Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Isotopic evidence for oligotrophication of terrestrial ecosystems

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Craine J.M., Elmore A.J., Wang L., Aranibar J., Bauters M., Boeckx P., et al. (2018). Isotopic evidence for oligotrophication of terrestrial ecosystems. NATURE ECOLOGY \& EVOLUTION, 2(11), 1735-1744 [10.1038/s41559-018-0694-0].

This version is available at: https://hdl.handle.net/11585/704621 since: 2019-11-05
Published:
DOI: http://doi.org/10.1038/s41559-018-0694-0

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.
(Article begins on next page)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

Isotopic evidence for oligotrophication of terrestrial

ecosystems

Joseph Craine ${ }^{1}$, Andrew J. Elmore ${ }^{2}$, Lixin Wang ${ }^{3}$, Julieta Aranibar ${ }^{4}$, Marijn Bauters ${ }^{5,6}$, Pascal Boeckx ${ }^{5}$, Brooke E. Crowley ${ }^{7}$, Melissa A. Dawes ${ }^{8}$, Sylvain Delzon ${ }^{9}$, Alex Fajardo ${ }^{10}$, Yunting Fang ${ }^{11}$, Lei Fujiyoshi ${ }^{12}$, Alan Gray ${ }^{13}$, Rossella Guerrieri ${ }^{14}$, Michael J. Gundale ${ }^{15}$, David J. Hawke 16, Peter Hietz ${ }^{17}$, Mathieu Jonard ${ }^{18}$, Elizabeth Kearsley ${ }^{19}$, Tanaka Kenzo ${ }^{20}$, Mikhail Makarov ${ }^{21}$, Sara Marañón-Jiménez ${ }^{22,23,24}$, Terrence P. McGlynn ${ }^{25}$, Brenden E. McNeil ${ }^{26}$, Stella G. Mosher ${ }^{7}$, David M. Nelson ${ }^{3}$, Pablo L. Peri ${ }^{27}$, Jean Christophe Roggy ${ }^{28}$, Rebecca SandersDeMott ${ }^{29,30}$, Minghua Song ${ }^{31}$, Paul Szpak ${ }^{32}$, Pamela H. Templer ${ }^{29}$, Dewidine Van der Colff ${ }^{33}$, Christiane Werner ${ }^{34}$, Xingliang Xu^{30}, Yang Yang ${ }^{35}$, Guirui $\mathrm{Yu}^{36,37}$, Katarzyna ZmudczyńskaSkarbek ${ }^{38}$

${ }^{1}$ Jonah Ventures, Boulder, CO 80301, ${ }^{2}$ Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD 21532, ${ }^{3}$ Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indiana 46202, USA, ${ }^{4}$ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Facultad de Ciencias Exactas y Naturales (FCEN-UNCuyo), Argentina. ${ }^{5}$ MB Isotope Bioscience Laboratory ISOFYS, Ghent University, Coupure Links 653, 9000 Gent, Belgium, ${ }^{6}$ CAVElab, Computational and Applied Vegetation Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium, ${ }^{7}$ Departments of Geology and Anthropology, University of Cincinnati 45221$0013,{ }^{8}$ Swiss Federal Institute for Forest, Snow and Landscape Research - WSL Forest soils and

Biogeochemistry Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland, ${ }^{9}$ BIOGECO, INRA University of Bordeaux, Pessac, France. ${ }^{10}$ Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Camino Baguales s / n, Coyhaique 5951601, Chile, ${ }^{11}$ CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China, ${ }^{12}$ Research Institute for Humanity and Nature, Kyoto, 603-8047 JAPAN, ${ }^{13}$ NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK, ${ }^{14}$ Centre for Ecological Research and Forestry Applications, 08290 Cerdanyola, Barcelona, Spain, ${ }^{15}$ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83 Umeå, Sweden, ${ }^{16}$ Department of Science and Primary Industries, Ara Institute of Canterbury, Christchurch, New Zealand, ${ }^{17}$ Institute of Botany, University of Natural Resources and Life Sciences, Gregor Mendel-Straße 33, 1180 Vienna, Austria, ${ }^{18}$ Université catholique de Louvain, Earth and Life Institute, Croix du Sud 2, L7.05.09, 1348 Louvain-la-Neuve, Belgium, ${ }^{19}$ Computational and Applied Vegetation Ecology lab, Department of Environment, Ghent University, Ghent, Belgium, ${ }^{20}$ Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan, ${ }^{21}$ Soil Science Department, Moscow M.V. Lomonosov State University 119991 Moscow, ${ }^{22}$ Department of Ecology, Faculty of Sciences, University of Granada, E-18071, Granada, Spain, ${ }^{23}$ CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Catalonia, Spain, ${ }^{24}$ CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, E-08193 Barcelona, Catalonia, Spain, ${ }^{25}$ Department of Biology, California State University Dominguez Hills, Carson, CA 90747 USA and Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, CA 90007 USA, ${ }^{26}$ West Virginia University, Department of Geology and Geography, Morgantown, WV 26506 U.S.A, ${ }^{27}$ Universidad Nacional de la Patagonia Austral (UNPA), Instituto Nacional de Tecnología

Agropecuaria (INTA), CONICET, Río Gallegos, Santa Cruz, Argentina, ${ }^{28}$ INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane) Campus Agronomique, 97387 Kourou, Guyane Française, France, ${ }^{29}$ Department of Biology, Boston University, Boston, MA 02215 USA, ${ }^{30}$ Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824 USA, ${ }^{31}$ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China, ${ }^{32}$ Department of Anthropology, Trent University, Peterborough, Ontario, Canada, K9L 0G2, ${ }^{33}$ South African National Biodiversity Institute, Cape Town, South Africa, ${ }^{34}$ Ecosystem Physiology, University of Freiburg, 79085 Freiburg, Germany, ${ }^{35}$ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China, ${ }^{36}$ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, ${ }^{37}$ College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China, ${ }^{38}$ University of Gdańsk, Faculty of Biology, Department of Vertebrate Ecology and Zoology, Wita Stwosza 59, 80-215 Gdańsk, Poland

Human societies depend on an Earth System that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations $([\mathrm{N}])$ and isotope ratios $\left(\delta^{15} \mathrm{~N}\right)$ from more than 42,000 samples acquired over 37 years, here we show that foliar [N] declined by 8% and foliar $\delta^{15} \mathrm{~N}$ declined by $0.8-1.9 \%$. Examining patterns across different climate spaces, foliar $\delta^{15} \mathrm{~N}$ declined across the entire range of MAT and MAP tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in $\delta^{15} \mathrm{~N}$ of tree rings and leaves from herbarium samples over the past 75-150 years. These patterns are consistent with the proposed consequences of elevated atmospheric CO_{2} and longer growing seasons. These declines will limit future terrestrial C uptake and increase nutritional stress for herbivores.

Human societies depend on a resilient, accommodating Earth System with a constrained range of environmental conditions ${ }^{1,2}$, yet there is a fundamental uncertainty about the trajectory of nitrogen (N) availability in terrestrial ecosystems. On the one hand, as more and more reactive N has been fixed by humans over time ${ }^{3}$, planetary boundaries for N fluxes are thought to have been exceeded, generating wide-scale aquatic and terrestrial eutrophication as well as contributing to terrestrial acidification and aquatic anoxia. Exceeding the planetary N boundary is thought to be destabilizing the Earth system ${ }^{1,2,4-7}$. In contrast, atmospheric CO_{2} concentrations have increased by $>40 \%$ over the past 150 years. Elevated atmospheric CO_{2} could be reducing N availability in terrestrial ecosystems as plant N demand increases more than N supplies and/or higher ratios of C to N in plants induce greater microbial N limitation ${ }^{8-11}$. Longer growing seasons associated with climate warming could also be increasing plant N demand more than supply in some ecosystems, also reducing N availability ${ }^{12}$. With no global databases to directly assess changes in terrestrial N availability, the lack of resolution of the trajectory of terrestrial N cycling constrains our ability to predict future terrestrial C uptake ${ }^{13}$, plant biodiversity ${ }^{14}$, and herbivore performance ${ }^{15,16}$. For example, increasing N availability would generally increase plant productivity in unfertilized ecosystems, reduce plant biodiversity, and increase the growth of herbivores as protein limitation is reduced. Decreasing N availability generally leads to opposite effects. Given the central role of nitrogen in so many ecosystem properties, a basic N trajectory is required to increase the certainty with which regulatory decisions can be made and predict future terrestrial ecosystem function.

