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Hyperdrive: A Multi-Chip Systolically Scalable
Binary-Weight CNN Inference Engine

Renzo Andri∗, Lukas Cavigelli∗, Davide Rossi†, Luca Benini∗†
∗Integrated Systems Laboratory, ETH Zurich, Zurich, Switzerland †DEI, University of Bologna, Bologna, Italy

Abstract—Deep neural networks have achieved impressive
results in computer vision and machine learning. Unfortunately,
state-of-the-art networks are extremely compute and memory
intensive which makes them unsuitable for mW-devices such
as IoT end-nodes. Aggressive quantization of these networks
dramatically reduces the computation and memory footprint.
Binary-weight neural networks (BWNs) follow this trend, pushing
weight quantization to the limit. Hardware accelerators for
BWNs presented up to now have focused on core efficiency,
disregarding I/O bandwidth and system-level efficiency that
are crucial for deployment of accelerators in ultra-low power
devices. We present Hyperdrive: a BWN accelerator dramatically
reducing the I/O bandwidth exploiting a novel binary-weight
streaming approach, which can be used for arbitrarily sized
convolutional neural network architecture and input resolution
by exploiting the natural scalability of the compute units both
at chip-level and system-level by arranging Hyperdrive chips
systolically in a 2D mesh while processing the entire feature map
together in parallel. Hyperdrive achieves 4.3 TOp/s/W system-
level efficiency (i.e., including I/Os)—3.1× higher than state-of-
the-art BWN accelerators, even if its core uses resource-intensive
FP16 arithmetic for increased robustness.

Index Terms—Hardware Accelerator, Neural Network Hard-
ware, Binary-Weight Neural Networks, Internet of Things, Sys-
tolic Arrays, Application Specific Integrated Circuits

I. INTRODUCTION

Over the last few years, deep neural networks (DNNs) have
revolutionized computer vision and data analytics. Particularly
in computer vision, they have become the leading approach
for the majority of tasks with rapidly growing data set sizes
and problem complexity, achieving beyond-human accuracy
in tasks like image classification. What started with image
recognition for handwritten digits has moved to data sets
with millions of images and 1000s of classes [1, 2]. What
used to be image recognition on small images [3, 4] has
evolved to object segmentation and detection [5–9] in high-
resolution frames—and the next step, video analysis, is already
starting to gain traction [10–12]. Many applications from
automated surveillance to personalized interactive advertising
and augmented reality have real-time constraints, such that
the required computation can only be run on powerful GPU
servers and data center accelerators such as Google’s TPUs
[13].

At the same time, we observe the trend towards “internet
of things” (IoT), where connected sensor nodes are becoming
ubiquitous in our lives in the form of fitness trackers, smart
phones and surveillance cameras [14, 15]. This creates a data
deluge that is never analyzed and raises privacy concerns
when collected at a central site [16]. Gathering all this data is

largely unfeasible as the cost of communication is very high
in terms of network infrastructure, but also reliability, latency
and ultimately available energy in mobile devices [17]. The
centralized analysis in the cloud also does not solve the compute
problem, it merely shifts it around, and service providers might
not be willing to carry the processing cost while customers do
not want to share their privacy-sensitive data [18].

A viable approach to address these issues is edge computing—
analyzing the vast amount of data close to the sensor and
transmitting only condensed highly informative data [14, 19].
This information is often many orders of magnitude smaller in
size, e.g., a class ID instead of an image, or even only an alert
every few days instead of a continuous video stream. However,
this implies that the data analysis has to fit within the power
constraints of IoT nodes which are often small-form factor
devices with batteries of a limited capacity, or even devices
deployed using a set-and-forget strategy with on-board energy
harvesting (solar, thermal, kinetic, . . . ) [20].

Recently, several methods to train neural networks to
withstand extreme quantization have been proposed, yielding
the notions of binary- and ternary-weight networks (BWNs,
TWNs) and binarized neural networks (BNNs) [21–23]. BWNs
and TWNs allow a massive reduction of the data volume to
store the network and have been applied to recent and high-
complexity networks with an almost negligible loss. In parallel,
the VLSI research community has been developing specialized
hardware architectures focusing on data re-use with limited
resources and optimizing arithmetic precision, exploiting weight
and feature map (FM) sparsity, and performing on-the-fly data
compression to ultimately maximize energy efficiency [24, 25].
However, these implementations fall into one of two categories:
1) They stream the entire or even partial FMs into and out of
the accelerator ending up in a regime where I/O energy is far
in excess of the energy spent on computation, hitting an energy
efficiency wall: the state-of-the-art accelerator presented in [26]
has a core energy efficiency of 59 TOp/s/W, but including I/O
power it is limited to 1 TOp/s/W; or 2) they assume to store
the entire network’s weights and intermediate FMs on-chip.
This severely constrains the DNN’s size that can be handled
efficiently by a small low-cost IoT-end node class chip. It also
prevents the analysis of high-resolution images, thus precluding
many relevant applications such as object detection.

The main contributions of this work are:

1) A new and highly optimized yet flexible core architecture
systolically scalable to high-resolution images to enable
applications such as object detection.
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2) A new computational model, which exploits the reduced
size of the weights due to the binarization in BWNs.
As the size of the weights becomes much smaller than
the intermediate feature maps, Hyperdrive streams the
weights instead of the intermediate feature maps. With
this new method, Hyperdrive enables execution of state-
of-the-art BWNs on tiny, power-constrained chips, while
overcoming the I/O energy-induced efficiency wall.

3) An in-depth analysis of this architecture in terms of
memory requirements, I/O bandwidth, and scalability
including measurements of the chip implemented in
GF 22 nm FDX technology, showing a 1.8× and 3.1×
gain in energy efficiency in image classification and
object detection, respectively, even though our core
uses resource-intensive FP16 arithmetic for increased
robustness.

4) We show that the system is systolically scalable to
multiple chips with the elementary chip size fixed to
a maximum area constraint arranged in a 2D mesh
operating on tiles of the entire feature map. The extension
is also implemented in GF 22 nm FDX technology and
is evaluated on layout simulations, showing that even
with the overhead of exchanging the border pixels, the
I/O energy can be reduced up to 5.3× compared with
state-of-the-art accelerators.

The remainder of the paper is organized as follows. Sec. II
presents a review of the previous works more closely related
to the architecture presented in this paper. Sec. III and
Sec. IV introduce the Hyperdrive architecture and computa-
tional model, respectively, mainly focusing on its key innovation
aspect: stationary feature-map and streaming binary-weights
for reduced I/O bandwidth and improved system-level energy
efficiency. Sec. V describes the extensions to the presented
architecture enabling a systolic-scalable system composed of
Hyperdrive chips. Sec. VI presents the results of the chip
implemented in 22nm FDX technology, providing details about
its characterization, benchmarking, and comparison with respect
to the state-of-the-art of binary-weight CNN accelerators.
Finally, Sec. VII closes the paper with some final remarks.

