in a vertical porous layer

On the onset of convection in a highly–permeable vertical porous layer
with open boundaries

A. Barletta1, a) and D.A.S. Rees2, b)
1)Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy
2)Department of Mechanical Engineering, University of Bath,
Claverton Down, Bath BA2 7AY, UK

(Dated: 29 May 2024)

The unstable nature of buoyant flow in a vertical porous slab with a pure conduction temperature distribution is in-
vestigated. The permeable and isothermal boundaries are subject to a temperature difference, which is responsible for
the basic stationary and parallel vertical flow in the slab. The momentum transfer is modelled by adopting the Darcy–
Forchheimer law, thus including the quadratic form–drag contribution. The instability to small–amplitude perturbations
is tested by parametrising the basic stationary flow through the Darcy–Rayleigh number and the form–drag number.
The modal analysis is carried out numerically with a pressure–temperature formulation of the governing equations for
the perturbations. The neutral stability curves and the critical values of the wave number and the Darcy–Rayleigh
number are obtained for different prescribed values of the form–drag number.

I. INTRODUCTION

Highly–permeable porous materials deserve a widespread
interest from the engineering community due to their role in
the intensification of heat transfer processes. The main exam-
ple is metal foams which are considered by several authors as
a possible alternative to micro–finned surfaces in the design of
compact heat exchangers1. The main characteristic of porous
media with a large value of permeability is the departure from
Darcy’s law in the modelling of momentum transfer, with the
emergence of a quadratic form-drag effect2.

The natural convection in a vertical porous slab may dis-
play a stationary parallel flow regime where the temperature
varies linearly across the slab. In this regime, heat transfer is
not influenced by the buoyant flow and displays the same fea-
tures of pure heat conduction. The possibility of breaking this
conduction regime by the onset of a thermal instability and the
development of a multicellular convection flow was ruled out
by Gill 3 . This author presented a very elegant proof that the
conduction regime in the vertical porous slab is always lin-
early stable. Straughan 4 and Flavin and Rionero 5 were able
to show that stability is ensured also if the assumption of lin-
earity is relaxed.

Gill’s stability theorem3 strongly relies on the boundary
conditions imposed at the vertical boundaries of the porous
slab. In particular, it is quite important that the boundaries are
impermeable. Barletta 6 proved that an instability of the con-
duction regime can be developed for sufficiently large values
of the Darcy–Rayleigh number provided that the boundaries
are permeable.

There is an intrinsic interest in the findings reported above,
due to the chance of investigating a thermal instability mech-
anism that differs from the usual Rayleigh–Bénard phe-
nomenon. In fact, the instability detected by Barletta 6 is not

a)Electronic mail: antonio.barletta@unibo.it.
b)Electronic mail: D.A.S.Rees@bath.ac.uk.

triggered by heating from below, but by side heating. In this
respect, the scenario is very similar to that considered by Vest
and Arpaci 7 , Korpela, Gözüm, and Baxi 8 , and McBain and
Armfield 9 having in mind the case of a fluid, instead of a fluid
saturated porous medium. Besides the theoretical aspects, the
possible onset of multicellular flow in a vertical porous layer
is closely connected to engineering applications such as the
breathing walls employed in the building industry10, or the
thermal control of groundwater reservoirs, or the diffusion of
pollutants from underground nuclear waste repositories.

The results regarding the possible instability of a vertical
porous slab with permeable boundaries reported by Barletta 6

were further developed by considering the lack of local ther-
mal equilibrium between the solid and the fluid11,12, as well as
imperfectly conducting boundaries modelled through Robin
conditions for the temperature13. Other recent papers on this
topic investigated other aspects of the onset of instability in a
vertical porous layer saturated by a fluid14–21.

