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3 Department of Mathematics, Emory University

Abstract. Image reconstruction in spectral digital breast tomosynthesis requires

solving a large-scale nonlinear inverse problem. Most numerical approaches on real

data used a simplified linear (and hence incorrect) mathematical model to reduce the

computational costs. The aim of this paper is to consider the use of a nonlinear

conjugate gradient method for very large-scale nonlinear least squares problems,

and apply it to spectral digital breast tomosynthesis. Numerical experiments on 3-

dimensional phantom images illustrate the effectiveness and efficiency of the proposed

scheme.

1. Introduction

Modern imaging technologies can very quickly acquire huge amounts of data. Not

exhaustive examples of such technologies in the medical area are dynamic Magnetic

Resonance [1], Magnetic Resonance fingerprinting [2], multienergy 3D x-ray Computed

Tomography (CT) [3], echocardiography [4], and in industrial applications 3D

ultrasound and x-ray CT.

In most of these applications a necessary step in the acquisition process is image

reconstruction, which requires solving a large-scale nonlinear inverse problem of the

form:

b = K(x) + η (1)

where b ∈ RM is a vector containing all acquired data, x ∈ RN is the image to be

recovered, K : RN → RM is a function representing the action of the acquisition

instrument on the object (and is therefore dependent on the particular application),

and η is used to represent noise and other errors in the measured data. Since the

problem is ill-posed, regularization is needed to compute a reliable solution. Supposing

a normal distribution of the noise, a widely used approach is the variational formulation,

where a large-scale nonlinear minimization problem of the form

min
x

F(x) =
1

2
‖r(x)‖22 + γω(x) (2)
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must be solved, where r(x) = K(x)−b is the residual. The quality of the reconstruction

depends on the choice of the regularization function ω(x); usually ω(x) is based on the

L2 or L1 norm or it is equal to the null function. In the latter case, regularization is

achieved by terminating the iteration at an appropriate point.

Many of the existing numerical methods for the solution of (2) are not usable in

practice (i.e., in clinical settings) due to the large amount of data that needs to be

processed (consider that N and/or M can be on the order of millions or billions), even

in the case when we assume K is a linear function of x.

As a case study application, we consider in this paper the reconstruction of spectral

Digital Breast Tomosynthesis (DBT) images. The problem is modelled by a nonlinear

integral equation, whose discretization leads to a large-scale nonlinear minimization

problem of the form (2). Such an optimization problem is challenging and a prototype

implementation comparing different methods on reliable phantoms is an important

contribution to the scientific research and a necessary step for the investment of the

industrial research on this topic. However, in literature, there are few proposals for

DBT spectral images reconstruction. In [5, 6], the case ω(x) = 0 is considered and

regularization is achieved by using heuristics to determine an appropriate stopping

iteration. We remark that effective approaches to efficiently stop iterative methods

for nonlinear ill-posed inverse problems remains an open problem with no satisfactory

solution; the discrepancy principle can be applied, but it requires that the norm of the

noise is known and it often produces oversmoothed solutions, while the other existing

stopping criteria (such as L-curve and generalized cross validation GCV [7–10]) require

extra computational work that is unfeasible in large-scale nonlinear problems. In [5], the

Limited Memory BFGS (LBFGS) method is presented; in [6, 11], a variant of problem (2)

is considered which is obtained by supposing the noise follows a Poisson distribution and

by replacing the nonlinear least squares term with the Kullback-Leibler divergence. The

corresponding optimization problem is solved by a gradient descent method. Finally,

in [11], Poisson noise is suppose on the data and ω(x) has been chosen as the Total

Variation (TV) regularization function; the resulting minimization problem is solved by

an accelerated gradient method.