II. RELATED WORK

A. Software-Programmable Platforms

The availability of affordable computing power on GPUs
and large data sets have sparked the deep learning revolution,
starting when AlexNet obtained a landslide victory in the
ILSVRC image recognition challenge in 2012 [27]. Since
then we have seen optimized implementations [28–30] and
algorithmic advances such as FFT-based and Winograd convo-
lutions further raising the throughput [31, 32]. The availability
of easy-to-use deep learning frameworks (TensorFlow, Torch,
Caffe, . . . ) exploiting the power of GPUs transparently to
the user has resulted in wide-spread use of GPU computing.
With the growing market size, improved hardware has become
available as well: Nvidia has introduced a product line of
systems-on-chip for embedded applications where ARM cores
have been co-integrated with small GPUs for a power range
of 5-20 W and ≈50 GOp/s/W. Also, the GPU’s architecture

has been optimized for DNN workload, introducing tensor
cores and fast half-precision floating-point (FP16) support. The
latest device, Nvidia’s V100, achieves 112 TFLOPS at 250 W
[33]—an energy efficiency of 448 GOp/s/W. Its best known
competitor, the first version of Google’s TPU [13], works with
8-bit arithmetic and achieves 92 TOp/s at 384 W (240 GOp/s/W).
With these power budgets, however, they are many orders of
magnitude away from the power budget of IoT. Furthermore,
they cannot exploit the advantages of many recent techniques
to co-design DNN models for efficient computation.

B. Co-Design of DNN Models and Hardware

Over the last few years, several approaches adapting DNNs
to reduce the computational demand have been presented. One
main direction was the reduction of the number of operations
and model size. Specifically, the introduction of sparsity
provides an opportunity to skip some operations. By pruning
the weights a high sparsity can be achieved particularly for
the fully-connected layers found at the end of many networks
and the ReLU activations in most DNN models injects sparsity
into the FMs, which can be exploited [34, 35].

A different direction is the research into reduced precision
computation. Standard fixed-point approaches work down to
10-16 bit number formats for many networks. It is possible
to further reduce the precision to 8 bit with small accuracy
losses (< 1%) when retraining the network to adapt to this
quantization [36]. There are limitations to this: 1) for deeper
networks higher accuracy losses (2-3% for GoogLeNet) remain,
and 2) Typically, only the inputs to the convolutions are
quantized in this format. Internal computations are performed at
full precision, which implies that the internal precision is very
high for large networks, e.g., for a 3×3 convolution layer with
512 input FMs, this adds 12 bits. Further approaches include
non-linearly spaced quantization in the form of mini-floats [36],
and power-of-two quantization levels replacing multiplications
with bit-shift operations (i.e., INQ [21]).

Several efforts have taken the path to extreme quantization
to binary (+1/-1) or ternary (+1/0/-1) quantization of the
weights while computing the FMs using floats. This massively
compresses the data volume of the weights and has even been
shown to be applicable to deep networks with an accuracy
loss of approximately 1.6% for ResNet-18 [21] and thus less
than the fixed point-and-retrain strategies. The next extreme
approach are (fully) binary neural networks (BNNs), where the
weights and FMs are binarized [37]. While this approach is
attractive for extreme resource constrained devices [19, 38], the
associated accuracy loss of 16% on ResNet-18 is unacceptable
for many applications.

C. FPGA and ASIC Accelerators

Many hardware architectures targeting DNNs have been
published over the last few years. The peak compute energy
efficiency for fixed-point CNN accelerators with precision
bigger than 8 bit can be found at around 50 GOp/s/W for
FPGAs, 2 TOp/s/W in 65 nm and around 10 TOp/s/W projected
to 28 nm [30, 39–41].
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Many of the sparsity-based optimizations mentioned in
Sec. II-B have been implemented in hardware accelerators
[35, 42] and achieve an up to 3× higher core energy efficiency
and raise the device-level energy efficiency by around 70%
through data compression. The effect of training DNNs to
become BWNs simplifies the computations significantly and
has shown the biggest impact on core compute-only energy
with an energy efficiency of 60 TOp/s/W in 65 nm [26].

State-of-the-art silicon prototypes such as QUEST [43] or
UNPU [44] are exploiting such strong quantization and voltage
scaling and have been able to measure such high energy
efficiency with their devices. The UNPU reaches an energy
efficiency of 50.6 TOp/s/W at a throughput of 184 GOp/s with 1-
bit weights and 16-bit activations on 16 mm2 of silicon in 65 nm
technology. However, all the aforementioned implementations,
either don’t consider the necessary I/O energy for streaming
the FMs in the computation of energy efficiency, or they
assume that intermediate results can be entirely stored in
the limited-size on-chip memory. This restricts these devices
to run networks capable of solving only low-complexity
image recognition tasks or re-introduces a system-level energy
efficiency wall at around 1 TOp/s/W as soon as the feature
maps need to be streamed off-chip [26].

QUEST [43] addresses this issue by 3D-stacking 96 MB of
SRAM distributed across 8 dies using inductive coupling for
die-to-die wireless communication. They apply 4-bit logarith-
mic quantization to both the weights and the feature maps,
which results in an accuracy drop in excess of what BWNs with
high-precision feature maps achieve. In this configuration, they
obtain an energy efficiency of 594 GOp/s/W while achieving
a throughput of 1.96 TOp/s at 3.3 mW on a 122 mm2 die in
40 nm technology.

Hyperdrive not only exploits the advantages of reduced
weight memory requirements and computational complexity,
but fundamentally differs from previous BWN accelerators
[26, 44, 45]. The main concepts can be summarized as: 1)
Feature Maps are stored entirely on-chip, instead the weights
are streamed to the chip (i.e., feature map stationary). Thanks
to the binary nature of the weights the overall I/O demand is
reduced dramatically. 2) Through its hierarchically systolic-
scalable structure it allows to efficiently scale to any sized
feature map and even with silicon area restriction it is still
scalable by tailing on a 2D mesh of Hyperdrive chips.

III. HYPERDRIVE ARCHITECTURE

Hyperdrive is a scalable and flexible binary-weight neural
networks accelerator that can be parametrized to fit a wide
range of networks targeting a variety of tasks from classification
to object detection. Fig. 1 shows a block diagram of Hyperdrive,
where M ×N indicate the spatial parallelism (i.e., size of the
FM), while C the output channel parallelism. It is composed
of the following components:
• Feature Map Memory (FMM): Is a multi-banked memory

storing input and output FMs.
• Array of C ×M ×N Tile Processing Units (TPUs): A

single Tile-PU is illustrated in Fig. 2. It contains 1) a
half-precision float adder/subtractor to accumulate partial
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Fig. 1: System overview with C ×M ×N = 4× 3× 3 tiles.
Marked in blue are hardware block for the multi-chip systolic
extension including the border interface which orchestrates any
write and read to the border and corner memories and distributes
it to the Data Distribution Units (DDUs). Furthermore, it sends
and receives calculated pixels to and from the chip neighbors.

sums of the output pixels, bias and the bypass input FM
(in case of residual blocks), 2) a half-precision multiplier
for the FM-wise batch-normalization shared among the
Tile-PUs of the same tile, and 3) a ReLU activation unit.
Each Tile-PU(c,x,y) is operating on the spatial tile (x, y)
of the M ×N tiles and on the output channel c from C.
Each Tile-PU is connected to its 8 spatial neighboring Tile-
PUs (i.e., directly adjacent Tile-PUs) to quickly access
neighboring pixels.

• Weight Buffer (WBuf): Stores the weights of the current
C output FMs.

• Data Distribution Units (DDUs): Distributes the data
from the memories to the corresponding Tile-PU units or
manages zero-padding.

• Border and Corner Memory BM, CM: Storage for pixels
which are part of neighboring chips.

• Border Interface (BI/F): Sends and receive border pixels
from/to neighboring chips and stores pixels into Border
and Corner Memories.