The aim of this study is to further develop the knowledge
of this topic by generalising the results obtained adopting
Darcy’s law to cases where the very large porosity (e.g. the
metal foams employed for compact heat exchangers) may jus-
tify the inclusion of the quadratic form–drag term in the mo-
mentum balance for the saturated medium. This aspect of the
instability in a vertical porous layer has not yet been investi-
gated in the existing literature. The system setup is just the
same as that devised in the study by Barletta 6 , namely a ver-
tical porous slab with infinite height bounded by isothermal
open boundaries. The dynamics of the linear perturbations
acting on the basic stationary and parallel flow is constrained
by zero temperature and pressure boundary conditions. A
convective instability is developed when the Darcy–Rayleigh
number, proportional to the temperature difference imposed
between the boundaries, exceeds its critical value. The crit-
ical value depends on an additional dimensionless parameter
measuring the discrepancy from Darcy’s law behaviour, the
form–drag number. Through a numerical solution of the sta-
bility eigenvalue problem, it is shown that a departure from the
Darcy’s law regime means stabilisation. This outcome is ex-
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FIG. 1. Two-dimensional sketch of the vertical porous slab

pected by analogy with what was found by Rees 22 regarding
the onset of instability in a horizontal porous layer with an im-
posed uniform flow and heating from below. We mention that
a similar feature has been recently pointed out also by Barletta
and Rees 23 while studying the instability of mixed convection
in a horizontal porous channel with uniformly heated walls.

II. MATHEMATICAL MODEL

The momentum balance in the saturated porous medium is
modelled through the Darcy–Forchheimer law2,

µ

K

(
1+ cF

|u|
√

K
ν

)
u =−∇P−ρ γ (T −T0)g, (1)

where the buoyancy force is included alongside the pressure
gradient term. More precisely, P denotes the local differ-
ence between the pressure and the hydrostatic pressure as pre-
scribed when applying the Oberbeck–Boussinesq approxima-
tion for convective flow. The term proportional to cF yields
the quadratic form–drag whose magnitude marks the depar-
ture from Darcy’s law. In Eq. (1), u = (u,v,w) is the velocity,
T is the temperature, T0 is the reference temperature, µ is the
dynamic viscosity, ν is the kinematic viscosity, ρ is the fluid
density, K is the permeability, cF is the form–drag parameter,
γ is the thermal expansion coefficient of the fluid, and g is the
gravitational acceleration whose modulus is g.

As displayed in Fig. 1, we are considering a vertical porous
slab with thickness L, bounded by isothermal permeable sur-
faces with temperatures T1 and T2. The sketch in Fig. 1 is
two–dimensional. The horizontal coordinate x spans the lim-
ited interval [−L/2,L/2], while the horizontal unbounded co-

ordinate z, not visible in the figure, varies over all possible
real values. The vertical coordinate y is unbounded as well
and defines the direction of the basic buoyant flow along the
slab. The y−axis is parallel to the gravitational acceleration g,
but with opposite direction so that g = −gey. A dimension-
less expression of the governing equations, given by the local
mass balance, the local momentum balance, viz. Eq. (1), and
the local energy balance can be formulated as

∇·u = 0, (2a)
(1+ξ |u|)u =−∇P+T ey, (2b)

∂T
∂ t

+u ·∇T = ∇
2T. (2c)

We have, in fact, employed the scaling

(x,y,z)
1
L
→ (x,y,z), t

λ

σL2 → t,

(u,v,w)
L
λ

→ (u,v,w),

P
K

µλ
→ P, (T −T0)

gγKL
νλ

→ T, (3)

to define the dimensionless coordinates, time and fields. We
mention that the time scaling introduced in Eq. (3) involves
the average thermal diffusivity, λ , as well as the dimensionless
ratio, σ , between the volumetric heat capacity of the saturated
medium and that of the fluid2. The dimensionless scaling is
completed by the definition of the Darcy–Rayleigh number
and the form–drag number,

R =
gγ(T2 −T1)KL

νλ
, ξ =

c f λ
√

K
νL

. (4)

The Darcy–Rayleigh number extends the meaning of the
Rayleigh number for fluids in the absence of a porous matrix.
Its value determines the strength of the buoyancy–induced
convection flow. The form–drag number measures the impor-
tance of the Forchheimer quadratic term in the local momen-
tum balance relative to the Darcy linear term.