To test whether there is evidence of global-scale increases or decreases in terrestrial N availability, we compiled a dataset of 42,822 measurements of foliar N concentrations ([N]) and nitrogen isotope ratios $\left(\delta^{15} \mathrm{~N}\right)$. Measurements were restricted to terrestrial rooted plants that were not directly fertilized and were collected between 1980 and 2017 (Supplementary Figs. 1-3). Similar to foliar [N$]$, foliar $\delta^{15} \mathrm{~N}$ scales positively with N availability relative to plant N demand within an ecosystem ${ }^{17-19}$ as plants experiencing higher N availability acquire soil N that is more enriched in ${ }^{15} \mathrm{~N}$. When N availability is high, there is a greater relative importance of loss pathways that strongly fractionate against ${ }^{15} \mathrm{~N}$, e.g. denitrification. Also, plants acquire less N from mycorrhizal fungi, which transfer ${ }^{15} \mathrm{~N}$-depleted N to plants. Our dataset is over 30,000 data points larger than previously assembled ${ }^{17}$, providing a better representation of global ecosystems and climate space as well as representing an additional 12 years of data to examine temporal trends (Supplementary Fig. 1-2). All samples used in analyses were associated with mean climate data and assigned a mycorrhizal type and N_{2}-fixing capacity based on provided data or literature syntheses ${ }^{20,21}$. Data were then averaged to provide a single foliar $\delta^{15} \mathrm{~N}$ value for each species at a given site in a given year before determining relationships between foliar $\delta^{15} \mathrm{~N}$ and climate, mycorrhizal type, and foliar [N$]$. We then tested whether foliar $\delta^{15} \mathrm{~N}$ and foliar [N$]$ increased or decreased over time across sites with regression and structural equation modelling.

Results

Examining patterns for 38,451 unsummarized measurements of foliar $\delta^{15} \mathrm{~N}$ from non- N_{2}-fixing species, mean foliar $\delta^{15} \mathrm{~N}$ was 0.4% and varied by over 40% across all samples $(-20.6 \%$ to $+21.4 \%$). As observed in a previous synthesis ${ }^{17}$, using data summarized by species at each site
for each year $(\mathrm{n}=10,796)$, foliar $\delta^{15} \mathrm{~N}$ increased with increasing mean annual temperature (MAT) and decreasing mean annual precipitation (MAP) (Fig 1). With these data, $\delta^{15} \mathrm{~N}$ began increasing with increasing MAT above $9.7 \pm 1.1^{\circ} \mathrm{C}$ which was similar to the $8.5^{\circ} \mathrm{C}$ breakpoint observed in the full dataset of the first synthesis ${ }^{17}$ and the $9.8^{\circ} \mathrm{C}$ breakpoint observed for a global synthesis of soil organic matter $\delta^{15} \mathrm{~N}^{22}$. As observed previously, in the current synthesis, foliar $\delta^{15} \mathrm{~N}$ increases with increasing log-transformed foliar [N$]$ and differed among species with different mycorrhizal associations (Fig 1). Non-mycorrhizal species still had the highest foliar $\delta^{15} \mathrm{~N}$, and ericoid species the lowest (Fig 1). Foliar [N] was highest under cold, wet climates and also differed significantly among mycorrhizal types with nonmycorrhizal and arbuscular species having the highest N concentrations $\left(19.2 \mathrm{mg} \mathrm{g}^{-1}\right)$ and ericoid species the lowest ($12.4 \mathrm{mg} \mathrm{g}^{-1}$). After accounting for climate, foliar [N], and mycorrhizal type, there were significant differences among continents in foliar $\delta^{15} \mathrm{~N}$. For example, samples from Europe were $1.2 \pm 0.2 \%$ lower than expected based on climate, mycorrhizal type, and [N] whereas samples from South America were $1.2 \pm 0.2 \%$ more than expected (Supplementary Table 1, Supplementary Fig. 4). For foliar $[\mathrm{N}]$, leaves from a typical plant with the geometric mean $[\mathrm{N}]$ of $17.3 \mathrm{mg} \mathrm{g}^{-1}$ would be $11.4 \mathrm{mg} \mathrm{g}^{-1}$ if it were from Australia and $20.4 \mathrm{mg} \mathrm{g}^{-1}$ from Asia if one held mycorrhizal type and climate constant and only varied the continent of origin (Supplementary Table 1).

After standardizing values for differences in climate, mycorrhizal type, foliar [N], and continent, there was no significant trend in residual $\delta^{15} \mathrm{~N}$ over time when comparing at the same foliar $[\mathrm{N}]$ over time $\left(-0.004 \pm 0.007 \% \mathrm{y}^{-1} ; P=0.51, \mathrm{n}=2292\right.$; Supplementary Table 1). However, logtransformed foliar $[\mathrm{N}]$ did decline over time $\left(-0.0012 \pm 0.0004 \mathrm{y}^{-1} ; P=0.001, \mathrm{n}=2292\right.$; Supplementary Table 1). This rate of decline is the equivalent of a typical plant with the
geometric mean [N] of $17.3 \mathrm{mg} \mathrm{g}^{-1}$ in 1980 declining 8% to $15.6 \mathrm{mg} \mathrm{g}^{-1}$ in 2017. Given this declining foliar [N] over time and the relationship between foliar $[\mathrm{N}]$ and $\delta^{15} \mathrm{~N}$, we ran additional regression models that standardized foliar $\delta^{15} \mathrm{~N}$ for climate, mycorrhizal type, and continent, but did not hold foliar [N] constant over time. Not holding foliar [N] constant over time, residual foliar $\delta^{15} \mathrm{~N}$ declined by $1.9 \pm 0.5 \%(P<0.001)$ over 37 years $(\mathrm{Fig} 2)$.