The superior efficiency of Hyperdrive is achieved exploiting
data re-use at different levels:
• Output FM level: The output FMs are tiled into blocks

of C FMs which are calculated at the same time in the
depth-wise parallel Tile-PUs which allows to load the
input FMs just once for C

• Spatial level: The input FM is tiled into M×N equally-
sized image patches and calculated in parallel in the M×N
spatial processing units illustrated in Fig. 3. Weights are
read once from off-chip memory only and used to calculate
all M×N partial sums for the corresponding tiles.

• Weight re-use: Weights are stored in the weight buffer,
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Fig. 2: Tile Processing Units (TPUs) of same spatial tile
(Tile-PU(·,x,y)): Every single Tile-PU (i.e., 4 shown in figure)
provides a FP16 adder, accumulation register and ReLU
activation unit. There is one time-shared FP16 multiplier per
spatial tile and shared among the C = 4 Tile-PUs in the depth
dimension, indicated by the dots. The FMs are calculated in a
interleaved way for all C output dimensions. The (single-bit)
binary weight is applied as the sign input for the FP16 adder.

Fig. 3: The feature maps are tiled and processed in parallel
Tile-PUs [46].

which is implemented as a latch-based standard cell
memory for optimal energy efficiency [26].

• Border re-use: border pixels are transmitted only once to
the corresponding neighbor chip and stored in its Border
and Corner Memory instead of reading every time.

IV. COMPUTATIONAL MODEL

State-of-the-art CNNs like ResNet-34 impose high demands
in computational complexity and memory for the large space
of parameters and intermediate Feature Maps. However, for
BWNs, streaming the weights rather than the FMs or both
is particularly attractive due to the compression by 16× (i.e.,
from FP16).

CNNs are composed of several neural network layers,
whereas the main building block are Convolution Layers which
can be formulated as a mapping from the 3D input Feature
Map space (i.e., FMin) of nin channels with hin × win sized
spatial dimensions to the 3D output Feature Map space (i.e.,
FMout) of nout × hout × wout size and can be described as
follows:

Rnin×hin×win
CNN→ Rnout×hout×wout

FMout 7→ FMin s.t.

FMout(cout, ·, ·) = βcout
+αcout

∑
cin∈Ini

FMin(cin, ·, ·)∗kcout,cin(·, ·)

Every single output channel cout is calculated by convolving
all input feature maps cin with the corresponding filter kernel
kcout,cin ∈ Rhk×wk , scaled by the factor αcout and accumu-
lated to a bias term βcout

. It should be noted here, that Batch
normalization which are quite common after convolution layers,
can be merged with biasing and scaling, as the coefficients
stay constant after training.

A. Principles of Operation

The operations scheduling is summarized in Algorithm 1 and
illustrated in Tbl. I for an implementation of the architecture
featuring C ×M ×N = 16× 7× 7 Tile-PU with 8×8 sized
spatial tiles p̃ and for a 3×3 convolution layer with 16×64
FMs, whereas the output channels are tiled into blocks c̃out of
C = 16 channels. After the entire input feature map is loaded
into the FMM, the system starts inferring the network. The
output FM-level and spatial parallelism is indicated in lines
2 and 3, whereas every Tile-PU is working on its assigned
spatial tile p̃ and output channel tile c̃ .

Then in the inner loop, the contribution for all pixels from
the corresponding tile and output channel are calculated. From
the streaming approach, a logical approach would be to load
the weights and apply it to the entire patch for every Tile-PU,
unfortunately, the patches can be large, and this introduces
frequent writes and reads to random-access memory (FMM),
instead the weights streamed to the chip are stored in a
weight buffer (Line 11) which can be implemented in a small
memory (i.e., latch-based memory for low energy) and where
the weights for the current C output channels (of all input
channels) are stored. In this way, we avoid writing and re-
fetching intermediate FM values.

The pixels are then calculated by iterating through all
filter points (e.g., 9 in 3×3 kernels) and input channels cin
(lines 7 and 8). On each cycle one binary weight per parallel
feature map dimension #c̃out is loaded from the weight
buffer (Line 14) and input Feature Map pixel per spatial tile
(#p̃ = #{Tile-PUs} = M ·N ) are loaded from the FMM (Line
16). All the Tile-PUs access either their own FMM bank in case
that the feature p+ ∆ (for the filter tap ∆, e.g., (-1,-1) for the
top-left weight of a 3×3 filter) lies in the same tile p̃ or from
the corresponding FMM bank of the corresponding neighboring
Tile-PU. All these accesses are aligned (e.g., all the Tile-PUs
are reading the FMM bank of their corresponding top-left
neighbor) and therefore no access conflicts occur. The weights
are multiplied with the binary weights: this is implemented as a
change of sign and then accumulated with the previous partial
sum v (Line 17). When all contributions for all input channels
and filter taps have been accumulated, a scaling factor (e.g.,
from batch normalization) is applied to it (Line 21), bypass is
added (Line 22) and finally the channel bias is added (Line
23), before it is written back to the feature map memory (Line
24).

Bypass paths are common in several CNNs like ResNet-34
and are shown in Fig. 4. As will be explained in the next
section, the bypass can be read, added to the partial sum and
stored back to the same memory address avoiding additional
memory for the bypass FM. Unfortunately, this does not work
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in the same cycle, therefore adding the bias (Line 21) has been
moved after the bypass (Line 20) and stalling can be avoided.

Algorithm 1 Hyperdrive Execution-Flow

Require: All input feature maps in FMMin

Require: Weight Stream
1: for all M ×N pixel tiles p̃ (in parallel HW units) do
2: for all C output channel tiles c̃out (in parallel HW units)

do
3: Tile-PU for output channel tile c̃out and pixel tile p̃
4: def readFMfromMemory
5: for all output channel cout in tile c̃out do
6: v = 0
7: for all pixel p = (y, x) in tile p̃ do
8: for all filter points ∆ = (∆y,∆x) with

∆y = −bhk

2 c, ...,−1, 0, 1, ..., bhk

2 c,
∆x = −bwk

2 c, ...,−1, 0, 1, ..., bwk

2 c do
9: for all input channel cin do

10: if w[cin, cout,∆] 6∈ WBuf then
11: kcout,cin(∆) = wghtStrm
12: WBuf[cin, cout,∆] = kcout,cin(∆)
13: end if
14: w = WBuf[cin, cout,∆] (read of #c̃out bit)
15: // Aligned read of FMMin[p+ ∆, cin] from

// corresponding memory bank (either from
// its own memory bank or the correspond-
// ing neighbor’s bank).

16: x = FMMin[p+∆, cin] (read of #p̃ words)

17: v = (v + x · w) =

{
v + x if w = 1

v − x otherwise
18: end for
19: end for
20: end for
21: (opt) v ∗= bnorm(cout)
22: (opt) v += FMMbypass(cout, p)
23: (opt) v += bias(cout)
24: FMMout[cout, p] = v (save in memory)
25: end for
26: end for
27: end for

B. CNN Mapping

The size of the on-chip memory for intermediate FM storage
has to be selected depending on the convolution layer with the
largest memory footprint of the network, hereinafter referred
as Worst-Case Layer (WCL). Typically, the WCL is at the
beginning of the network, since a common design pattern is to
double the number of FMs after a few layers while performing
at the same time a 2×2 strided operation, thereby reducing
the number of pixels by 4× and the total FM volume by 2×.
To perform the computations layer-by-layer, avoiding usage
of power hungry dual-port memories, we leverage a ping-
pong buffer mechanism reading from one memory bank and
writing the results to a different memory bank. Hence, for a
generic CNN the amount of memory required by the WCL is:
maxlayers in CNN ninhinwin + nouthoutwout words, since all input

and output FMs have to be stored to implement the described
ping-pong buffering mechanism.