As pointed out in the literature (see, for example, Nield
and Bejan 2 ), the emergence of important form–drag effects
does not depend only on the permeability. Most authors2, in
fact, assume that the transition from the Darcy regime to the
Forchheimer regime happens when the permeability–based
Reynolds number,

ReK =
|u|

√
K

ν
, (5)

lies in the range 1 ≤ ReK ≤ 10. According to this criterion,
obviously the permeability must be large enough for the tran-
sition to occur, but how large it has to be depends on the max-
imum velocity in the flow domain and on the fluid viscosity.

The formulation of the problem sketched in Fig. 1 leads to
the dimensionless boundary conditions,

x =±1/2 : P = 0, T =± R
2
. (6)
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We point out that a vanishing boundary value of P means that a
continuous transition at x =±1/2 happens between the inter-
nal distribution of P within the porous slab and the hydrostatic
pressure in quiescent fluid reservoirs adjacent to the external
boundaries, as described in Barletta 6 .

III. THE BASIC PARALLEL FLOW

Equations (2) and (6) admit a stationary solution describing
parallel buoyancy–driven flow in the slab,

ub = 0, vb =
2Rx

1+
√

4Rξ |x|+1
, wb = 0,

Tb = Rx, Pb = 0, (7)

where b serves to denote “basic flow”. The flow given by
Eq. (7) is directed along the vertical y−axis and its orientation
is downward for −1/2 < x < 0 and upward for 0 < x < 1/2.
One may evaluate the mean value of v in the half–slab with
0 < x < 1/2,

vbm =
(1+2Rξ )3/2 −3Rξ −1

6Rξ 2 =
R
3

1+2
√

1+2Rξ

(1+
√

1+2Rξ )2
. (8)

As the velocity profile is an odd function of x, −vbm yields the
mean value of v in the half–slab with −1/2< x< 0. By taking
the limit ξ → 0, one recovers the basic solution implied by
Darcy’s law, namely that studied by both Gill 3 and Barletta 6 .
In particular, in this limit, one has vbm = R/4.

Figure 2(a) displays the basic velocity profiles relative to
R = 200 and different values of ξ , while Fig. 2(b) shows the
decreasing trend of vbm versus ξ for different values of R.
Generally speaking, Fig. 2 reveals that the quadratic form–
drag causes a change in the linear velocity profile, character-
istic of the Darcy’s flow solution, and leads to a gradual inhi-
bition of the buoyant flow as ξ increases. This physical effect
has a mathematical counterpart given by the denominator in
the expression of vb, Eq. (7), whose value for x ̸= 0 increases
when the form–drag becomes more and more intense.

IV. LINEAR STABILITY ANALYSIS

The dynamics of small-amplitude perturbations acting on
the basic flow, Eq. (4), can be studied by substituting the ex-
pressions,

u = ub + ε ũ, T = Tb + ε T̃ , P = Pb + ε P̃, (9)

into Eqs. (2) and (6). Here ε represents a small perturbations
parameter, so that all terms of O(ε2) or higher are negligible.
This leads to the linearised stability equations and boundary
conditions, namely

∂ ũ
∂x

+
∂ ṽ
∂y

+
∂ w̃
∂ z

= 0, (10a)

(1+ξ |vb|) ũ =− ∂ P̃
∂x

, (10b)

(1+2ξ |vb|) ṽ =− ∂ P̃
∂y

+ T̃ , (10c)

(1+ξ |vb|) w̃ =− ∂ P̃
∂ z

, (10d)

∂ T̃
∂ t

+Rũ+ vb
∂ T̃
∂y

=
∂ 2T̃
∂x2 +

∂ 2T̃
∂y2 +

∂ 2T̃
∂ z2 , (10e)

x =±1/2 : P̃ = 0, T̃ = 0. (10f)

The perturbation velocity ũ = (ũ, ṽ, w̃), temperature T̃ and
pressure P̃ are in fact determined by solving Eqs. (10).