The aim of this paper is to give a contribution in computing an efficient solution

of problem (2) for very large-scale problems, and for general nonlinear residuals r(x),

as in DBT spectral imaging. When solving the DBT imaging problem, we have to

take into account that it is extremely large-scale and that clinical trials need short

computational times for the image reconstruction. For these reasons, we are interested

in methods that compute only first derivatives and have low storage requirements. In

this work we consider nonlinear conjugate gradient-type methods since they fulfill these

computational and storage requirements and they convergence generally faster than

gradient-type methods. Moreover, they do not have to address the ill-conditioning of the

Hessian matrix as in the case of the LBFGS method. An excellent survey of conjugate

gradient methods is given by Hager and Zhang [12]. We consider, for the numerical

solution of the DBT imaging problem, a nonlinear conjugate gradient (NLCG) method
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Figure 1. Geometry of a DBT system.

proposed Touati-Ahmed and Storey [13] and we compare its performance with that of

two other first order methods: the accelerated gradient descent and a LMBFGS method.

The results on a digital 3D phantom reproducing a real accreditation DBT phantom

show that the NLCG method outeperforms the other ones both in terms of precision

and computational efficiency when used as an iterative regularization method (i.e, when

ω(x) = 0) or as a solver for the TV-based optimization problem of the form (11) obtained

when ω(x) is a smooth version of the TV function.

The paper can be outlied as follows. In Section 2, we present the spectral DBT

application; in section 3, we describe the used NLCG method; in section 4, we show the

numerical results obtained on a 3D digital phantom and finally, in section , we report

some conclusions.

2. Case study: Spectral DBT image reconstruction

Digital Breast Tomosynthesis (DBT) [14–16] is a 3D Computed Tomography technique

for the diagnosis of breast tumors. It is characterized by a limited angle geometry as

represented in Figure 2. DBT is receiving growing interest in the medical community

and it has been approved in the USA for screening. The reduced number of angles and

the use of soft x-rays with a very low electron voltage produce a limited total radiation,

which is almost equivalent to that of a traditional two view digital mammography. On

the other hand, because DBT reconstructs a pseudo 3D image, it reduces the impact

of overlapping tissues, and improves the detectability of even small structures of the

breast.

DBT image reconstruction is usually performed by considering a monoenergetic

approximation of the x-rays; in this case when a variational approach of the form (1)

is used, r(x) = Kx − b is a linear function of x and, since few data are available

(M � N), the linear minimization problem is under-determined (see for example

[17–19]). In addition, the monochromatic approximation leads to the so called beam-

hardening artifacts [20].

By taking into account the polyenergetic nature of the x-rays, it is possible both

to reduce the beam-hardening artifacts and to get quantitative information about the

materials composing the objects, obtaining spectral images for each material. The

disadvantage of this approach is that the problem arising from the discretization of
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(1) is nonlinear and very difficult to solve. Some papers have been published in the

last decades on algorithms for polyenergetic CT image reconstruction [3, 21, 22] and

with multimaterial modeling [23, 24]. In [5, 6, 11] the authors propose a model for DBT

polyenergetic spectral imaging, which we describe in the following in its essential steps;

for more details, please refer to the cited papers.

The model is derived from the Beer’s law [25] relating the object attenuation with

the measured projections. We assume that the object being imaged is made up of

a small number Nm of known materials; for example, in the case of breast imaging,

these materials might include adipose and glandular tissue, possibly calcium, and iodine

(which, when injected into the blood stream can highlight blood vessels and tissues).

The 3D volume is discretized into Nv voxels, the detector is assumed to have Np pixels,

and the source emits x-rays from Nθ angles along an arc trajectory (see Figure 2).

We suppose the x-ray beams are composed of Ne energy levels, and that the linear

attenuation coefficients µj,e for each voxel j at the energy level e is approximated as a

linear combination of individual materials with unknown weights wj,m; that is,

µj,e =
Nm∑
m=1

wj,mcm,e (3)

where cm,e is the linear attenuation coefficient of the m-th material at e-th energy. We

use aθi,j to denote the length of the x-ray beam through the voxel j, incident onto the

pixel i in the detector, with source at angle θ, and bθi to denote the measured projection

value in the i-th pixel, with source at angle θ. Finally, we indicate by se the energy

fluence, which is a product of the x-ray energy with the number of incident photons at

that energy.