To test how changes in foliar [N$]$ were affecting the trend in $\delta^{15} \mathrm{~N}$ given that both were changing over time, a structural equation models (SEM) further examined the role of foliar [N] in determining changes in $\delta^{15} \mathrm{~N}$ and the changes in $\delta^{15} \mathrm{~N}$ that were independent of trends in foliar [N$]$. Doing so allows partitioning of direct effects of time on foliar $\delta^{15} \mathrm{~N}$ from indirect effects that occur through changes in foliar [N$]$. Working with site-level residual foliar $\delta^{15} \mathrm{~N}$ and foliar [N$]$ for non- N_{2}-fixing species after standardizing for climate, mycorrhizal type, and continent, taking into account [N]-dependent and independent pathways, the SEM resulted in a lower estimate of the decline in foliar $\delta^{15} \mathrm{~N}$ in non- N_{2}-fixing species than the regression with the sums of effects via the two pathways generating an estimated decline of $0.8 \pm 0.5 \%$ over 37 years (Supplementary Fig. 5, Supplementary Table 2). With this approach, 82% of the decline occurred independent of changes in [N$]$, while the remainder was due to the decline in $[\mathrm{N}]$. To explore patterns of changes in foliar $\delta^{15} \mathrm{~N}$ and $[\mathrm{N}]$ over time across climates for non- N_{2}-fixing species, we ran a series of SEMs using subsets of the data created by serially adjusting the minimum and maximum MAT for inclusion in the SEM. Examining the coefficients for SEMs across ranges of MAT, plants in hot regions have been more likely to increase in foliar [N] over time than plants from cold regions (Supplementary Fig. 6). Yet, the [N]-independent changes in foliar $\delta^{15} \mathrm{~N}$ were consistently negative across the entire range of MAT tested (Supplementary Fig.
6). As a result, after calculating [N$]$-dependent and [N]-independent pathways of changes in foliar $\delta^{15} \mathrm{~N}$, foliar $\delta^{15} \mathrm{~N}$ declined across the entire range of MAT tested and the decline was likely of the highest magnitude in hotter regions. Employing a similar approach for MAP, regions with intermediate MAP were most likely to experience increased [N] (Supplementary Fig. 7), but the strength of the [N$]$-independent declines in foliar $\delta^{15} \mathrm{~N}$ led to declines in foliar $\delta^{15} \mathrm{~N}$ across the entire range of MAP examined (Supplementary Fig. 7).
N_{2}-fixing plants showed similar patterns over time in site-level foliar $\delta^{15} \mathrm{~N}$ as non- N_{2}-fixers, although it is uncertain whether these patterns result from increasing N_{2} fixation or reduced $\delta^{15} \mathrm{~N}$ of acquired N due to declining N availability. Across 4,363 samples (Supplementary Fig. 8), mean foliar $\delta^{15} \mathrm{~N}$ for N_{2}-fixers was 2.0% and varied by over 24%. Likely reflecting their greater access to N , the geometric mean foliar [N] for N_{2}-fixing species was $25.8 \mathrm{mg} \mathrm{g}^{-1}$ as opposed to just $17.3 \mathrm{mg} \mathrm{g}^{-1}$ for non- N_{2}-fixers. Foliar $\delta^{15} \mathrm{~N}$ increased with increasing MAT, decreasing MAP, and increasing foliar [N] (Supplementary Fig. 9). Potentially signifying greater N_{2}-fixation, [N] was increasing for N_{2}-fixers between 1980 and 2017 (Supplementary Table 1). However, leaf $\delta^{15} \mathrm{~N}$ still declined by 1.5% over the 37 years. Using the same SEM used for non-N_{2}-fixers, taking into account the increases in N as well as N -independent decline, foliar $\delta^{15} \mathrm{~N}$ declined by 0.8%. This decline is similar to the rate for non- N_{2}-fixers (Supplementary Fig. 10, Supplementary Table 3), but it should be noted that sample size was lower for non- N_{2}-fixers ($\mathrm{n}=377$ for data averaged by site and year).

Discussion

Based on evidence that foliar $\delta^{15} \mathrm{~N}$ reflects soil N availability to plants in non- N_{2}-fixing species, the most parsimonious interpretation of the decline in foliar [N$]$ and foliar $\delta^{15} \mathrm{~N}$ for non- N_{2}-fixing species is that the ratio of plant N demand to soil N supply is increasing in unfertilized ecosystems across the Earth, i.e. N availability to plants is declining. Within this general global pattern, there are individual examples of local to regional increases in N availability occurring ${ }^{23-}$
${ }^{25}$. We also reveal evidence that some climatic regions might be experiencing complicated responses with foliar $[\mathrm{N}]$ increasing while foliar $\delta^{15} \mathrm{~N}$ decreased. Yet, patterns consistent with broad-scale oligotrophication in unfertilized terrestrial ecosystems are documented in numerous other studies. Evidence of oligotrophication includes regional declines in grass and tree foliar N concentrations ${ }^{26,27}$, reduced dietary protein in cattle on rangelands ${ }^{15}$, reduced pollen protein concentrations ${ }^{28}$, increased soil C:N ${ }^{29}$, reduced N mineralization rates in forests ${ }^{30}$, and reductions in $\mathrm{NO}_{3}{ }^{-}$in forest streams ${ }^{31-34}$. In addition, declines in $\delta^{15} \mathrm{~N}$ of tree rings and leaves from herbarium samples indicate reduction of plant N availability in forests and grasslands over the past 75-150 years ${ }^{12,25,27}$. It should be noted that these corroborating patterns have been quantified for North America and Europe. Similar research has yet to be conducted to begin to examine other lines of evidence on other continents.

The mechanism behind terrestrial oligotrophication cannot be directly tested here, but progressive nitrogen limitation associated with elevated atmospheric CO_{2} and/or longer growing seasons due to climate change are likely candidates due to the global extent of the oligotrophication. Although N deposition does affect terrestrial ecosystem N cycling, North American tree ring and herbarium studies support the timing of the initiation of the decline in N
availability to predate broad-scale increases in N deposition ${ }^{25,27}$ and declines in foliar [N] are unlikely to be explained by greater N deposition rates globally. Further N isotope research on tree rings and herbarium specimens as well as more extensive syntheses of foliar [N] data could elucidate regional variation in changes in N availability over time as well as further explore the timing of declines prior to the years examined here.

Considered alongside these other lines of evidence, our results suggest that most terrestrial ecosystems are undergoing oligotrophication, even while other ecosystems -particularly intensively fertilized terrestrial ecosystems, urban areas, and their downstream receiving waters-are eutrophying. This global bifurcation of N availability raises questions about whether humanity has exceeded a true planetary boundary for nitrogen availability ${ }^{35}$. Broad-scale reductions of anthropogenic N fixation would certainly reduce impacts on aquatic ecosystems, but at the same time could also further constrain terrestrial C uptake as atmospheric CO_{2} concentrations continue to increase and N deposition rates fall ${ }^{13}$. Given projected increases in atmospheric CO_{2} concentrations and global temperatures over the next century, it is likely that this oligotrophication will continue and the $\mathrm{C}: \mathrm{N}$ stoichiometry of most terrestrial ecosystems will continue to increase. It remains to be tested whether reduced plant protein accompanying oligotrophication can explain reductions in production in herbivores ${ }^{36}$, but declining N availability to plants should cascade up to herbivores ${ }^{15,16}$. Even if atmospheric CO_{2} is eventually stabilized at low enough levels to mitigate the most serious impacts of climate change ${ }^{37}$, many terrestrial ecosystems will increasingly display signs of too little reactive N as opposed to too much. Preventing these declines in N availability further emphasizes the need to reduce anthropogenic CO_{2} emissions.

Data and code availability. The datasets generated during and/or analysed during the current study are available in the Dryad repository [link to be generated upon acceptance]. All code used for statistical analyses and figure generation are available on Dryad (XXX).

1 Rockström, J. et al. A safe operating space for humanity. Nature 461, 472-475, doi:10.1038/461472a (2009).

2 Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855, doi:10.1126/science. 1259855 (2015).

3 Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 368, 20130164, doi:10.1098/rstb.2013.0164 (2013).

4 Clark, C. M., Morefield, P. E., Gilliam, F. S. \& Pardo, L. H. Estimated losses of plant biodiversity in the United States from historical N deposition (1985-2010). Ecology 94, 1441-1448 (2013).

5 de Vries, W., Kros, J., Kroeze, C. \& Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability 5, 392-402, doi:10.1016/j.cosust.2013.07.004 (2013).

6 Sinha, E., Michalak, A. \& Balaji, V. Eutrophication will increase during the 21 st century as a result of precipitation changes. Science 357, 405-408 (2017).

7 Vitousek, P. M. Human Domination of Earth's Ecosystems. Science 277, 494-499, doi:10.1126/science.277.5325.494 (1997).

8 Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731-739 (2004).

9 Gill, R. A. et al. Nonlinear grassland responses to past and future atmospheric CO2. Nature 417, 279-282 (2002).

10 Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. \& McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A 107, 19368-19373, doi:10.1073/pnas. 1006463107 (2010).

11 Feng, Z. et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO 2 . Glob Chang Biol 21, 3152-3168, doi:10.1111/gcb. 12938 (2015).

12 Elmore, A. J., Nelson, D. M. \& Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat Plants 2, 16133, doi:10.1038/nplants.2016.133 (2016).

13 Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 20272054 (2014).

14 Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20, 30-59 (2010).

Craine, J. M., Elmore, A. \& Angerer, J. P. Long-term declines in dietary nutritional quality for North American cattle. Environmental Research Letters 12, 044019, doi:10.1088/1748-9326/aa67a4 (2017).

16 Stiling, P. \& Cornelissen, T. How does elevated carbon dioxide (CO2) affect plantherbivore interactions? A field experiment and meta-analysis of CO 2 -mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13, 1823-1842, doi:10.1111/j.1365-2486.2007.01392.x (2007).

Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183, 980-992 (2009).

18 Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 1, 1-26 (2015).