We mention that, in order to obtain the linearised governing
equations (10), the Forchheimer term, ξ |u|u, is rewritten by
employing Eq. (9), so that it reads

ξ |u|u =

ξ (ub + ε ũ)
√

(ub + ε ũ)2 +(vb + ε ṽ)2 +(wb + εw̃)2, (11)

ξ |u|v =

ξ (vb + ε ṽ)
√

(ub + ε ũ)2 +(vb + ε ṽ)2 +(wb + εw̃)2, (12)

ξ |u|w =

ξ (wb + εw̃)
√
(ub + ε ũ)2 +(vb + ε ṽ)2 +(wb + εw̃)2. (13)

The right hand sides of these equations are intended as func-
tions of ε . Then, we have just to write series expansions with
respect to ε starting from ε = 0. Keeping in mind that in our
case ub = 0 = wb, we obtain

ξ |u|u = ξ ε ũ |vb|+O(ε2), (14)

ξ |u|v = ξ vb |vb|+2ξ ε ṽ |vb|+O(ε2),

ξ |u|w = ξ εw̃ |vb|+O(ε2).

By neglecting the terms O(ε2), we obtain the linearisation em-
ployed in Eqs. (9).

The governing equations (10) for stability can be rewritten
by adopting a pressure–temperature formulation,

∂

∂x

[
(1+ξ |vb|)−1 ∂ P̃

∂x

]
+(1+2ξ |vb|)−1 ∂ 2P̃

∂y2

+(1+ξ |vb|)−1 ∂ 2P̃
∂ z2

−(1+2ξ |vb|)−1 ∂ T̃
∂y

= 0, (15a)

∂ T̃
∂ t

−R(1+ξ |vb|)−1 ∂ P̃
∂x

+ vb
∂ T̃
∂y

=
∂ 2T̃
∂x2 +

∂ 2T̃
∂y2 +

∂ 2T̃
∂ z2 , (15b)

x =±1/2 : P̃ = 0, T̃ = 0, (15c)
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FIG. 2. Basic solution: (a) velocity profiles, vb(x), for R = 200 relative to different ξ ; (b) mean value, vbm, of the basic velocity across the
half-slab 0 < x < 1/2 versus ξ with different Darcy–Rayleigh numbers, R

so that, now, the unknowns are just T̃ and P̃. Equation (15a)
has been obtained by solving Eqs. (10b)–(10d) for ũ, ṽ and w̃
and then by employing Eq. (10a). A normal mode analysis
can be applied with T̃ and P̃ given by

T̃ = h(x)ei(αy+β z) eηt , P̃ = f (x)ei(αy+β z) eηt . (16)

A wave vector is defined as k = (0,α,β ), with k = (α2 +

β 2)1/2 expressing the wave number. The complex parameter
η utilised in Eq. (16) is such that its real part, q, is the expo-
nential growth rate of the normal mode, while its imaginary
part is −ω , where ω is the angular frequency. The special
cases α = 0 and β = 0 yield the longitudinal rolls and the
transverse rolls, respectively. A continuous change between
these extrema can be parametrised as

α =
√

sk, β =
√

1− sk, with 0 ⩽ s ⩽ 1, (17)

thus defining the oblique rolls when 0 < s < 1, longitudinal
rolls when s = 0, and transverse rolls when s = 1.