Using this notation, and following [6], we have the following discrete image

formation model

bθi =
Ne∑
e=1

se exp

(
−

Nv∑
j=1

aθi,j

Nm∑
m=1

wj,mcm,e

)
+ ηθi ,

{
i = 1, . . . Np,

θ = 1, . . . Nθ,
(4)

where ηθi represents noise measured at the detector at pixel i and angle θ, which can

include x-ray scatter and electronic noise, and may be assumed to have a mixed Gaussian

and Poisson distribution. We also assume that the weight fractions for each voxel add

to 1, i.e:
Nm∑
m=1

wj,m = 1, j = 1, . . . Nv. (5)

The equations given in (4) can be rewritten in matrix-vector form as

b = exp(−AWCT )s + η (6)

where C is an Ne ×Nm matrix with entries ce,m, W is an Nv ×Nm matrix with entries

wj,m, and s is a vector with entries se. The matrix A and the vectors b and η are defined
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in terms of blocks that depend on the angle θ. Specifically, if we define the Np × Nv

matrices A(θ) with entries aθi,j and the Np vectors b(θ) and η(θ) with, respectively, entries

bθi and ηθi , then

A =


A(1)

A(2)

...

A(Nθ)

 , b =


b(1)

b(2)

...

b(Nθ)

 , η =


η(1)

η(2)

...

η(Nθ)

 .
We impose the constraint (5) through a variable substitution for

wj,1 = 1−
Nm∑
m=2

wj,m, (7)

Then we define unknown X as:

X = [w2 | w3 | . . . | wNm ]. (8)

where wi is the i-th column of W, and define the Ne × (Nm − 1) matrix Ĉ as

Ĉ = [c2 − c1 | c3 − c1 | . . . | cNm − c1 ] (9)

where c` denotes the `-th column of C. With this notation, we have to solve the inverse

problem (1) where

K(X) = exp
(
−A

(
1cT1 + XĈT

))
. (10)

Thus, the residual vector is

r(X) = K(X)− b.

and the optimization problem to be solved becomes

min
X

F(X) =
1

2
‖r(X)‖22 + γω(X) (11)

We remark that typically the noise vector η is not available, but both s and C are known

since an accurate estimate of the x-ray energy distribution can be obtained by using

well-known spectra models and the linear attenuation coefficients ce,m can be derived

by taking x-ray transmission measurements of objects with known dimension, density

and material composition. Moreover, although we can use modestly sized problems for

numerical simulations, in actual clinical applications typical values are Nv = nx×ny×nz
with nx ' 1500, ny ' 2000 and nz ≤ 100, Np = nx × ny, Ne ≤ 30 and Nm ≤ 4.

In this paper, we also employ TV regularization, which can be very effective in

detecting contours of homogeneous objects, such as masses. The TV regularization

functional has the form

ω(X) = TVβ(X), TVβ(X) :=
Nm−1∑
i=1

TVβ(xi)
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where xi is the i-th column of X (i.e, xi = wi+1), and TVβ(Xi) is a smoothed

differentiable version of the TV of xi defined as [10]:

TVβ(xi) =
Nv∑
j=1

(‖∇xji‖22 + β2)1/2

with β a positive small parameter. (Here, the letter superscripts indicate the individual

component of vectors.) Hence, the smoothed TV of X can be computed as

TVβ(X) =
Nm−1∑
i=1

Nv∑
j=1

(‖∇xji‖22 + β2)1/2

where

‖∇xji‖22 = (x
jx+1,jy ,jz
i − xjx,jy ,jzi )2 + (x

jx,jy+1,jz
i − xjx,jy ,jzi )2 + (x

jx,jy ,jz+1
i − xjx,jy ,jzi )2

when forward differences are employed to approximate the gradient.