However, many networks have bypass paths, hence additional
intermediate FMs have to be stored, as described in Fig. 4a
for the potential WCLs of ResNet-34. This aspect has two
implications:
1) In order to avoid additional memory (+50%), we perform
an on-the-fly addition of the bypass path after the second 3×3
convolution (i.e., the dashed rectangle is a single operation).
This is done by performing a read-add-write operation on the
target memory locations.
2) To avoid adding a stall cycle when reading and writing to
the same memory area within the same cycle, the bias adding
is moved after the bypass such that the following order is
followed convolution, scale, bypass, bias, store back. In this
way, the data can be read from memory address and stored back
to the same address with one cycle latency. 3) The common
transition pattern with the 2×2-strided convolution does not
require additional memory. It temporarily needs three memory
segments, but two of them are 2× smaller and can fit into
what has been a single memory segment before (M2 is split
into two equal-size segments M2.1 and M2.2).

In the following section, the calculation of the WCL for
ResNet-like networks with basic bypass blocks is discussed in
detail and numbers are presented for ResNet-34, but does not
limit the execution of networks with smaller WCL. To reduce
off-chip data communication to a minimum, we will split the
WCL in memory segments M1, M2, ... to indicate which
data needs to be kept in on-chip memories at the same time.
Hyperdrive always operates on a single convolutional layer at
a time and is iterating several times over the entire input FM
which therefore needs to be stored on-chip in memory section
M1. The same is valid for the output FM which is calculated
and stored in M2, respectively.

There are nout output channels which have a hout × wout

sized output FM. These output FMs are calculated as sum of
convolutions of every nin input channel (with FMs size of
hin × win) on the hk × wk sized filter kernels wk,n.

For a normal convolution layer,

M = M1 + M2 = nin · hin · win + nout · hout · wout [words]

need to be stored, because the entire input FM is needed to
calculate every single output FM.

In a next step, the special case with residual bypasses is
evaluated like in ResNet [2] and similar residual networks.
ResNet has two different types of residual blocks: the basic
building block and the bottleneck building block. The basic
building block is presented in Fig. 4.

Within the basic building block, there are two different cases,
the first is nin = nout where there is no striding, thus also
hin = hout and win = wout. The input FM to the residual
block will then be placed in the virtual memory section M1
and Hyperdrive computes the first 3 × 3 convolution layer
and writes the results into section M2, secondly Hyperdrive
calculates the second convolutions layer reading from M2 and
accumulating the output FM with the bypassed values in M1
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TABLE I. Time schedule for a 16 input FM and 64 output FM 3×3 convolution. Notation for filter weights: ffilter tap(∆y,∆x)
input FM,output FM.

cycle 1 2 ... 16 17 ... ... 144 145 ... 288 ... 9216 9217 ... 36.8k
weight input f−1,−1

1,(1−16)
f−1,−1
2,· ... f−1,−1

16,· f−1,0
1,· ... ... f1,1

16,· No I/O (loaded from weight buffer) f−1,−1
1,(17−32)

... No I/O
input FM 1 2 ... 16 1 ... ... 16 1 ... 16 ... 16 1 ... 16

filter tap pos. -1,-1 -1,0 ... +1,+1 -1,-1 ... +1,+1 ... +1,+1 -1,-1 ... +1,+1
outp. pixel pos. 1,1 1,2 ... 8,8 1,1 ... 8,8

output FM 1-16 (in parallel) 17-32 ... 49-64

3×3, 64 3×3, 64

M1, 64×h×w

M2, 64×h×w

3×3, 128/2 3×3, 128

1×1, 128/2

M1, 64×h×w

M2.1, 128×(h/2)×(w/2)

M2.2, 128×(h/2)×(w/2) M1, 128×h×w

1×1, 64 3×3, 64

M1, 256×h×w

M2, 64×h×w

3×3, 128 3×3, 512

1×1, 512/2

M1, 256×h×w

M2, 512×(h/2)×(w/2)

M3, 128×(h/2)×(w/2) M1, 512×(h/2)×(w/2)

1×1, 256 1×1, 128/2
M2, 128×(h/2)×(w/2)M3, 64×h×w

a) ResNet-18, ResNet-34

b) ResNet-{50,101,152}

Fig. 4: Early block of layers of ResNet-34 and transition to next type of layer block. Activation and batch normalization layers
are not indicated separately. Dashed rectangles imply on-the-fly addition to eliminate the need for additional memory

on-the-fly and writing them back to M1. A total amount of
401 kwords need to be stored.

M = M1 + M2 = 2 · M1 = 2nin · hin · win

M1 = M2 =nin · hin · win

Mmax = 2nin · hin · win = 2 · 64 · 56 · 56 = 401kwords

In case of down-sampling the number of output channels is
doubled nout = 2nin and the image sizes are reduced by 4×
to hout × wout = 1

2hout ×
1
2wout. Also, the bypass needs to

be strided. He et al. suggest to either use the strided identity
or to perform 1 × 1 strided convolution, we will consider
this case as it is more memory critical than with subsampling
[2]. The input FM is read from M1 and the 3 × 3 strided
convolution is performed and saved in M2, then the 1 × 1
strided convolution on the bypass is evaluated and saved in
M3, finally the 2nd convolution layer is performed on the data
in M2 and accumulated to the strided bypass in and to M3. It
can be shown, that M2 and M3 are a quarter of the size of M1
and 301 kwords are needed for the three memory sections.

M = M1 + M2 + M3 = 1.5 · M1
= 1.5nin · hin · win

M1 = nin · hin · win

M2 = M3 = 2nin · 0.5 · hin · 0.5 · win = 0.5 · M1

Due to the reduced size of the FM after every subsampling, just
the first residual block need to be considered for dimensioning
the memories. For ResNet-18 and ResNet-34, this translates
to 401 kwords which are 6.4 Mbit with FP16.

Deeper residual networks (e.g., ResNet-50) are composed
of the bottleneck building block (illustrated in Fig. 4b), to
evaluate the WCL, there are two cases to consider: with and
without subsampling. In the first case, the input FM is stored in
M1 and needs to be stored for the entire bottleneck block. The

output FM for the first 1×1 convolution layer is stored in M2
and is 4× smaller due to the 4× smaller number of channels,
then the 3×3 convolution layer calculates its features from
M2 to M3 and the second 1×1 convolution layer is calculated
on-the-fly adding to the bypass FM.

M = M1 + M2 + M3 = 1.5 · M1
= 1.5nin · hin · win

M1 = nin · hin · win

M2 = M3 =
nin
4
· hin · win = 0.5 · M1

In total 1.5× of the input FM size is needed to evaluate the
bottleneck block without subsampling. In case with subsam-
pling, already after the 1×1 convolution, the bypass needs to
be evaluated which is another 1×1 convolution which we can
map into M4 memory. Instead of writing the feature map for
the 3×3 convolution to M3, it can be written to M1, because
this data is not needed any more. The 2nd 1×1 convolution is
then calculated on the fly from M1 and M4 back to M1.