The transition to instability occurs when q changes from
negative to positive values, so that the neutral stability condi-
tion is for q = 0. We now substitute Eq. (16) into Eqs. (15)
and adopt the shorthand notation D = d/dx, so that we are led
to an ordinary differential eigenvalue problem, namely

D
[
(1+ξ |vb|)−1 D f

]
− sk2 (1+2ξ |vb|)−1 f

−(1− s)k2 (1+ξ |vb|)−1 f

− i
√

sk (1+2ξ |vb|)−1 h = 0, (18a)

D2h−
(
k2 +η + i

√
skvb

)
h

+R(1+ξ |vb|)−1 D f = 0, (18b)
x =±1/2 : f = 0, h = 0. (18c)

A. Longitudinal rolls

When our goal is the study of longitudinal rolls, then
Eqs. (18) are simplified by setting s = 0,

D
[
(1+ξ |vb|)−1 D f

]
− k2 (1+ξ |vb|)−1 f = 0, (19a)

D2h−
(
k2 +η

)
h+R(1+ξ |vb|)−1 D f = 0, (19b)

x =±1/2 : f = 0, h = 0. (19c)

We can gain some substantial information about these modes
with an integral formulation. This means multiplying
Eq. (19a) by f̄ , viz. the complex conjugate of f , integrat-
ing by parts over −1/2 < x < 1/2, and finally employing the
boundary conditions (19c).

∫ 1/2

−1/2
(1+ξ |vb|)−1 |D f |2 dx

+k2
∫ 1/2

−1/2
(1+ξ |vb|)−1 | f |2 dx = 0. (20)

With an arbitrary positive wave number, Eq. (20) happens to
be satisfied only when f is identically zero. Thus if we set
f = 0 in Eq. (19b), we can write

D2h−
(
k2 +η

)
h = 0,

x =±1/2 : h = 0. (21)

Non-vanishing solutions of Eq. (21) are allowed if and only if

k2 +η =−n2
π

2, n = 1,2,3, . . . , (22)
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and they can be expressed as

h = Asinh

[√
k2 +η

(
x+

1
2

)]
, (23)

where an integration constant A has been employed. We recall
that η = q− iω . Thus, Eq. (22) implies that ω = 0. Further-
more, one has q < 0. Therefore, we conclude that the longitu-
dinal rolls are linearly stable.

B. The limiting case of Darcy’s flow

By setting ξ → 0, we study the regime where the quadratic
form–drag term is negligible and Darcy’s law holds. In this
limiting case, the basic velocity profile given by Eq. (7) be-
comes linear with vb = Rx, and Eqs. (18) simplify to

D2 f − k2 f − i
√

skh = 0,

D2h−
(
k2 +η + i

√
skRx

)
h+RD f = 0,

x =±1/2 : f = 0, h = 0. (24)

This, then, is the regime analysed in the study by Barletta 6

and, in fact, Eq. (24) is identical to the eigenvalue stability
problem studied in that paper.

V. NUMERICAL SOLUTION OF THE STABILITY
PROBLEM

For general normal modes, 0 ⩽ s ⩽ 1, Eqs. (18) can be
solved numerically. There exist several different techniques
which can be employed in the solution of the eigenvalue prob-
lems arising in the stability analyses of flows. A thorough and
insightful review of such techniques can be found in chap-
ter 19 of the book by Straughan 24 . Hereafter, we will base
our analysis on the use of the shooting method. This method
relies on a numerical solver of initial value problems, that
is employed to evaluate the numerical solution ( f ,h) starting
from one of the bounds of the interval −1/2 ⩽ x ⩽ 1/2, say
the lower one, x = −1/2. Then, the conditions at the other
bound, say the upper one, x = 1/2, are imposed for closing
the solution and for evaluating the eigenvalues. In fact, one
can manage Eqs. (18) as an eigenvalue problem due to their
homogeneous nature. Which parameters are to be intended as
the eigenvalues of the differential problem is, to a large extent,
an arbitrary choice.