Let J(X) be the Jacobian of r(X); we emphasize that the n-th partial derivative

of the data fitting term 1
2
‖r(X)‖2 of (11) can can be computed as the scalar product

of the n-th column of J(X) by the residual vector r(X) without storing the Jacobian

matrix J(X) [5].

3. The Non Linear Conjugate Gradient method

Gradient-type, limited memory Quasi-Newton and nonlinear conjugate gradient

methods are all described by the general iteration

X(k+1) = X(k) + λkp
(k) (12)

where p(k) is a descent direction and λk is a step-length parameter computed by

monotone line-search.

Gradient type methods are appealing since they do not need to evaluate the second

derivative or to solve a linear system; moreover, they have low storage requirements since

they need to store only the gradient vector in order to compute the search direction.

However, they may be very slow. Acceleration techniques use a scaled direction

1

αk
p(k) = −∇F(X(k))

where Barzilai and Borwein-like rules are employed for the selection of the steplength

αk [26–28].

On the other hand, limited memory Quasi-Newton methods need a few vectors,

say ` > 1, to be stored but usually exhibit better convergence rate than gradient type

methods. In [29], a specialized version of the LBFGS method is proposed for DBT

imaging which uses Lavrentyev method for the search direction computation in order
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to face the ill-conditioning of the LBFGS Hessian approximation. Such a specialized

LBFGS method is defined by equation (12) where the search direction p(k) solves the

linear system (
B(k) + µkI

)
p(k) = −∇F(X(k)) (13)

where µk is a regularization parameter to be determined. The linear system (13) can

be efficiently solved by an efficient recursive algorithm based on the Sherman-Morrison-

Woodbury formula [30].

In a classic NLCG method, the descent direction is computed as

p(k+1) = −∇F(X(k)) + βkp
(k), p(0) = −∇F(X(0))

where βk is the conjugate gradient parameter. Various formulas for βk exist resulting

in different conjugate gradient methods whose properties can be significantly different.

Two well-known formulas for the βk are the FletcherReeves (FR) [31] and PolakRibiére

(PR) [32] ones which respectively are

βfr
k =

‖∇F(X(k+1))‖2

‖∇F(X(k))‖2
(14)

and

βpr
k =

∇F(X(k+1))TY(k)

‖∇F(X(k))‖2
(15)

where Y(k) = ∇F(X(k+1))−∇F(X(k)). These formulas are identical for a strongly convex

quadratic function and the exact line search is performed, but they behave differently for

general nonlinear functions and the inexact line search. Roughly speaking, FR method

is characterized by strong convergence under appropriate assumptions and bad practical

performance. By the other hand, PR method has good practical behavior and it may

not converge in general. Both these methods have low storage requirements since they

only need to store three vectors. In this work, we consider the hybrid method proposed

by Touati-Ahmed and Storey in [13] which combines the FR and PR formulas in order to

improve the behavior of the FR method while retaining its good convergence properties.

The Touati-Ahmed and Storey (TAS) formula for the βk parameter is

βk = max
{

0,min{βfr
k , β

pr
k }
}

(16)

With this modification of the parameter βk, the hybrid NLCG method of Touati-Ahmed

and Storey possess the nice global convergence properties of the FR method and the

desirable numerical performances of the PR method. In this work, we consider a non

linear conjugate gradient method based on the TAS formula for the conjugate gradient

parameter βk and on the inexact Armijo’s line search for the step length parameter λk.

The general scheme of the considered NLCG method can be outlined as follows.
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Algorithm: Non Linear Conjugate Gradient Method.

Initialization: Given X(0), set p(0) = −∇F(X(0)).

repeat

(i) compute λk by using backtracking line search with Armijo’s condition;

(ii) set X(k+1) = X(k) + λkp
(k);

(iii) compute

βfr
k =

‖∇F(X(k+1))‖2

‖∇F(X(k))‖2
, βpr

k =
∇F(X(k+1))TY(k)

‖∇F(X(k))‖2

βk = max
{

0,min{βfr
k , β

pr
k }
}

(iv) set p(k+1) = −∇F(X(k)) + βkp
(k);

(v) set k = k + 1;

until a stopping criterion is satisfied.