M = M1 + M2 + M4 = 1.675 · M1

=
13

8
nin · hin · win = 1.2Mwords

M1 = max
(
nin · hin · win,

2nin

4 · hin

2 ·
win

2

)
= nin · hin · win

M2 =
2nin

4
· hin

2
· win

2
= 0.125 · M1

M4 = 2nin ·
hin
2
· win

2
= 0.5 · M1
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TABLE II. Data Comparison for various typical networks with
binary-weights and 16-bit FMs for single-chip implementation
considering single-chip implementation (Top: Image Recogni-
tion, Bottom: Object Detection)

network resolution weights
[bit]

all FMs
[bit]

WC mem.
[bit]

ResNet-18 224×224 11M 36M 6.4M
ResNet-34 224×224 21M 61M 6.4M
ResNet-50 224×224 21M 156M 21M
ResNet-152 224×224 55M 355M 21M

ResNet-34 2048×1024 21M 2.5G 267M
ResNet-152 2048×1024 55M 14.8G 878M

This leads to a WCL of 1.2 Mword or 19.2 Mbit (Conv2) for
ResNet-50/-152/. . . independently of the depth which would be
6.3 mm2 of SRAM (0.3 μm2/bit in GF 22nm FDX).

C. Supported Neural Network Topologies

In the previous section, we have discussed the requirements
to map the different ResNet-style networks onto Hyperdrive.
For its implementation, we have parameterized the architecture
to fit the feature maps of ResNet-34 on-chip. Nevertheless,
Hyperdrive is neither restricted to these networks nor these
applications—in fact, its scalability to multiple chips to process
high-resolution images for object detection and image segmen-
tation is a key feature of its architecture. For example, running
the feature extraction for object detection using YOLOv2
[47] is supported by Hyperdrive. For the worst-case layer
in terms of memory when processing 448× 448 pixel frames,
we would need to be able to store 3.2 M words—scaling up the
memory by 2× over the ResNet-34 parameterization would be
sufficient to even run it even on a single chip, and for higher
resolutions the workload and memory for the feature maps
could be split across multiple chips as described in Sec. V.
Also, the Fire module of the size-optimized SqueezeNet [48]
and SqueezeDet [5] topologies is supported by Hyperdrive.
The grouped convolutions and shuffling operations present in
MobileNetV2 [49] and ShuffleNet [50] can also be applied
with the presented architecture. Also the not very common
depth-wise separable convolutions present in some layers of
MobileNetV2 can be computed using Hyperdrive, although
not at maximum performance due to limited bandwidth of the
on-chip SRAMs (no local re-use of the input feature map data
possible).

The only limitation is that several networks feature a first
convolution layer with an exceptionally large kernel size (e.g.,
7× 7 convolution for both ResNet and YOLOv2, but making
up less than 2% of all operations). As Hyperdrive supports only
1× 1 and 3× 3 convolution layers, this first layer has to be
computed off-chip before loading the data into Hyperdrive, or a
small dedicated on-chip accelerator for the first layer could be
included, which would perform these operations as the feature
maps are streamed into the device. Networks optimized for
compute effort, such as TinyYOLO [51] or MobileNetV2 [49],
are often only composed of 3× 3 and 1× 1 convolution layers
and do not have such a first filter with an exceptionally large
kernel size.

V. SCALABILITY TO MULTIPLE CHIPS

Even though, we could show that the architecture is in
theory scalable to any sized networks, the WCL is setting a
real-world limit to it. Already ResNets with bottleneck layer
require 19.2 Mbit1 to perform inference on small 224×224
sized images and larger images (e.g., in typical object detection
tasks) need 10s or 100s of Mbit. This clearly exceeds the area
constraints of few Mbit in low-cost chip fabrication due to
high production costs and diminished production yield. A very
natural solution is to extend the systolic architecture to multiple
chips, in this way the feature map is first tiled on an array of
m× n Hyperdrive chips and further tiled within each chip on
their M ×N Tile Processing Units, such that M ·m×N · n
tiles are operated in parallel.

Fig. 5: Memory Allocation in the multi-chip setup with 1×1
sized tiles for 3×3 sized kernels. The M×N “core” tiles and
pixels are stored in the FMM and the pixels located and
calculated in the chip neighbor are stored in Border and Corner
Memory. The Border Memory stores these M× or N× pixels
(i.e., 7× 16 bit) which can be accessed in the same cycle.

Similarly to the single-chip setup, the Tile Processing Units
need to access neighboring pixels, but in the multi-chip setup
they might even lie on a different chip instead of just another
tile memory. Three solutions are possible in this case, 1) the
input feature maps of all chips are padded with the missing
pixels, but this is not reasonable for deep networks as the
padding increases steadily with the number of layers. 2) The
border pixels are read from the neighboring chips when they
are used, but this introduces high bandwidth requirement, as
these pixels are needed several times or 3) the border pixels are
sent once after they have been calculated to the neighboring
chips and stored locally there. Hyperdrive implements option 3
which introduces two additional memories: A Border Memory
BM and Corner Memory CM and have been added to the
general architecture of Hyperdrive in Fig. 1.

Fig. 5 illustrates the locations of the pixels from a chip
perspective and Fig. 6a shows the perspective of a single chip
connected to its neighboring chips which are overall arranged in

1Note that the WCL for ResNet-like networks does not depend on depth,
but on the size of the images (e.g., 224×224) and the building blocks (basic
bypass in Fig. 4a or bottleneck in Fig. 4b). See also Tbl. II for a comparison
of the WCLs.
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Fig. 6: Multi-chip Considerations: a) Intra-chip connection: 1 output interface and 4 inputs from/to 4 direct neighbors, b) Border
Memory and Corner memory access with address block (cin = 1, hk = wk = 3) for every single cycle c) Access pattern in
case of a corner access: two reads from Border Memory (top and left) and one read from Corner Memory d) Chip Types in a
systolic chip setting (North West to South East and Center chip)

a systolic way. Pixels residing in the border of the neighboring
chips are stored in the Border Memory and pixels residing in
the corners of the diagonal neighboring chips are stored in the
Corner Memory and are read from there in case border pixels
are requested by the computational model.

A. Access Pattern and Storing Scheme of the Border Memories
Fig. 6c illustrates the pixels and their memory location

which are read in case of a corner pixel and Fig. 6b for all
cases of access top border pixels. When border pixels but not
corner pixels have to be accessed, one pixel per corresponding
border Tile-PUs is read and stored into the same memory
block. In case of a corner, actually M − 1 and N − 1 pixels
from two border sides (i.e., one vertical and one horizontal)
and one corner pixel. Therefore, the border memory is split
into two physically separated memory blocks allowing to
read from both sides without the need of two-port memories
or introducing any latency or stalls. Furthermore, chips are
assigned a location chip type, which indicates which part
of the feature map the chip is working on. They have been
named corresponding to cardinal orientation: corner chips
(NW, NE, SW, SE), border chips (N, W, E, S) and Center like
illustrated in Fig. 6d. All chips sharing the same orientation
work identically and synchronized, thus the exact position
does not matter.

B. Border and Corner Exchange
Whenever a border pixel (e.g., N border) has been calculated,

it is sent to the corresponding neighbor (i.e., south neighbor)
and a flag is set indicating that it is waiting the same kind of
pixel from its opposite neighbor (i.e., north neighbor).

When a corner pixel (e.g., NW) is calculated, the pixel needs
to be send to all three neighboring chips in the corresponding
direction (N, W, NW). As the number of these pixels is small
and to keep the inter-chip wiring small, no additional diagonal
interfaces are introduced, but these pixels are forwarded by the
corresponding vertical neighbor (N) to the diagonal chip (NW).
Additionally, there are for every corner 2 additional flags which
are set in the Border Interface: one for the forwarding chip
(sending, N) and the receiving chip (NW).