The linear system of differential equations (18) can be in-
tended as an initial value problem provided that the boundary
conditions at x =−1/2 are formally completed, namely

f (−1/2) = 0, f ′(−1/2) = χ1 + iχ2,

h(−1/2) = 0, h′(−1/2) = 1. (25)

Here, setting h′(−1/2) = 1 is a way to break the scale–
invariance of the homogeneous problem and to determine
uniquely the eigenfunctions ( f ,h). The parameters χ1 and

χ2 are unknowns and just represent the arbitrary real part and
imaginary part of f ′(−1/2). Their values have just a math-
ematical meaning within the shooting method, but they are
devoid of any physical implication. In fact, χ1 and χ2 are de-
termined by the condition for breaking the scale invariance,
in our case h′(−1/2) = 1. Hence, their values have just the
same degree of arbitrariness as the scale–invariance breaking
condition. The shooting method can be implemented by sepa-
rating the parameters appearing in Eqs. (18) and (25) into two
categories: input data and eigenvalues. As stated above, this
distinction is mainly a matter of choice. We will adopt the
scheme {

input data: s,q,k,ξ ,
eigenvalues: R,ω,χ1,χ2.

(26)

The eigenvalues are obtained through a root finding technique,
such as the Newton–Raphson method, employed to solve the
target conditions,

f (1/2) = 0, h(1/2) = 0. (27)

The eigenvalues in Eq. (26) are given by real numbers whereas
the target conditions in Eq. (27) yield complex equations. This
is the reason why there are four (real) eigenvalues and just two
(complex) target conditions.

The initial–value problem solver and the root finding
method are implemented within the Mathematica (© Wolfram
Research) software environment, through a script based on the
use of functions NDSolve and FindRoot25.

Table I serves to test the numerical accuracy of the find-
ing root procedure for solving the stability eigenvalue prob-
lem (18). The test is a check of convergence for the fourth–
order Runge–Kutta solver implemented through the Mathe-
matica function NDSolve. The fixed step–size option is im-
plemented with δx = 10−N , and N increasing from 2 to 4 in
steps of 0.2. The ultimate comparison is between the eigenval-
ues R,ω,χ1,χ2 obtained with δx = 10−4 and those computed
by employing the adaptive step–size option. The discrepancy
between the values of R is less than 6× 10−6 %, that regard-
ing χ1 is less than 8× 10−4 % for χ1, and that for χ2 is less
than 5× 10−4 %. The data for ω delineate a situation where,
as δx → 0, the angular frequency tends to zero. This is, in
fact, the case for all the neutral stability data reported in this
study. These findings imply that the transition from linear sta-
bility to instability is triggered by stationary normal modes.
The convergence of ω to zero is oscillatory, with oscillations
around zero of decreasing amplitude. On the other hand, the
parameters accounted for in Table I undergo a monotonic con-
vergence. This feature yields an apparent slower convergence
of ω . However, one cannot judge the convergence rate from
a single parameter as the convergence is relative to the whole
solution and, hence, to the whole set of eigenvalues, as well
as to the eigenfunctions.

The conclusion we draw from the data reported in Table I is
that the fixed–step size algorithm is a satisfactory implemen-
tation of the Runge–Kutta solver and, thus, it is employed in
all the results discussed hereafter.
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TABLE I. Oblique rolls with s = 0.5, k = 1, ξ = 0.01: comparison between the neutral stability values of (R,ω,χ1,χ2) obtained by a fixed
step–size Runge–Kutta solver having gradually decreasing step–size, δx = 10−N , with an adaptive step–size Runge–Kutta solver

N R ω χ1 χ2

2.0 574.1487250 0.04503138296 0.02467819404 – 0.02698728304
2.2 574.1418746 0.01706300442 0.02467057185 – 0.02698226496
2.4 574.1168419 0.01122028490 0.02466927057 – 0.02698158035
2.6 574.1294156 – 0.00742607738 0.02466398575 – 0.02697797823
2.8 574.1257225 – 0.00099288777 0.02466580072 – 0.02697921064
3.0 574.1273572 0.00453439813 0.02466730147 – 0.02698019606
3.2 574.1269008 – 0.00099909809 0.02466578455 – 0.02697919140
3.4 574.1271954 0.00113458682 0.02466636797 – 0.02697957693
3.6 574.1270999 0.00026781778 0.02466613067 – 0.02697941994
3.8 574.1271471 – 0.00028493251 0.02466597801 – 0.02697931817
4.0 574.1271384 0.00045379328 0.02466618136 – 0.02697945334