19 Garten, C. T. Variation in foliar N-15 abundance and the availability of soil-nitrogen on Walker Branch watershed. Ecology 74, 2098-2113, doi:10.2307/1940855 (1993).

Werner, G. D., Cornwell, W. K., Sprent, J. I., Kattge, J. \& Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature communications 5, 4087 (2014). and effects of atmospheric nitrogen inputs across an urban area: Emerging patterns among human activities, the atmosphere, and soils. Sci Total Environ 609, 1524-1534, doi:10.1016/j.scitotenv.2017.07.166 (2017).

McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W. \& Craine, J. M. Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. New Phytol 187, 1135-1145 (2010). of forest soils in Germany. Glob Chang Biol 20, 2644-2662, doi:10.1111/gcb. 12558 (2014).

30 Durán, J. et al. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests. Ecosphere 7, e01251-n/a, doi:10.1002/ecs2.1251 (2016). of decreased atmospheric nitrate and sulfur deposition. Atmos Environ 146, 271-279, doi:10.1016/j.atmosenv.2016.08.055 (2016).

Lucas, R. W. et al. Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecol Appl 26, 545-556 (2016).

34 Bernal, S., Hedin, L. O., Likens, G. E., Gerber, S. \& Buso, D. C. Complex response of the forest nitrogen cycle to climate change. Proc Natl Acad Sci U S A 109, 3406-3411, doi:10.1073/pnas. 1121448109 (2012). biomass in protected areas. PloS one 12, e0185809, doi:10.1371/journal.pone. 0185809 (2017).

37 Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48, 1-36 (2012). greening. Scientific reports 6, 20716, doi:10.1038/srep20716 (2016).

Anderson, J. T. \& Gezon, Z. J. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Global Change Biology 21, 1689-1703, doi:10.1111/gcb. 12770 (2015). ecosystem retrogression of vascular plants and mosses in the boreal forest. Oecologia 169, 661-672, doi:10.1007/s00442-011-2246-z (2012).

49 Baptist, F. et al. C-13 and N-15 allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. Journal of Experimental Botany 60, 2725-2735, doi:10.1093/jxb/erp128 (2009).

50 Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology letters 13, 1338-1347 (2010).

51 Bauer, G. A. et al. in Carbon and Nitrogen Cycling in European Forest Ecosystems (ed Ernst-Detlef Schulze) 189-214 (Springer Berlin Heidelberg, 2000).

52 Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South-American and African forest communities with elevation. Biogeosciences Discuss. 2017, 1-27, doi:10.5194/bg-2017-136 (2017).

53 Bazot, S., Fresneau, C., Damesin, C. \& Barthes, L. Contribution of previous year's leaf N and soil N uptake to current year's leaf growth in sessile oak. Biogeosciences 13, 34753484, doi:10.5194/bg-13-3475-2016 (2016).

54 Beyschlag, W., Hanisch, S., Friedrich, S., Jentsch, A. \& Werner, C. 15N natural abundance during early and late succession in a middle-European dry acidic grassland. Plant Biol (Stuttg) 11, 713-724, doi:10.1111/j.1438-8677.2008.00173.x (2009).

Blonder, B., Baldwin, B. G., Enquist, B. J. \& Robichaux, R. H. Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). Journal of Ecology 104, 219-228 (2016).

56 Blumenthal, S. A., Chritz, K. L., Rothman, J. M. \& Cerling, T. E. Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces. Proceedings of the National Academy of Sciences of the United States of America 109, 21277-21282, doi:10.1073/pnas. 1215782109 (2012).

Blumenthal, S. A., Rothman, J. M., Chritz, K. L. \& Cerling, T. E. Stable Isotopic Variation in Tropical Forest Plants for Applications in Primatology. American Journal of Primatology 78, doi:10.1002/ajp. 22488 (2016).

58 Boeckx, P., Paulino, L., Oyarzun, C., van Cleemput, O. \& Godoy, R. Soil delta N-15 patterns in old-growth forests of southern Chile as integrator for N -cycling. Isotopes In Environmental And Health Studies 41, 249-259 (2005).

59 Brearley, F. Q. Nitrogen stable isotopes indicate differences in nitrogen cycling between two contrasting Jamaican montane forests. Plant and Soil 367, 465-476, doi:10.1007/s11104-012-1469-z (2013).

60 Brearley, F. Q., Fine, P. V. A. \& Perreijn, K. Does nitrogen availability have greater control over the formation of tropical heath forests than water stress? A hypothesis based on nitrogen isotope ratios. Acta Amazonica 41, 589-592, doi:10.1590/s004459672011000400017 (2011).

61 Burton, J. I., Perakis, S. S., McKenzie, S. C., Lawrence, C. E. \& Puettmann, K. J. Intraspecific variability and reaction norms of forest understory plant species traits. Functional Ecology 31, 1881-1893 (2017).

62 Cardon, Z. G., Stark, J. M., Herron, P. M. \& Rasmussen, J. A. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. Proceedings of the National Academy of Sciences of the United States of America 110, 18988-18993, doi:10.1073/pnas. 1311314110 (2013).

63 Carr, A. S., Chase, B. M., Boom, A. \& Medina-Sanchez, J. Stable isotope analyses of rock hyrax faecal pellets, hyraceum and associated vegetation in southern Africa:

Implications for dietary ecology and palaeoenvironmental reconstructions. Journal of Arid Environments 134, 33-48, doi:10.1016/j.jaridenv.2016.06.013 (2016).

64 Chen, C., Li, J., Wang, G. \& Shi, M. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition. Science of The Total Environment 609, 1295-1302, doi:https://doi.org/10.1016/j.scitotenv.2017.06.088 (2017).

65 Compton, J. E., Hooker, T. D. \& Perakis, S. S. Ecosystem N distribution and delta N-15 during a century of forest regrowth after agricultural abandonment. Ecosystems 10, 11971208, doi:10.1007/s10021-007-9087-y (2007).

66 Correa, S. B., Winemiller, K. \& Cardenas, D. Isotopic variation among Amazonian floodplain woody plants and implications for food-web research. Biota Neotropica 16, doi:10.1590/1676-0611-bn-2015-0078 (2016).

67 Courty, P.-E. et al. Carbon and Nitrogen Metabolism in Mycorrhizal Networks and Mycoheterotrophic Plants of Tropical Forests: A Stable Isotope Analysis. Plant Physiology 156, 952-961, doi:10.1104/pp.111.177618 (2011).

68 Couto-Vazquez, A. \& Gonzalez-Prieto, S. J. Effects of biotic and abiotic factors on delta N-15 in young Pinus radiata. European Journal of Forest Research 133, 631-637, doi:10.1007/s10342-014-0791-9 (2014).

69 Couto-Vázquez, A. \& González-Prieto, S. J. Effects of climate, tree age, dominance and growth on $\delta 15 \mathrm{~N}$ in young pinewoods. Trees 24, 507-514, doi:10.1007/s00468-010-04202 (2010). opens the nitrogen cycle at the alpine treeline. Global Change Biology 23, 421-434, doi:10.1111/gcb. 13365 (2017).

Diaz, F. P., Frugone, M., Gutierrez, R. A. \& Latorre, C. Nitrogen cycling in an extreme hyperarid environment inferred from delta N-15 analyses of plants, soils and herbivore diet. Scientific Reports 6, doi:10.1038/srep22226 (2016). of foliar nitrogen and carbon isotopes in Populus balsamifera and their relationships with climate. Scientific Reports 7, doi:10.1038/s41598-017-08156-x (2017).

81 Ens, E., Hutley, L. B., Rossiter-Rachor, N. A., Douglas, M. M. \& Setterfield, S. A. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Frontiers in Plant Science 6, doi:10.3389/fpls.2015.00560 (2015).

82 Evaristo, J. \& McDonnell, J. J. Carbon, nitrogen, and water stable isotopes in plant tissue and soils across a moisture gradient in Puerto Rico. Hydrological Processes 31, doi:10.1002/hyp. 11041 (2017).