The implemented stopping criteria are discussed in the following section.

4. Numerical experiments

In this section we present some preliminary numerical results obtained on a digital

3D phantom using Matlab R2018 on a workstation with two Intel processors 230 Ghz

equipped with 32 Gb of RAM.

4.1. Experimental setting

We have created a digital version of the CIRS mod. 015 breast accreditation phantom‡,
used in DBT to quantify the system accuracy. We have used a small version of size

128×128×11 and we have supposed the phantom constituted of glandular and adipose

tissues in different concentrations. In figure 4.1 we show the central slices of the adipose

(Figure 2(a)) and glandular (Figure 2(b)) phantom. In an homogeneous background

of 50% adipose and 50% glandular tissue, some objects simulate fibers, masses and

microcalcifications, that are fundamental features for the early detection of cancers.

Our DBT system has an angular range of [−17, 17] degrees and the tomosynthesis

acquisition is performed from 13 equally spaced angles (Nθ = 13); the detector is

supposed to have the same area of the xy object plane with Np = 128 × 128 pixels.

The distance between the source and the detector in its central position is 64 cm.

We have considered 37 energy levels (Ne = 37) from 10 keV to 28 keV, accordingly

to the energy power of a DBT system.

Basing on the concentration values of adipose and glandular tissues in the provided

CIRS phantom (as reported in Figure 4.1) a weight reference matrix Wref has been

‡ This model is described at the url: http://www.cirsinc.com/products/solution/47/

mammographic-accreditation-phantom/
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(a) Adipose image (b) Glandular image

Figure 2. Central slices of the CIRS phantom.

created and the simulated projections have been obtained as:

bref = exp(−AWrefC
T )s

where A is the projection matrix computed by a Siddon ray-tracing algorithm [33]. A

vector η representing white gaussian noise of three different noise levels σ (σ = 10−4, σ =

5 · 10−4, σ = 10−3) is added to bref to obtain the data b:

b = bref + η.

The image quality is evaluated by means of the Relative Error (RE) between the

reference and the computed weight matrices:

RE =
‖Wref −W‖2
‖Wref‖2

while the CPU time in seconds is used to measure the computational complexity.

The visual inspection is performed both by showing the resulting images and by

plotting profiles along lines in the central layer.

4.2. Numerical results

We present in this section the numerical results obtained on the CIRS digital phantom

by using the model (11) with either ω(X) = 0 and ω(X) = TVβ(X). We compare

the NLCG performance with that of the LBFGS method presented in [5] and with the

performance of an Accelerated Gradient (AG) method where alternate Barzilai-Borwein

rules [27] are employed to accelerate a standard gradient method.

The starting guess W(0) is, for all the three methods, the constant matrix with

values equal to 0.5.

If we consider the methods applied to the non regularized model (1) where

ω(X) = 0, the plot of the RE values vs iterations exhibits semiconvergence, due to

the ill-posedness of the problem. In Figure 4.2 we plot the error vs. the iterations (on

the left) and the error vs. the computational time in seconds (on the right) for different
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noise intensities for the three considered methods. The trend of the curves vs. time is

very similar to that vs. iterations, confirming that the iterations of the three methods

have approximatively the same computational cost.

As it is well known, the iteration number corresponding to the best relative error

decreases when the noise increases. In the case of low noise (σ = 10−4), 50 iterations are

not sufficient to all the three methods to get the best possible result (Figure 3(a));

anyway, we didn’t perform more iterations since we are interested in the methods

behaviour in the first iterations, in view of a possible application in medical imaging. In

that case, the NLCG method is the best performing in time. For a medium noise level

σ = 5 · 10−4, again the NLCG outperforms the others both in terms of precision and

speed. Finally, for higher noise σ = 10−3 all the three methods reach the lowest error in

very few iterations and comparable time. In Table 4.3 we report the numerical results

in terms of RE values and performed iterations. Since it is practically very difficult to

stop the method at its best, we report the results by stopping the method at a fixed

early iteration (10 iterations in the case of low and medium noise and 3 iterations in the

case of high noise) and we compare it with the best possible result obtained in terms

of relative error. We remark that when δ = 10−4 we consider again a maximum of 50

iterations, since the differences between the computed images are not perceivable any

more.