Adaptive 574.1271085 – 0.00017646296 0.02466600834 – 0.02697933857
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FIG. 3. Plots of the neutral stability curves, R versus k: (a) for transverse rolls (s = 1); (b) oblique rolls with s = 0.5. The limiting case of
Darcy’s law is denoted by dashed lines

VI. DISCUSSION OF THE RESULTS

The neutral stability condition (q = 0) is the bulk of a linear
stability analysis as it provides the threshold between linear
stability and instability. The graphical way to convey this in-
formation is by drawing a curve in the parametric plane (k,R)
with the data obtained by solving for input values (s,q,k,ξ ),
where q = 0. This allows one to obtain the eigenvalues and,
in particular, R. The point of minimum R along this curve
yields the critical condition for the onset of instability. This
means a pair (kc,Rc) defining the critical wave number, kc,
and the critical Darcy–Rayleigh number, Rc. For R < Rc, no
modal linear instability is possible. Thus, a larger Rc means
a more linearly stable situation. The adjective “modal” em-
ployed here is important as, generally speaking, it has been

reported the possibility of non–modal linear instability occur-
ring at subcritical conditions, R < Rc. An interesting survey
on this topic can be found in Schmid 26 .

Figure 3(a) shows the neutral stability curves for transverse
rolls, while Fig. 3(b) is relative to oblique rolls with s = 0.5.
For such oblique rolls, the angle between the wave vector and
the vertical is π/4. In each case, different values of ξ are
considered. The minimum of these curves moves upward as ξ

increases and this implies a stabilising effect of the quadratic
form–drag contribution to momentum transfer. In Figs. 3(a)
and 3(b), dashed lines are reported denoting the limiting case
where Darcy’s law holds (ξ → 0). A comparison between
Figs. 3(a) and 3(b) reveals that, for a given ξ , oblique rolls
with s = 0.5 are more stable than transverse rolls. We point
out that the curve addressing the case with s = 0.5 and ξ =
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FIG. 4. Plots of Rc versus s for different ξ . The limiting case of
Darcy’s law is denoted by a dashed line

TABLE II. Transverse rolls (s = 1): critical values of R and k for
different ξ

ξ Rc kc

0 197.081 1.05950
10−6 197.094 1.05949
10−5 197.209 1.05939

0.0001 198.359 1.05846
0.001 209.796 1.05007
0.005 259.937 1.02492
0.01 322.368 1.00687
0.02 448.012 0.98755

0.01 lies above the range of R considered in Fig. 3 and, thus,
it is not displayed. All the neutral stability curves displayed
in Fig. 3 manifest the same important feature pointed out by
Barletta 6 for the case ξ → 0. Along the neutral stability curve,
there exists a point of maximum k delimiting the region where
linear instability is possible.

Figure 4 clearly establishes the feature suggested by Fig. 3.
This figure shows that Rc is a monotonically decreasing func-
tion of s or, stated differently, that transverse rolls (s = 1) are
the most unstable modes. This is an extremely important fact
as we are motivated, in the following, to focus our study of
the onset of linear instability to transverse rolls. The range
considered in Fig. 4 is 0.1 < s ⩽ 1, due to the singularity of
Rc when s → 0. This singularity is a further evidence that
longitudinal rolls (s = 0) never lead to instability.

Figure 5 is relative to transverse rolls, viz. the most unsta-
ble modes of perturbation. The trends of Rc and kc versus ξ

are displayed on a logarithmic scale for ξ , which amplifies
the behaviour at smaller values of the form–drag number and
evidences the asymptotic regime of Darcy’s flow happening
when ξ → 0. On one hand, Fig. 5 shows the stabilising role

of the form–drag effect, as Rc increases monotonically with
ξ . On the other hand, this figure points out that the quadratic
form-drag term implies that the onset of instability involves
smaller and smaller wave numbers, as kc is a monotonic de-
creasing function of ξ . All these features are perfectly coher-
ent with the plots of the neutral stability curves represented in
Fig. 3(a).