83 Fajardo, A. \& Gundale, M. J. Combined effects of anthropogenic fires and land-use change on soil properties and processes in Patagonia, Chile. Forest Ecology and Management 357, 60-67 (2015).

84 Falxa-Raymond, N., Palmer, M. I., McPhearson, T. \& Griffin, K. L. Foliar nitrogen characteristics of four tree species planted in New York City forest restoration sites. Urban Ecosystems 17, 807-824, doi:10.1007/s11252-014-0346-3 (2014).

Falxa-Raymond, N., Patterson, A. E., Schuster, W. S. F. \& Griffin, K. L. Oak loss increases foliar nitrogen, delta $\mathrm{N}-15$ and growth rates of Betula lenta in a northern temperate deciduous forest. Tree Physiology 32, 1092-1101, doi:10.1093/treephys/tps068 (2012).

86 Fang, Y. et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China. Global Change Biology 17, 872-885, doi:10.1111/j.13652486.2010.02283.x (2011).

Feng, Z., Brumme, R., Xu, Y. J. \& Lamersdorf, N. Tracing the fate of mineral N compounds under high ambient N deposition in a Norway spruce forest at Solling/Germany. Forest Ecology and Management 255, 2061-2073, doi:10.1016/j.foreco.2007.12.049 (2008).

88 Finger, R. A. et al. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology 104, 1542-1554, doi:10.1111/1365-2745.12639 (2016).

89 Frenette-Dussault, C., Shipley, B., Léger, J. F., Meziane, D. \& Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime's C-S-R theory. Journal of Vegetation Science 23, 208-222 (2012).

90 Fujiyoshi, L. et al. Spatial variations in larch needle and soil N-15 at a forest-grassland boundary in northern Mongolia. Isotopes in Environmental and Health Studies 53, 54-69, doi:10.1080/10256016.2016.1206093 (2017).

91
Gao, J., Zhao, P., Shen, W., Rao, X. \& Hu, Y. Physiological homeostasis and morphological plasticity of two tree species subjected to precipitation seasonal distribution changes. Perspectives in Plant Ecology, Evolution and Systematics 25, 1-19 (2017).

Gao, J., Zhao, P., Shen, W., Rao, X. \& Hu, Y. Physiological homeostasis and morphological plasticity of two tree species subjected to precipitation seasonal distribution changes. Perspectives in Plant Ecology, Evolution and Systematics 25, 1-19, doi:https://doi.org/10.1016/j.ppees.2017.01.002 (2017).

Gao, J. et al. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees. International Journal of Biometeorology 60, 545-556, doi:10.1007/s00484-015-1050-6 (2016).

Godfrey, L. R. et al. What did Hadropithecus eat, and why should paleoanthropologists care? American journal of primatology 78, 1098-1112 (2016).

Golluscio, R., Faigon, A. \& Tanke, M. Spatial distribution of roots and nodules, and delta $\mathrm{N}-15$ evidence of nitrogen fixation in Adesmia volckmanni, a Patagonian leguminous shrub. Journal of Arid Environments 67, 328-335, doi:10.1016/j.jaridenv.2006.02.005 (2006).

96 Gos, P. et al. Relative contribution of soil, management and traits to co-variations of multiple ecosystem properties in grasslands. Oecologia 180, 1001-1013 (2016).

97 Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd.? Evidence from carbon and nitrogen stable isotopes. Plant and Soil 369, 479-496, doi:10.1007/s11104-013-1593-4 (2013).

Große-Stoltenberg, A., Hellmann, C., Thiele, J., Oldeland, J. \& Werner, C. Invasive acacias differ from native dune species in the hyperspectral/biochemical trait space. Journal of Vegetation Science 29, 325-335 (2018).

Guerrieri, R., Lepine, L., Asbjornsen, H., Xiao, J. \& Ollinger, S. V. Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in US forests. Journal of Geophysical Research-Biogeosciences 121, 2610-2629, doi:10.1002/2016jg003415 (2016).

Gundale, M. J., Deluca, T. H. \& Nordin, A. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology 17, 2743-2753 (2011).

Gundale, M. J., From, F., Bach, L. H. \& Nordin, A. Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Global Change Biology 20, 276-286, doi:10.1111/gcb. 12422 (2014).

Gundale, M. J., Hyodo, F., Nilsson, M.-C. \& Wardle, D. A. Nitrogen niches revealed through species and functional group removal in a boreal shrub community. Ecology 93, 1695-1706 (2012).

Gurmesa, G. A. et al. Nitrogen input \<sup\>15\</sup\>N signatures are reflected in plant \<sup\> $15 \& 1 \mathrm{lt}$;/sup\>N natural abundances in subtropical forests in China. Biogeosciences 14, 2359-2370, doi:10.5194/bg-14-2359-2017 (2017). Haberer, K. et al. Effects of long-term free-air ozone fumigation on delta $\mathrm{N}-15$ and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biology 9, 242-252, doi:10.1055/s-2006-924758 (2007).

Hellmann, C., Grosse-Stoltenberg, A., Laustroeer, V., Oldeland, J. \& Werner, C. Retrieving nitrogen isotopic signatures from fresh leaf reflectance spectra: disentangling delta N-15 from biochemical and structural leaf properties. Frontiers in Plant Science 6, doi:10.3389/fpls. 2015.00307 (2015).

110
Hellmann, C., Grosse-Stoltenberg, A., Thiele, J., Oldeland, J. \& Werner, C. Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing. Scientific Reports 7, doi:10.1038/s41598-017-04480-4 (2017).

111 Hellmann, C., Rascher, K. G., Oldeland, J. \& Werner, C. Isoscapes resolve speciesspecific spatial patterns in plant-plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiology 36, 1460-1470, doi:10.1093/treephys/tpw075 (2016).

112 Hellmann, C. et al. Impact of an exotic N-2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecologica-International Journal of Ecology 37, 43-50, doi:10.1016/j.actao.2010.11.005 (2011).

113 Hellmann, C., Werner, C. \& Oldeland, J. A spatially explicit dual-isotope approach to map regions of plant-plant interaction after exotic plant invasion. PloS one 11, e0159403 (2016).

114 Hobbie, E. A., Rice, S. F., Weber, N. S. \& Smith, J. E. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska. Mycologia 108, 638-645, doi:10.3852/15-281 (2016).

115 Hobbie, J. E. et al. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: N-15 is the key signal. Canadian Journal of Microbiology 55, 84-94, doi:10.1139/w08-127 (2009).

116 Hofmeister, J., Hosek, J., Buzek, F. \& Rolecek, J. Foliar N concentration and delta N-15 signature reflect the herb layer species diversity and composition in oak-dominated forests. Applied Vegetation Science 15, 318-328, doi:10.1111/j.1654-109X.2011.01174.x (2012).

117 Hofmockel, K. S. et al. Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale N-15 study. Global Change Biology 17, 33383350, doi:10.1111/j.1365-2486.2011.02465.x (2011).

Hogberg, P. et al. Recovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest. New Phytologist 189, 515-525, doi:10.1111/j.1469-8137.2010.03485.x (2011). Hogberg, P. \& Alexander, I. J. Roles of root symbioses in African woodland and forest: evidence from ${ }^{\wedge} 15 \mathrm{~N}$ abundance and foliar analysis. Journal of Ecology, 217-224 (1995).

120
Hoogmoed, M., Cunningham, S. C., Baker, P., Beringer, J. \& Cavagnaro, T. R. N-fixing trees in restoration plantings: Effects on nitrogen supply and soil microbial communities. Soil Biology \& Biochemistry 77, 203-212, doi:10.1016/j.soilbio.2014.06.008 (2014). Houle, D., Moore, J. D., Ouimet, R. \& Marty, C. Tree species partition N uptake by soil depth in boreal forests. Ecology 95, 1127-1133, doi:10.1890/14-0191.1 (2014).

Hudson, J. M. G., Henry, G. H. R. \& Cornwell, W. K. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology 17, 1013-1021, doi:10.1111/j.1365-2486.2010.02294.x (2011).

Hyodo, F., Kusaka, S., Wardle, D. A. \& Nilsson, M.-C. Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant and Soil 364, 315-323, doi:10.1007/s11104-012-1339-8 (2013).