Now we analyze the tests performed by using the model (11) with the regularization

term ω(X) = TVβ(X). In this case, all the three methods have been stopped when

‖X(k) −X(k−1)‖
‖X(k−1)‖

≤ Tol (17)

(tol = 10−4) or after Kmax = 100 iterations. The reason why we consider a quite large

tolerance for the stopping criterium is that the computed images are visually unchanged

after that threshold. The regularization parameter γ has been chosen equal to 0.5 by

trial and errors as the best compromise for all the considered cases (three methods and

three different noise levels).

Figure 4.3 is the counterpart of figure 4.2 for the case of TVβ regularization after 10

iterations of the methods. The AG curve is flat after few iterations and the error almost

constant; the LBGFS method decreases but more slowly than NLCG, that outperforms

the others for all the noise levels considered, both in terms of efficiency and precision.

Table 4.3 shows the numerical results both after 10 iterations and by stopping the

method at convergence, i.e. when (17) is satisfied.

Really, in some of the considered tests, marked by an asterisk, the method stopped

because the Armijo backtracking fails after the maximum number of 20 iterations. Hence

the computed image is the best reconstruction that can be achieved by the algorithm.

Finally, some images (noise level σ = 5 · 10−4 on the data) are shown in Figure 4.3

and 4.3 in order to visually evaluate the reconstructions after 10 iterations. In the left

column of both figures we report the images obtained by the methods with ω(X) = 0

and in the right column the images reconstructed by using ω(X) = TVβ(X).
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(a) RE vs. Iterations. σ = 10−4 (b) RE vs. time. σ = 10−4

(c) RE vs. Iterations. σ = 5 · 10−4 (d) RE vs. time. σ = 5 · 10−4

(e) RE vs. Iterations. σ = 10−3 (f) RE vs. time. σ = 10−3

Figure 3. Plot of the RE values vs. iterations (on the left) and vs. computational

times in seconds (on the right) for different noise levels σ for the AG (green crcles),

the LBFGS (blure circles) and the NLCG (red circles) methods in the case ω(X) = 0.

... qualche commmento specifico

4.3. Comments on the results

By comparing the results obtained by the models with ω(X) = 0) and ω(X) = TVβ(X),

the images in Figure ?? and ?? show that the TV regularization improves the quality

of the reconstructions by greatly reducing the noise while preserving all the structures,

even the smallest micrcalifications constituted by a single pixel. Really, the images

appear very sharp after 10 iterations and their enhancement is not significant especially

when they are presented in a printable reduced size. Moreover, since fewer iterations are
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σ Method k max k optimal

RE k RE k

AG 3.06 · 10−2 10 2.50 · 10−2 50

10−4 LBFGS 2.89 · 10−2 10 2.31 · 10−2 50

NLCG 2.89 · 10−2 10 2.32 · 10−2 50

AG 3.07 · 10−2 10 3.06 · 10−2 12

5 · 10−4 LBFGS 3.07 · 10−2 10 3.73 · 10−2 25

NLCG 3.04 · 10−2 10 3.03 · 10−2 14

AG 3.20 · 10−2 3 3.15 · 10−2 4

10−3 LBFGS 3.20 · 10−2 3 3.20 · 10−2 3

NLCG 3.22 · 10−2 3 3.21 · 10−2 2

Table 1. Results obtained without regularization (ω(X) = 0) with AG, LBFGS

and NLCG methods at 10 (3 in the case of high noise) fixed iterations (3rd and 4th

columns) and at the optimal iteration corresponding to the lowest RE value (5th and

6th columns).

needed to get a similar relative error when ω(X) = TVβ(X) is employed, the TV-based

regularization is also computationally convenient (see Figures 4.2 and 4.3).