C. Border and Corner Memory

There are two different access patterns. If a corner pixel is
accessed, the corner pixel, N − 1 vertical pixels (left or right)
and M − 1 horizontal pixels (top or bottom) and one pixel
need to be read from the corner memory, which is illustrated
in Fig. 6c. In the other border cases, they are either N vertical
pixels or M horizontal pixels (e.g., in Fig. 6b at t ∈ {1, 2}).
Therefore, the border memory can be seen as a horizontal or
vertical extension to the FMM and N and M words can be
read in a single cycle. As for the FMM, splitting the border
memory into two physically separated memory blocks allows
to read from both in the same cycle without introducing any
additional latency. The memory needs to fit the overlapping
border of the WCL whereas the width depends on the kernel
width of the current and next layer. The overlapping rows or
columns are bhk

2 c or bwk

2 c wide and can be determined directly
from the WCL evaluation for FMM by dividing the spatial area
and multiplying by the sum of all overlapping border rows or
columns (which might differ for input and output FM). In case
of ResNets with the basic building block (e.g., ResNet-34). The
required memory for the left, right, top and bottom border (i.e.,
Mb,left, Mb,right, Mb,top, Mb,bottom) can therefore be calculated
as follows:

Mborder = Mb,left + Mb,right + Mb,top + Mb,bottom

= M
2hin + 2win

hin · win
= M

2 · 56 + 2 · 56

56 · 56
= 459 kbit

Mb,left = Mb,right = 2
(
ninwinb

wk,l

2
c+ noutwoutb

wk,l+1

2
c
)

Mb,top = Mb,bottom = 2

(
ninhinb

hk,l
2
c+ nouthoutb

hk,l+1

2
c
)

which is an increase of 7% of overall memory.
The Border Memory (as indicated in Fig. 1) is then

implemented with 4 high-density single-port SRAMs with
1024 lines of 7 · 16 = 112.

The Corner Memory needs to store the diagonally over-
lapping pixels, which are

⌊
hk

2

⌋
·
⌊
wk

2

⌋
sized patches. In

contrary to the discussions regarding the FMM and BM, the
Corner Memory does not profit from striding such that for
ResNet typed networks the last layer has the highest memory
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demand. Overall it can be dimensioned for ResNet-34 as
(nin +nout) · 4

⌊
hk

2

⌋
·
⌊
wk

2

⌋
= 2 · 512 · 4 · 1 · 1 · 16 bit = 64 kbit

which is another 1% increase of overall memory. This memory
has been implemented with a single-port memory of 4096 of
16-bit words.

D. Interface Implementation

During the computation of border pixels, every border Tile-
PU sends and receive the pixels to/from the respective Border
Interfaces. The border interfaces, placed on the 4 sides (as
illustrated in Fig. 6a) of the accelerator, are responsible for
buffering and transmitting pixels from/to the neighboring chips,
synchronizing execution of the Tile-PUs as well. For vertical
and horizontal borders there is one m · C = 7 · 16 = 112
entries buffer. When the buffer is non-empty, the border
interface sends these pixels in an interleaved way and split
into blocks of 4 bits and 1 valid bit to the neighbors. Every
chip itself has 4 in-coming serial interfaces from the directly
adjacent neighbors (i.e., N, S, W, E). When data is received,
it is de-serialized, recovered in its original 16-bit format and
stored in the border/corner memories. The interfaces are also
responsible for calculating the addresses of pixels received and
transmitted from/to neighboring chips in the border memory.
Fig. 2 shows in blue the extension needed for exchanging the
borders between the chips with 1 out-going and 4 in-going
intra-chip interfaces.

VI. EXPERIMENTAL RESULTS

The number of tiles has been chosen to be M ×N = 7× 7,
which allows for 4× striding on 112×112 sized input FMs
(like in common ResNet-like networks), while keeping all
the TPUs busy with at least one single spatial pixel during
the entire network. We use the half-precision floating point
(FP16) number format for the FMs as a conservative choice to
ensure loss-less inference even for deeper networks [52, 53].
Fixed-point or other alternative formats [54] could be used
to reduce the energy cost of the arithmetic operations. Fixed-
point arithmetic units featuring a smaller number of bits (e.g.,
8) would linearly impact the size of the on-chip memory for
the FMs. By using FP16, the final accuracy is determined
by the selected network and the corresponding BWN training
algorithm. A ResNet-18 trained on the ImageNet dataset can
run on Hyperdrive with a 87.1% top-5 accuracy using the
SBD-FQ training method [55] (full-precision top-5 accuracy:
89.2%).

The on-chip memory was sized to fit the WCL of ResNet-34
with 6.4 Mbit (400 kword) and is implemented with M × 8 =
7 × 8 high-density single-port SRAMs with 1024 lines of
N · 16 = 7 · 16 = 112-bit words, whereas the memories are
assigned to the (M ×N) tiles. The output FM parallelism has
been fixed to C = 16. The weight buffer has been implemented
to fit up to 512 (max. #input FMs) hk × wk = 3× 3 kernels
for 16× depth-wise parallelism. If more input FMs are needed,
they can be tiled to 512 blocks and partial output FM can be
calculated and summed up on-the-fly using the bypass mode.
The frequently-accessed weight buffer has been implemented
as a latch-based standard cell memory (SCM) composed of

Fig. 7: Floorplan with Weight Buffer, Feature Map Memory
and Tile Processing Units (left) and photograph of the taped-out
multi-project chip Poseidon1 with Hyperdrive on the bottom
side.

5×8 blocks of 128 rows of 16-bit words, reducing the access
energy to SRAM memories by 43× [26]. It should be noted
that even though the energy efficiency of SCMs are much better
than SRAMs, they are also up to 8× larger in area which limits
this kind of memories to comparably small buffers (i.e., weight
buffer), but not for the feature map memory.

A. Implementation Results

Hyperdrive was designed in GF 22 nm FDX technology using
an 8 track low voltage threshold (LVT) standard cell library.
This flavor of the technology allows to apply up to 1.8V of
forward body biasing (FBB), increasing the operating frequency
of the chip at the cost of higher leakage power. Synthesis was
performed with Synopsys Design Compiler 2017.09, while
place & route was performed with Cadence Innovus 17.11.

The chip has an effective core area of 1.92 mm2 (=9.6 MGE)2,
where 1.24 mm2 are SRAM memories (6.4 Mbit), 0.115 mm2

are SCM memory (74 kbit) and 0.32 mm2 arithmetic units.
Fig. 7 shows on the right side a photograph of the actual chip
and on the left side Hyperdrive’s floorplan.

Testing and characterization (frequency, power) of silicon
prototypes were performed on the industry-standard ASIC tester
Advantest SoC V93000 and core power are based on the real
chip measurements. The I/O energy was determined on the
basis of an LPDDR3 PHY implemented in 28 nm technology
[30], estimated as 21 pJ/bit, as in context of our research no
low-swing interface IP blocks were available. It should be noted
that this has to be considered as quite optimistic bound for I/O
energy in a low-cost chip (the LPDDR3 PHY is quite complex
and expensive), hence pessimistic for the proposed architecture
focusing on system-level energy efficiency and specifically
I/O bandwidth reduction. If we use low-cost low-complexity
full-swing I/O interfaces (used for the implementation of this
prototype, and of the other state-of-the-art accelerator [26, 35,
44, 45]) would further magnify the system-level energy gain
of Hyperdrive with respect to other architectures, but would
probably give too much advantage to our solution with respect
to industrialized, production-ready scenario where low-swing
I/O interfaces would be used [13].