Some computed values of Rc and kc with six significant fig-
ures are presented in Table II. The computations have been
done for some values of ξ , while the case ξ = 0 serves for
comparison. The values of Rc and kc for this case coincide
perfectly with those reported by Barletta 6 for the Darcy’s law
limit.

Plots of the perturbation streamlines and isotherms in the
xy plane for transverse rolls (s = 1) are displayed in Fig. 6. In
this figure, a comparison is made between two utterly differ-
ent cases, namely the onset conditions for instability (αc,Rc)
with either ξ = 0 or ξ = 0.05. The qualitative differences
emerging in these two very dissimilar flow regimes are not
as large as expected. In fact, there is a very marked gap be-
tween the values of Rc and ξ = 0.05 is an extremely large
form–drag number. An evident feature of the convection cells
is that they are open to the external environment with a con-
tinuous inflow/outflow at the boundaries. This behaviour is a
consequence of the permeable nature of the planes z = −1/2
and z = 1/2 and of the isobaric conditions imposed.

VII. CONCLUSIONS

Free convection in a vertical porous slab has been analysed.
The plane and parallel vertical boundaries have been modelled
as isothermal and open to external quiescent fluid reservoirs,
thus leading to uniform temperature and pressure boundary
conditions. The momentum transfer for the fluid saturating
the porous medium has been described through the Darcy–
Forchheimer law by assuming an important contribution of
the quadratic form–drag effect. The form–drag number, ξ ,
has been included among the governing dimensionless param-
eter, together with the Darcy–Rayleigh number, R, which is a
measure of the intensity of the buoyancy force caused by the
unequal boundary temperatures. We proved that there exists
a stationary basic flow with a parallel vertical velocity field
and a purely transverse temperature gradient. The tempera-
ture distribution across the slab displays a departure from the
linear due to the form–drag effect.

The linear instability of the basic flow has been studied.
General normal modes of perturbation have been considered,
oriented in all possible directions parallel to the boundary
planes. The local balance equations of mass, momentum and
energy led us to the formulation of an ordinary differential
eigenvalue problem. The main features of the instability anal-
ysis are the following:

• For the special case of longitudinal rolls, viz. the normal
modes with a horizontal wave vector, it has been proved
that no instability exists.

• For the general case, the solution of the instability
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FIG. 5. Transverse rolls (s = 1): (a) plot of Rc versus ξ ; (b) plot of kc versus ξ

FIG. 6. Streamlines and isotherms in the xy plane for the perturbation flow at critical conditions with s = 1 and either ξ = 0 or ξ = 0.05

eigenvalue problem has been carried out numerically
by utilising the shooting method and a Runge–Kutta
solver. This solution allowed us to conclude that the
transverse rolls, viz. the normal modes with a vertical
wave vector, yield the lowest possible values of R at on-

set of instability. In other words, the transverse rolls are
the most unstable modes of perturbation.

• The quadratic form–drag effect yields a stabilisation of
the basic flow. The Darcy’s law limit, ξ → 0, represents
the term of comparison for this conclusion. In fact, the
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neutral stability condition for transverse rolls yields a
critical value of R monotonically increasing with the
form–drag number ξ .

• The neutral stability curves drawn in the (k,R)−plane,
where k is the wave number, illustrate a situation where
no linear instability emerge when k exceeds a maximum
threshold. Such a threshold wave number undergoes a
change with the form–drag number ξ .

Several perspectives of future developments for this study can
be envisaged. Among them, a weakly nonlinear stability anal-
ysis may be very important both for the supercritical and the
subcritical parametric regime. One can gain important infor-
mation regarding the heat transfer rates across the porous slab
when the convective rolls break the conduction regime. It
would also be interesting to study the stability of the bifur-
cated flow to analyse the appearance of periodic oscillations
and their impact on the heat transfer. On the other hand, one
can inspect the possible existence of a subcritical instability
which cannot be excluded by the present analysis.
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