When the methods are used as iterative regularization methods (case ω(X) = 0),

it is desirable that they have a smooth semiconvergence curve, so that the error doesn’t

increase too much even if the method is not properly stopped. If we look at Figure

4.2 we observe that LBFGS has a sharp increasing behaviour after semiconvergence.

Moreover, it has a higher storage request with respect to the NCLG and AG methods.

NLCG gets the best performance for low and medium noise, while the AG method is

preferable in the case of high noise.

When the methods are used as solvers of the TV-based regularization problem (case

ω(X) = TVβ(X)), the NCGL method outperforms the others for all the considered noise

levels, since it decreases the relative error very fast in the first iterations. For this reason,

it proves to be a very efficient method for this application, where the fast convergence in

the first iterations is an essential condition for a practical use in the medical applications.

5. Conclusions

In this paper, a nonlinear conjugate gradient method has been considered for the

solution of very large-scale nonlinear least squares problems and, as a case study, the

application of such method to DBT imaging has been presented. Regularization by

iteration (ω(x) = 0) and TV-based regularization (ω(x) = TV ) have both been used as

stabilizing solution method. The NLCG method has been compared with the AG and

LBFGS methods. The numerical results for some test problems based on a digital version

of the CIRS Model 015 Mammographic Accreditation Phantom are presented. A visual
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(a) RE vs. Iterations. σ = 10−4 (b) RE vs. time. σ = 10−4

(c) RE vs. Iterations. σ = 5 · 10−4 (d) RE vs. time. σ = 5 · 10−4

(e) RE vs. Iterations. σ = 10−3 (f) RE vs. time. σ = 10−3

Figure 4. Plot of the RE vs. iterations (on the left) and vs. computational times in

seconds (on the right) for different noise levels σ for the AG (green crcles), the LBFGS

(blure circles) and the NLCG (red circles) methods in the case ω(X) = TVβ(X).

inspection of the restored images suggests that TV-based regularization gives higher

visual quality performance than iterative regularization. TV regularization excellently

removes the noise but keeps the edges and the small image features. On the other hand,

iterative regularization has more noise left on the restorations in order to overcomes

the image to be blurred. Notice that, iterative regularization has the best quantitative

results since TV-based restorations have lower pixel values.

As far as the methods comparison is concerned, the numerical results indicate

that the three considered method have approximately the same computational cost

per iteration. Moreover they suggest that the NLCG method tends to combine the

positive features of both LBFGS and AG methods. In fact, it exhibits fast convergence
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σ Method k max k conv.

RE k RE k

AG 3.16 · 10−2 10 3.16 · 10−2 8

10−4 LBFGS 3.14 · 10−2 10 3.13 · 10−2 12

NLCG 3.10 · 10−2 10 3.08 · 10−2 14

AG 3.16 · 10−2 10 3.16 · 10−2 9

5 · 10−4 LBFGS 3.15 · 10−2 7∗ 3.07 · 10−2 19

NLCG 3.09 · 10−2 7∗ 3.10 · 10−2 7∗

AG 3.17 · 10−2 10 3.17 · 10−2 6

10−3 LBFGS 3.14 · 10−2 10 2.80 · 10−2 49

NLCG 3.09 · 10−2 7∗ 3.09 · 10−2 7∗

Table 2. Results obtained with TV regularization (ω(X) = TVβ(X)) with AG, LBFGS

and NLCG methods at 10 fixed iterations (3rd and 4th columns) and at the iteration

satisfying the stopping criterium (17) (5th and 6th columns). The asterisk indicates

failure in the linesearch procedure.

as the LBFGS method, by quickly reducing the relative errors values in the very first

iterations and, as the AG method, it does not require the solution of an ill-conditioned

linear system.

The promising numerical results stimulate future deeper analyses of the behavior

of nonlinear conjugate gradient methods for the solution of large-scale nonlinear inverse

problems.
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