Fig. 10 provides an overview of the Hyperdrive’s blocks
power consumption at the operating voltage of 0.5 V and

1Hyperdrive was taped-out alongside of two different projects (Kerbin
and Quentin) on the same die to share costs, details can be found on
http://asic.ethz.ch/2018/Poseidon.html

2One 2-input NAND gate equivalents (GE) is 0.199 μm2 in GF22.

http://asic.ethz.ch/2018/Poseidon.html
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Fig. 8: Energy Efficiency vs. Throughput for different Body
Bias Voltages including I/O for ResNet-34.

58 MHz. The power consumption of memory arrays, memory
periphery and logic were measured on the silicon prototype,
available through the multi-power rails implementation strategy.
On the other hand, the breakdown of the remaining standard
cell logic power contributions is split into Tile-PUs, Weight
Buffer and Others and has been estimated with post-layout
simulations. It is interesting to note that a considerable amount
of the power is consumed into the arithmetic units, while only
a small overhead comes from memory accesses and I/Os, due
to the efficient exploitation of Feature Map stationary (i.e.,
temporal locality) of the Hyperdrive architecture, explaining
its superior system-level energy efficiency with respect to the
other BWN accelerators in Tbl. V. The main features of the
chip in other operating points is reported in Tbl. IV

In order to characterize the best energy point of the chip we
swept the body bias of the system along the available range
(i.e., from 0 V to 1.8 V), as shown in Fig. 8. It is interesting
to note that both performance and energy efficiency increase
together with body biasing, due to the favorable ratio between
leakage power and dynamic power (4% at 0.5 V with no body
biasing) and that even if the memory arrays are not body
biased (i.e., leakage does not increase) the operating frequency
increases significantly. This makes the operating points at 1.5 V
FBB the most energy efficient ones for all performance targets.
The best energy point occurs at 0.5 V VDD and 1.5 V FBB,
featuring a throughput of 88 TOp/s and an energy efficiency
of 3.6 TOPS/W running ResNet-34.

Fig. 9 shows the Energy Efficiency sweep vs. VDD. As
mentioned before, the peak energy efficiency is achieved at 0.5V.
Below this operating voltage, the relatively small operating
frequency (i.e., 60 MHz) makes the leakage dominate, hence
efficiency drops. It is interesting to note that, as opposed to
other architectures implemented in scaled technologies, where
the IO energy is dominating Tbl. V, in Hyperdrive the system
level energy drops by only 25% when introducing the I/O
energy into the analysis.
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efficient corner.

TABLE III. Overview of Cycles, Throughput for ResNet-34

layer type #cycles #Op #Op/cycle #Op/s

conv 4.52 M 7.09 G 1568
bnorm 59.90 k 2.94 M 49
bias 59.90 k 2.94 M 49
bypass 7.68 k 376.32 k 49

total 4.65 M 7.10 G 1.53 k 431 G

TABLE IV. Overview of HYPERDRIVE (measured numbers)

Operating Point [V] 0.5 0.65 0.8

Op. Frequency [MHz] 57 135 158
Power [mW] 22 72 134
Throughput [Op/cycle] 1568 1568 1568
Throughput [GOp/s] 88 212 248
Core Energy Eff. [TOp/s/W] 4.9 3.0 1.9
Core Area [mm2] 1.92 1.92 1.92
Memory [Mbit] 6.4 6.4 6.4
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TABLE V. Comparison with State-of-the-Art BWN Accelerators (Top: Image Recognition, Bottom: Object Detection)

Name Techn. DNN Input
Size

Precision
Wghts/Acts

Core
[V]

Eff. Th.
[GOp/s]

Core E
[mJ/im]

I/O E
[mJ/im]

Total E
[mJ/im]

En. Eff.
[TOp/s/W]

Area
[MGE]

Im
ag

e
C

la
ss

ifi
ca

tio
n

YodaNN (layout) [26] umc65 ResNet-34 2242 Bin./Q12 1.20 490 0.9 3.6 4.5 1.6 1.3
YodaNN (layout) [26] umc65 ResNet-34 2242 Bin./Q12 0.60 18 0.1 3.6 3.7 2.0 1.3
Wang w/ 25 Mbit SRAM SMIC130 ResNet-34 2242 Bin./ENQ6 1.08 876 5.4 1.7 7.2 1.0
UNPU (chip) 65 nm ResNet-34 2242 Bin./Q16 0.77 346 2.3 3.6 6.0 1.2 11.1
Hyperdrive (chip) GF22 ResNet-34 2242 Bin./FP16 0.50 88 1.4 0.5 1.9 3.6 9.0
Hyperdrive (chip) GF22 ResNet-34 2242 Bin./FP16 1.00 263 6.5 0.5 7.0 1.0 9.0

Wang w/ 25 Mbit SRAM SMIC130 ShuffleNet 2242 Bin./ENQ6 1.08 876 0.3 0.4 0.7 0.5 9.9
UNPU (chip) 65 nm ShuffleNet 2242 Bin./Q16 0.77 346 0.1 1.0 1.1 0.3 11.1
Hyperdrive (chip) GF22 ShuffleNet 2242 Bin./FP16 0.50 91 0.1 0.1 0.2 2.1 9.0

O
bj

ec
t

D
et

ec
tio

n Wang w/ 25 Mbit SRAM SMIC130 YOLOv3(COCO) 3202 Bin./ENQ6 1.08 876 40.9 4.2 45.1 1.2 9.9
UNPU (chip) 65 nm YOLOv3 3202 Bin./Q16 0.77 346 17.2 9.1 26.4 2.0 11.1
Hyperdrive (chip) GF22 YOLOv3 3202 Bin./FP16 0.50 75 13.1 1.4 14.5 3.7 9.0

Wang w/ 25 Mbit SRAM SMIC130 ResNet-34 2k×1k Bin/ENQ6 243.4 40.5 283.9 1.0
UNPU (chip) [44] 65 nm ResNet-34 2k×1k Bin./Q16 0.77 346 97.7 105.6 203.3 1.4 11.1
Hyperdrive (10×5) GF22 ResNet-34 2k×1k Bin./FP16 0.50 4547 61.9 7.6 69.5 4.3 50×9.0

Hyperdrive (20×10) GF22 ResNet-152 2k×1k Bin./FP16 0.50 18189 185.2 21.6 206.8 4.4 200×9.0

Improvement over state-of-the-art for image classification (ResNet-34): 3.5× 1.8× 1.8×
Improvement over state-of-the-art for object detection: (ResNet-34): 5.3× 3.1× 3.1×

B. Benchmarking

The main evaluation of Hyperdrive has been performed on
ResNet-34, whose network structure have been used in plenty
of applications. This network features a good trade-off between
depth and accuracy, i.e., ResNet-50 outperforms ResNet-34 by
just 0.5% (Top-1) in terms of classification accuracy on the
ImageNet dataset, but is roughly 50% more compute-intensive
and the memory footprint is even 3.3× higher (see Sec. V).

The first and the last layer need to stay in full-precision
to keep a satisfactory accuracy and are not implemented on
Hyperdrive, but they contribute just 3% of the computation
(226 MOp of 7.3 GOp) and can therefore also be evaluated on
low-power compute platforms [56].