Ingram, L. J. \& Adams, M. A. Does season and grazing influence the delta C-13 and delta N-15 of C-4 native grasses in semi-arid rangelands of the Pilbara region of NW Australia? Agriculture Ecosystems \& Environment 236, 277-284, doi:10.1016/j.agee.2016.12.008 (2017).

Jiang, C. \& Zhang, X. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, Southwestern China. Environmental Monitoring and Assessment 154, 301308, doi:10.1007/s10661-008-0398-z (2009).

126 Kahmen, A., Wanek, W. \& Buchmann, N. Foliar delta(15)N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient (vol 156, pg 861, 2008). Oecologia 158, 371-371, doi:10.1007/s00442-008-1133-8 (2008).

Kearsley, E. et al. Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecology and Evolution 7, 295-304, doi:10.1002/ece3.2589 (2017). physicochemical traits of leaves of different life-forms of various broadleaf woody plants in interior Alaska. Canadian Journal of Forest Research 46, 1475-1482, doi:10.1139/cjfr-2015-0417 (2016).

Kleinebecker, T. et al. Evidence from the real world: N-15 natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands. Journal of Ecology 102, 456-465 (2014).
Kang, H. et al. Variation in foliar delta N-15 among oriental oak (Quercus variabilis) stands over eastern China: Patterns and interactions. Journal of Geochemical Exploration 110, 8-14, doi:10.1016/j.gexplo.2011.02.002 (2011).

Kenzo, T., Tanaka-Oda, A., Mastuura, Y. \& Hinzman, L. D. Morphological and

Klopatek, J. M., Barry, M. J. \& Johnson, D. W. Potential canopy interception of nitrogen in the Pacific Northwest, USA. Forest Ecology and Management 234, 344-354, doi:10.1016/j.foreco.2006.07.019 (2006).

Koba, K. et al. delta $\mathrm{N}-15$ of soil N and plants in a N -saturated, subtropical forest of southern China. Rapid Communications in Mass Spectrometry 24, 2499-2506, doi:10.1002/rcm. 4648 (2010). Koch, P. L. \& Fox, L. R. Browsing impacts on the stable isotope composition of chaparral plants. Ecosphere 8, doi:10.1002/ecs2.1686 (2017).

134 Korner, C., Leuzinger, S., Riedl, S., Siegwolf, R. T. \& Streule, L. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Botany 126, 153-166, doi:10.1007/s00035-016-0170-x (2016).

141 Laughlin, D. C., Fule, P. Z., Huffman, D. W., Crouse, J. \& Laliberte, E. Climatic constraints on trait-based forest assembly. Journal of Ecology 99, 1489-1499 (2011).

LeDuc, S. D., Rothstein, D. E., Yermakov, Z. \& Spaulding, S. E. Jack pine foliar delta N15 indicates shifts in plant nitrogen acquisition after severe wildfire and through forest stand development. Plant and Soil 373, 955-965, doi:10.1007/s11104-013-1856-0 (2013).

Li, Y., Xue, J., Clinton, P. W. \& Dungey, H. S. Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites. Tree Genetics \& Genomes 11, doi:10.1007/s11295-014-0830-1 (2015).

144 Liu, X., Wang, G., Li, J. \& Wang, Q. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Science China-Earth Sciences 53, 128-140, doi:10.1007/s11430-009-0175-z (2010).

145 Liu, X. et al. Foliar delta C-13 and delta N-15 values of C-3 plants in the Ethiopia Rift Valley and their environmental controls. Chinese Science Bulletin 52, 1265-1273, doi:10.1007/s11434-007-0165-5 (2007). Ma, L. et al. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp to prescribed burning. Environmental Science and Pollution Research 22, 10254-10262, doi:10.1007/s11356-015-4223-2 (2015).

Makarov, M. I. et al. Determinants of N-15 natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus. Arctic Antarctic and Alpine Research 46, 581-590, doi:10.1657/1938-4246-46.3.581 (2014). Maranon-Jimenez, S., Castro, J., Ignacio Querejeta, J., Fernandez-Ondono, E. \& Allen, C. D. Post-fire wood management alters water stress, growth, and performance of pine
regeneration in a Mediterranean ecosystem. Forest Ecology and Management 308, 231239, doi:10.1016/j.foreco.2013.07.009 (2013).

Mayor, J. R., Schuur, E. A. G., Mack, M. C., Hollingsworth, T. N. \& Baath, E. Nitrogen Isotope Patterns in Alaskan Black Spruce Reflect Organic Nitrogen Sources and the Activity of Ectomycorrhizal Fungi. Ecosystems 15, 819-831, doi:10.1007/s10021-012-9548-9 (2012).

Mayor, J. R., Wright, S. J., Schuur, E. A. G., Brooks, M. E. \& Turner, B. L. Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry 119, 293-306, doi:10.1007/s10533-014-9966-1 (2014).

152 McGlynn, T. P. et al. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape. BMC ecology 9, 23-23, doi:10.1186/1472-6785-9-23 (2009).

McLauchlan, K. K., Craine, J. M., Nippert, J. B. \& Ocheltree, T. W. Lack of eutrophication in a tallgrass prairie ecosystem over 27 years. Ecology 95, 1225-1235, doi:10.1890/13-1068.1 (2014).

154 Medina, E., Cuevas, E. \& Lugo, A. Substrate Chemistry and Rainfall Regime Regulate Elemental Composition of Tree Leaves in Karst Forests. Forests 8, 182, doi:10.3390/f8060182 (2017). virginiana L. to resource availability and stand characteristics in the semiarid grasslands of the Nebraska Sandhills. Photosynthetica 55, 219-230, doi:10.1007/s11099-016-0683-y (2017).

161 Murphy, B. P. \& Bowman, D. M. J. S. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Functional Ecology 23, 1040-1049, doi:10.1111/j.1365-2435.2009.01576.x (2009).

162 Nielsen, J. A., Frew, R. D., Whigham, P. A., Callaway, R. M. \& Dickinson, K. J. M. Thyme travels: N-15 isoscapes of Thymus vulgarisL. invasion in lightly grazed pastoral communities. Austral Ecology 41, 28-39, doi:10.1111/aec. 12284 (2016).

Ogaya, R. \& Penuelas, J. Changes in leaf delta(13)C and delta(15)N for three Mediterranean tree species in relation to soil water availability. Acta OecologicaInternational Journal of Ecology 34, 331-338, doi:10.1016/j.actao.2008.06.005 (2008).

164 Pasquini, S. C. \& Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311-319, doi:10.1007/s00442-011-2099-5 (2012).

Pellegrini, A. F. A., Hoffmann, W. A. \& Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342-352, doi:10.1890/13-0290.1 (2014).

Perakis, S. S. \& Kellogg, C. H. Imprint of oaks on nitrogen availability and delta N-15 in California grassland-savanna: a case of enhanced N inputs? Plant Ecology 191, 209-220, doi:10.1007/s11258-006-9238-9 (2007).

167 Perakis, S. S., Tepley, A. J. \& Compton, J. E. Disturbance and Topography Shape Nitrogen Availability and delta N-15 over Long-Term Forest Succession. Ecosystems 18, 573-588, doi:10.1007/s10021-015-9847-z (2015).

168 Perakis, S. S., Sinkhorn, E. R. \& Compton, J. E. $\delta 15$ N constraints on long-term nitrogen balances in temperate forests. Oecologia 167, 793-807 (2011). oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest:

Implications for primatology. American Journal of Primatology 79, doi:10.1002/ajp. 22656 (2017). reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystems. New Phytologist 212, 1030-1043, doi:10.1111/nph. 14091 (2016).

Salmon, V. G. et al. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology 22, 1927-1941, doi:10.1111/gcb. 13204 (2016).

Santiago, L., Silvera, K., Andrade, J. \& Dawson, T. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition. Environmental Research Letters 12, 115006 (2017).

Schimann, H. et al. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: Evidence from N-15 natural abundance and
microbial activities. Soil Biology \& Biochemistry 40, 487-494, doi:10.1016/j.soilbio.2007.09.011 (2008).