Tbl. III provides an overview of the number of operations,
number of cycles and throughput while Hyperdrive is evaluating
ResNet-34. In case of batch normalization, the throughput
is reduced since just 49 multipliers are available and the
normalization does take more cycles. In the layers where the
bypass has to be added, Hyperdrive can also just calculate one
output FM at a time, because the memory bandwidth is limited
to 49 half-precision words. Fortunately, the non-convolution
operations are comparably rare and a real throughput of
1.53 kOp/cycle or 221.9 GOp/s @ 0.65 V is achieved leading to
a very high utilization ratio of 97.5% of the peak throughput.
Tbl. VI provides an overview of the utilization (i.e., actual
throughput normalized to theoretical peak throughput) for
several networks. It can be seen that both ResNet-34 and
ShuffleNet have very high utilization since the feature maps
tile equally onto the Tile-PUs. In the other case, where the
intermediate feature maps are not sized by a multiple of M×N
(i.e., 7×7), the feature maps are padded with zeros and the last
row and column of Tile-PUs is idle during calculation of these
zero pixels. Nevertheless, also in these cases, utilization is well
above 80% (e.g., YOLOv3 [57] on a 320×320 with 82.8%),
which confirms the high flexibility of the proposed architecture
with respect to different flavors of network topologies.

TABLE VI. Utilization of Hyperdrive

Network (Resolution) #Op #cycles #Op/cycle Utilization

Baseline (Peak Perf.) 1.57 k 100.0%
ResNet-34 (2242) 7.10 G 4.65 M 1.53 k 97.5%
ShuffleNet (2242) 140 M 90.3 k 1.55 k 98.8%
YOLOv3 (3202) 53.1 G 33.9 M 1.30 k 82.8%
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Fig. 11: Number of bits to be transmitted with the weight
stationary approach compared to the output stationary approach
adopted in the Hyperdrive architecture (including border
exchange).

C. I/O in Multi-Chip Setup

Having multiple-chips introduces implicitly more I/O as
the border pixels have to be sent to the neighboring chips.
To illustrate the relation between the feature map size to the
amount of I/O, Fig. 11 compares the common weight stationary
approach (green) to the feature map stationary approach of
Hyperdrive (red). The evaluation is done with ResNet-34 with
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the taped-out accelerator dimensioned to fit the WCL for
3×224×224 sized images. By scaling the spatial dimensions
evenly, the amount of I/O stays constant for the weights of
21.6 Mbit until the maximum dimension of 224×224 is reached.
After that the FM is tiled onto several chips, starting with 2×2.
This introduces the need exchange two entire rows and columns
per output channel and layer to transmit and increases linearly
with the FM size until the FM is not fitting anymore onto the
2×2 chips, and tiling is done on 3×3, etc. In case of a systolic
array of 2×2 chips, the I/O can be reduced by up to 2.7×
and 2.5× for a 3×3 array while accounting for the border
exchanges.

D. Comparison with State-of-the-Art

Tbl. V compares Hyperdrive with state-of-the-art binary
weight CNN accelerators. The upper part of the table compares
the SoA accelerators running image recognition applications
(i.e., ResNet-34, VGG-16 and ShuffleNet on 224×224 sized
images), while the lower part compares key metrics coming
from object detection applications with images available in
autonomous driving data sets [5, 58] (i.e., ResNet-34 on
2048×1024, and YOLOv3 on 320×320 images). At 0.65 V,
Hyperdrive achieves a frame rate of 46.7 for ResNet-34, and,
most important, the performance is independent of the image
resolution thanks to the systolically scalable capabilities of the
architecture.

While the totality of previous works is dominated by
I/O energy, especially for spatially large feature maps, in
Hyperdrive the I/O energy is only a small factor of the total
energy (7% to 30%, depending on the application). Thanks to
this feature, Hyperdrive outperforms other architectures by up
to 1.8× on image classification applications and up to 3.1×
in object detection applications, in terms of energy efficiency.
More precisely, if we compare with the architecture presented
in [45], Hyperdrive is 3.1× more energy efficient, despite the
number of bits used for the FMs in ENQ6 is only 6 [45], hence
higher energy efficiency is achieved with much less aggressive
reduction of HW precision. It should also be mentioned here,
that previous work has estimated that for equi-precision results,
highly discretized networks need to be just slightly larger (e.g.,
a ternary-weight (Q2) ResNet-18 is about 12% larger than a
full-precision GoogLeNet while both achieve the same accuracy
when trained with precision-aware algorithms [21]), whereas
the core energy efficiency would improve significantly from
stronger quantization and therefore Hyperdrive is expected
to outperform the state-of-the-art even more than the 3.1×
factor reported here when using fixed-point representation and
stronger quantization.

Furthermore, we compare our work with UNPU [44],
which is the only silicon implementation adopting fixed-point
arithmetic with adaptable precision (16, 8, 4, 2, 1) for the
feature maps. We compare with the 16-bit mode, as this is the
most similar with respect to accuracy. Our approach uses up to
5.3× less energy for I/O and increases overall energy efficiency
by up to 3× since just the first input FM and the weights need
to be streamed to the chip, but not the intermediate FMs.
ShuffleNet is a challenging task for all the three accelerators

analyzed, as the feature maps are very deep, but spatially small.
This implies a low compute intensity relative to the number
of weights, which is an adverse pattern for Hyperdrive, and
for most accelerators. On the other hand, grouping implies
that for every group of output channels, just the subset of
assigned input channels is filtered, which reduces the compute
complexity while keeping the same feature map volume and
is therefore an aspect in Hyperdrive’s favor. Thus Hyperdrive
still outperforms the state-of-the-art by 4.2×.

The previous state-of-the-art accelerators are designed in less
advanced technologies than Hyperdrive (GF 22nm compared
to 65 nm and 130 nm), thus their core energy efficiency would
be improved by using an advanced technology. Nevertheless,
Hyperdrive’s core energy efficiency is 12.2× worse than
YodaNN’s and just 1.6 or 3.7× better than UNPU and Wang
et al. One of the reasons is that we use FP16 operators which
are more robust than Q12 or ENQ6 in [26, 45] and were
shown to work with the most challenging deep networks. Using
floating-point feature maps directly impacts the energy for
the accumulation operations as well as memory and register
read/write operations. ENQ on the other side has been shown to
introduce an accuracy drop of 1.6% already on CIFAR-100 [45],
which is more than the difference between running ResNet-34
instead of ResNet-110 on CIFAR-10. It thus implies that a
deeper network has to be computed to achieve a comparable
accuracy. Furthermore, optimizations such as approximate
adders and strong quantization have not been implemented,
but can be combined with Hyperdrive’s concepts, coupling
core efficiency gains with the removal of the non-scalable I/O
bottleneck. For instance, moving from FP16 to Q12 would
lead to an energy efficiency boost that can be estimated to be
around 3× for the core, which would translate to a system
efficiency boost of 6.8× for high accuracy object detection
with ResNet-34 features.

VII. CONCLUSION

We have presented Hyperdrive: a systolically scalable
hardware architecture for binary-weight neural networks, which
dramatically minimizes the I/O energy consumption to achieve
outstanding system-level energy efficiency. Hyperdrive achieves
an energy efficiency of 4.3 TOp/s/W on object detection
task which is more than 3.1× better than prior state-of-the-
art architectures, by exploiting a binary-weight streaming
mechanism while keeping the entire FMs on-chip. Furthermore,
while previous architectures were limited to some specific
network sizes, Hyperdrive allows running networks not fitting
on a single die, by arranging multiple chips in an on-board
2D systolic array, scaling-up the resolution of neural networks,
hence enabling a new class of applications such as object
detection on the edge of the IoT.
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