Smith, K. R., Mathias, J. M., McNeil, B. E., Peterjohn, W. T. \& Thomas, R. B. Site-level importance of broadleaf deciduous trees outweighs the legacy of high nitrogen (N) deposition on ecosystem N status of Central Appalachian red spruce forests. Plant and Soil 408, 343-356, doi:10.1007/s11104-016-2940-z (2016).

190

196 Tanaka-Oda, A., Kenzo, T., Toriyama, J. \& Matsuura, Y. Variability in the growth rates and foliage $\delta 15 \mathrm{~N}$ values of black spruce trees across a slope gradient in the Alaskan Interior. Canadian Journal of Forest Research 46, 1483-1490 (2016).

Tang, B., Yin, C., Yang, H., Sun, Y. \& Liu, Q. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in Picea asperata. Acta Physiologiae Plantarum 39, doi:10.1007/s11738-017-2451-4 (2017). Templer, P. H. et al. Fog as a source of nitrogen for redwood trees: evidence from fluxes and stable isotopes. Journal of Ecology 103, 1397-1407, doi:10.1111/1365-2745.12462 (2015).

Thorpe, A. S., Perakis, S., Catricala, C. \& Kaye, T. N. Nutrient limitation of native and invasive N2-fixing plants in northwest prairies. PLoS One 8, e84593, doi:10.1371/journal.pone. 0084593 (2013).

Van der Colff, D., Dreyer, L. L., Valentine, A. \& Roets, F. Comparison of nutrient cycling abilities between the invasive Acacia mearnsii and the native Virgilia divaricata trees growing sympatrically in forest margins in South Africa. South African Journal of Botany 111, 358-364, doi:10.1016/j.sajb.2017.04.001 (2017).

Viani, R. A. G., Rodrigues, R. R., Dawson, T. E. \& Oliveira, R. S. Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies. Austral Ecology 36, 974-982, doi:10.1111/j.1442-9993.2010.02233.x (2011). Wang, A. et al. Variations in nitrogen-15 natural abundance of plant and soil systems in four remote tropical rainforests, southern China. Oecologia 174, 567-580, doi:10.1007/s00442-013-2778-5 (2014). Wang, C. et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications 5, doi:10.1038/ncomms5799 (2014). (2010).

212 Williams, M., Shimabokuro, Y. E. \& Rastetter, E. B. (ed Oak Ridge National Laboratory Distributed Active Archive Center) (2012).

213 Woodcock, P. et al. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines. Naturwissenschaften 99, 275-283, doi:10.1007/s00114-012-0896-2 (2012).
$214 \mathrm{Wu}, \mathrm{T} . \&$ Huang, J. Effects of grazing on the delta 15 N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China. Journal of Plant Ecology (Chinese Version) 34, 160-169 (2010).

215 Xiao, L., Yang, H., Sun, B., Li, X. \& Guo, J. Stable isotope compositions of recent and fossil sun/shade leaves and implications for palaeoenvironmental reconstruction. Review of Palaeobotany and Palynology 190, 75-84, doi:10.1016/j.revpalbo.2012.10.002 (2013).

216 Yang, Y. et al. Vegetation and Soil N-15 Natural Abundance in Alpine Grasslands on the Tibetan Plateau: Patterns and Implications. Ecosystems 16, 1013-1024, doi:10.1007/s10021-013-9664-1 (2013).

217 Yang, Y., Siegwolf, R. T. W. \& Koerner, C. Species specific and environment induced variation of delta C-13 and delta N-15 in alpine plants. Frontiers in Plant Science 6, doi:10.3389/fpls.2015.00423 (2015).

218 Yao, F. Y., Wang, G. A., Liu, X. J. \& Song, L. Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes. Rapid Communications in Mass Spectrometry 25, 1827-1836, doi:10.1002/rcm. 5048 (2011).

219 Ye, L. et al. Contrasting impacts of grass species on nitrogen cycling in a grazed Sudanian savanna. Acta Oecologica-International Journal of Ecology 63, 8-15, doi:10.1016/j.actao.2015.01.002 (2015).

220 Zhang, H.-Y. et al. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia 180, 1213-1222, doi:10.1007/s00442-015-3538-5 (2016). Zhao, L. et al. The effects of short-term rainfall variability on leaf isotopic traits of desert plants in sand-binding ecosystems. Ecological Engineering 60, 116-125, doi:10.1016/j.ecoleng.2013.07.022 (2013).

Zmudczynska-Skarbek, K., Barcikowski, M., Zwolicki, A., Iliszko, L. \& Stempniewicz, L. Variability of polar scurvygrass Cochlearia groenlandica individual traits along a seabird influenced gradient across Spitsbergen tundra. Polar Biology 36, 1659-1669, doi:10.1007/s00300-013-1385-6 (2013).

223 Sparks, J. A. \& Crowley, B. E. Where did people forage in prehistoric Trinidad? Testing the utility of isotopic tools for tracking terrestrial resource use. Journal Archaeological of Science Reports 19, 968-978 (2018).

Mosher, S. Carbon isotope discrimination and nitrogen isotope values indicate that increased relative humidity from fog decreases plant water use efficiency in a subtropical montane cloud forest M.S. thesis, University of Cincinnati, (2015).

Author contributions. JMC and AE conceived of the research, conducted analyses, generated figures, and prepared the original draft. All authors contributed data and provided comments on manuscripts.

Competing interests

Although JMC is an owner of Jonah Ventures, a for-profit DNA sequencing company, the authors declare no competing interests in the publication of this research.

Acknowledgements. Funding for this research was in part provided by BRIDGE Project (ANR2006 Biodiversity Call) and from an "Investissement d'Avenir" grant managed by the Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-0025) (JCR); the European Research Council through the Advanced Grant Project TREEPEACE (\#FP7-339728) and the Cluster of Excellence COTE (ANR-10-LABX-45) (SD); NASA project number: NNX12AK56G and EU MSCA individual fellowship (project n . 705432) (RG); COILEX (CGL2008-01671), ECOLPIN (AGL2011-24296) and EU MSCA individual fellowship (project n. 750252) (SMJ); Russian Science Foundation (16-14-10208) (MM) . No funding was provided to JMC or AE in support of this research.

Figure $1 \mid$ Relationships between residual foliar $\boldsymbol{\delta}^{15} \mathbf{N}$ of non- N_{2}-fixing species and predictors. Included are (a) MAT, (b) \log MAP, (c) $\log [\mathrm{N}]$, and (d) mycorrhizal type after standardizing for the other three factors. All data were summarized by species for a given location before the regression. Each point represents an average foliar $\delta^{15} \mathrm{~N}$ for a given species at a given location in a given year. $\mathrm{n}=10,796$.

Figure $2 \mid$ Results of the regressions of (a) residual foliar $\delta^{15} \mathrm{~N}$ and (b) residual logtransformed foliar [\mathbf{N}]. Results shown after accounting for site climate, mycorrhizal type, and identity of continent from which samples were collected. Included are means for each year (black symbols) and site-averaged data (gray symbols). Thin black line represents regression line on average residual $\delta^{15} \mathrm{~N}$ for each year (a: $\mathrm{y}=102.3-0.051 \mathrm{x}, \mathrm{r}^{2}=0.29, P<0.001 ; \mathrm{b}: \mathrm{y}=3.02-$ $\left.0.0015 \mathrm{x}, \mathrm{r}^{2}=0.05, P=0.04\right)$ and blue area represent 95% confidence interval for the loesssmoothed curve of average residual values (thick black line).

Figure 3 | Conceptual diagram summarizing \mathbf{N} availability bifurcation hypothesis for global terrestrial ecosystems. The left half of the diagram represents the most anthropogenically influenced areas. These ecosystems are becoming more eutrophic, represented are the increases in N availability, foliar N concentrations, gaseous N loss, and transfers to aquatic ecosystems as well as declining dissolved oxygen (DO) levels in waters. The right half of the diagram represents the least anthropogenically influenced ecosystems, which are becoming more oligotrophic. Here, any increased N deposition is overwhelmed by the consequences of
increasing atmospheric CO_{2} concentrations on N availability. These ecosystems are demonstrating oligotrophication with declining N availability, declining foliar N concentrations, declining gaseous N loss, and reduced transfers to aquatic ecosystems. Diagram created by Brianne Walsh, University of Maryland Center for Environmental Science, Integration and Application Network.

Methods

Data acquisition. Data for this synthesis included data from the 2009 synthesis and published and unpublished data acquired from other researchers. To identify data not included in the 2009 synthesis, Web of Science was searched with the terms "(nitrogen isotope or $15-\mathrm{N}$) and (leaf or leaves or foliar)" for papers published between 2006 and the present. Web of Science was also searched for papers that cited Craine et al. 2009 and these were examined using the same criteria. Google Scholar was searched using similar criteria and the first 300 articles were examined. Articles that potentially were associated with foliar $\delta^{15} \mathrm{~N}$ data were downloaded and examined to see if foliar $\delta^{15} \mathrm{~N}$ data were collected. Articles were excluded if foliar $\delta^{15} \mathrm{~N}$ data were limited to: (1) urban areas (2) agricultural ecosystems (3) non-control samples of manipulative experiments (4) non-vascular plants (5) fertilized plants (6) semi-aquatic or aquatic plants (7) sites with mean annual precipitation $<50 \mathrm{~mm}$. For those papers that did not provide data on-line, we contacted the corresponding author using the provided email and requested the data. First emails were sent on October 3, 2017. Failures to respond within two weeks or bounced email resulted in searching the web for a different email or contacting another author on the paper. If an author was successfully contacted, we asked whether they have additional appropriate foliar $\delta^{15} \mathrm{~N}$ data that could be provided to the project. Data were included in the final synthesis if data points were
associated with the year the data were collected, location data to generate site latitude and longitude, sufficient identity of the species from which the leaves were collected to identify the mycorrhizal type and N_{2}-fixing status of the plant, and both foliar N concentration and foliar $\delta^{15} \mathrm{~N}$. Out of 146 researchers we attempted to contact, a total of 108 researchers responded that they would send data and 100 sent data by January 10, 2018. Along with data acquired from Dryad and TRY databases, 180 new datasets were added to the 78 datasets of the original paper.

For each data point in the database, we assigned a mean annual temperature and precipitation based on its geographic location from New et al. 2002. Original climate data were maintained if data from the first database did not have location data associated with them. N_{2}-fixing status of each species was assigned based on Werner et al. ${ }^{20}$. Any Fabaceae species not listed in the reference was assumed to be N_{2}-fixing unless the majority of the species in the genus were nonN_{2} fixers. Family identification was assigned from theplantlist.org or ITIS. Mycorrhizal type of the species was derived from Brundrett ${ }^{21}$ using family- and genus-level assignments.

Data analysis. Statistical analyses were pre-registered on October 3, 2017 (https://osf.io/thnyf) to reduce post-analysis bias in choosing statistical methods. Analyses were constructed with the knowledge of patterns from the 2009 analyses, but without access to any subsequent data. All analyses were conducted in R 3.3.2. All data for a given species at a given site within a year were averaged. All samples within each 0.1° latitude and longitude were considered to be from the same site. Statistical analyses were run separately for N_{2} - and non- N_{2}-fixing species. Our general regression approach was to test for trends in foliar $\delta^{15} \mathrm{~N}$ after standardizing for as many covariates as possible that could be skewing the temporal trend due to differential sampling. To
accomplish this, we conducted a set of regressions with species-averaged data followed by a regression with site-averaged data. In the first set of regressions, foliar $\delta^{15} \mathrm{~N}$ (averaged by site, species, and year) was regressed against log-transformed MAP, log-transformed foliar [N], and mycorrhizal type. Differences among mycorrhizal types were assessed with pairwise contrasts on least-squares means. The residuals of this regression were then subjected to a segmented regression to identify the breakpoint between MAT and foliar $\delta^{15} \mathrm{~N}$. A subsequent regression of foliar $\delta^{15} \mathrm{~N}$ (averaged for site, species, and year) then included MAT, the interaction between MAT and a categorical variable representing whether sites had MAT above or below the breakpoint, log-transformed MAP, log-transformed foliar [N], and mycorrhizal type. Outliers were considered as those points having a Cook's $\mathrm{D}>1$, but no points met this threshold for this data set. To test whether foliar $\delta^{15} \mathrm{~N}$ increased or decreased over time, we ran a second regression on the residual foliar $\delta^{15} \mathrm{~N}$ from the previous analysis after averaging the residuals by year and site. The regression tested the averaged residuals against year of sampling and the identity of the continent from which the sample was taken. Continent was included to ensure that any trends over time were not due to differential sampling over time between continents, which had been previously observed as explaining variation in foliar $\delta^{15} \mathrm{~N}$ independent of climate. A similar set of regressions were run with log-transformed foliar [N] as the response and without foliar [N] as a predictor. After observing that foliar [N] declined, additional regressions were performed that paralleled the foliar $\delta^{15} \mathrm{~N}$ regressions but did not include \log foliar $[\mathrm{N}]$ in the regression model in order to quantify how foliar $\delta^{15} \mathrm{~N}$ changed without standardizing for the declines in \log foliar [N]. In this model, the regression was not weighted by sample size for each year, in accordance with all other models.

Structural Equation Modelling. The first set of regressions were designed to test for trends in foliar $\delta^{15} \mathrm{~N}$ after standardizing foliar $\delta^{15} \mathrm{~N}$ with respect to foliar [N$]$. To account for trends in $[\mathrm{N}]$ occurring over time when assessing the potential causes of changes in $\delta^{15} \mathrm{~N}$ over time (which cannot be assessed using regression methods), we also conducted a structural equation model that used site-level residual $\delta^{15} \mathrm{~N}$ after accounting for MAT and its breakpoint, log-transformed MAP, mycorrhizal type, and identity of the continent from which samples were taken. The SEM then assessed the influence of time on foliar [N$]$ as well as time and $[\mathrm{N}]$ on foliar $\delta^{15} \mathrm{~N}$.

Post-registration, the SEM was altered to correct an oversight. The final SEM used residual foliar [N$]$ after standardizing for MAT, log MAP, mycorrhizal type, and continent as opposed to unstandardized foliar $\delta^{15} \mathrm{~N}$. The SEM also was altered from its original pre-registered formulation to use site-averaged data rather than unsummarized data, which was another initial oversight. As an exploratory exercise, we also ran a series of SEMs that explored the response of foliar $\delta^{15} \mathrm{~N}$ as a function of climate. In the first set of SEMs, data were subset by MAT, serially incrementing the lower bound from -5 to $18{ }^{\circ} \mathrm{C}$ and the upper bound from $10^{\circ} \mathrm{C}$ more than the lower bound up to $28^{\circ} \mathrm{C}$. All combinations were tested with MAT bounds incremented by $1^{\circ} \mathrm{C}$ between runs. In the second set of SEMs, data were subset by \log MAP, serially varying the lower bound from 2 to 3.1 and the upper bound from 0.4 more than the lower bound to 3.6. log MAP bounds were incremented by 0.1 and the SEMs explored responses in MAP from 100 mm to 3981 mm . SEM models were implemented in the R programing language using the Lavaan package version $0.5-23.1097^{38}$. No modification indices were used.

Because all possible pathways between all variables were accounted for in the SEM, i.e. the models were "just identified" or saturated, we could not test the significance of our models ${ }^{22,39-41}$, but do report significance values and unstandardized coefficients for each path. Future research
could test more complex SEMs that are not saturated, which would allow for estimation of the significance of a model as a whole. Given that we could not estimate the significance of the model, one should not rely on the SEM as support for the causal structure that was tested, but instead as a technique for generating the individual parameters that were used to assess N dependent and N -independent rates of decline in $\delta^{15} \mathrm{~N}$.

Data sources. Articles from which published data were derived are listed here ${ }^{23,42-224}$. A table of the papers examined and their ultimate inclusion or exclusion can be found at Supplementary Table 4.

Year

