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Joint Life Insurance Pricing
Using Extended Marshall-Olkin Models

Fabio Gobbi∗, Nikolai Kolev†, Sabrina Mulinacci‡

December 27, 2018

Abstract: In this paper we suggest a modeling of joint life insurance pricing via
Extended Marshall-Olkin models and related copulas. These models are based on the
combination of two approaches: the absolutely continuous copula approach, where
the copula is used to capture dependencies due to environmental factors shared by
the two lives, and the classical Marshall-Olkin model, where the association is given
by accounting for a fatal event causing the simultaneous death of the two lives. New
properties of the Extended Marshall-Olkin model are established and applied to a
sample of censored residual lifetimes of couples of insureds extracted from a dataset
of annuities contracts of a large Canadian life insurance company. Finally, some
joint life insurance product is analyzed.

Keywords: Bivariate Marshall-Olkin’s model, Copula, Mortality intensity, Singu-
larity, Joint life insurance products.

1 Introduction

Insurance policies involving multiple lives are natural influenced by the depen-
dence structure among the insured lifetimes. This is particularly true for married
couples involved in joint life and last survivor insurance contracts. While classical
actuarial practice advocates independence among involved remaining lifetimes (be-
cause of computational convenience), it is well recognized and confirmed by evidence
that the independence belief is naive, unrealistic and leads to a wrong estimate of
the associated insurance premiums. As a consequence, in recent past a wide stream
of actuarial literature has been focused on the problem of modeling the dependence
between remaining lifetimes of married couples and on the analysis of the impact of
such dependence on the premium calculation of insurance policies.
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Possible sources of dependence are common lifestyle, bereavement (broken-heart)
effects and catastrophic exogenous events causing the simultaneous death of both
the spouses. In existing literature, essentially two approaches have been utilized: the
semi-Markov chain approach and the copula approach. The semi-Markov approach
is used in Denuit et al. (2001), Spreeuw and Wang (2008), Spreeuw and Owadally
(2013) and in Ji et al. (2011) where four states are considered: both spouses are alive,
husband is dead and wife is alive, wife is dead and husband is alive and both spouses
are dead. In Ji et al. (2011) also the transition from the state in which both spouses
are alive to that in which both are dead is allowed and since the force of mortality of
a widower is assumed to be dependent on the time passed from the death of the other
spouse, the model accounts for external events causing the simultaneous death and
for the broken-heart effect. The copula approach was firstly adopted in Frees et al.
(1996) where a dataset on annuities contracts on the joint life of couples provided by
a Canadian insurer is analyzed. Many papers have been then devoted to the use of
copula functions to model the dependence among the lifetimes in a couple and most
of them focus on the absolutely continuous copulas (mainly Archimedean copulas):
see Youn and Shemyakin (1999), and Shemyakin and Youn (2006), Carriere (2000),
Luciano et al. (2008), Luciano et al. (2016), Spreeuw (2006), Denuit et al. (2001),
Dufresne et al. (2018). As for the broken-heart syndrome, in addition to the multi-
state Markov chain method already mentioned, a frailty based approach has been
considered in Gouriéroux and Lu (2015): this tool has been further generalized and
estimated on a French reinsurer database in Lu (2017).

In this paper we will apply the copula based approach to model the joint life
insurance pricing. Unfortunately, assuming an absolutely continuous copula, the
resulting model is not able to capture the occurrence of simultaneous deaths caused
by fatal events. Taking into account these killing events, the common shock model
has been applied in Frees et al. (1996) where it is compared to the absolutely con-
tinuous copula approach. Denuit et al. (2006) investigated the dependence among
coupled lifetimes through a Generalized Marshall-Olkin model (deeply studied by
Li and Pellerey, 2011) that extends the classical Marshall-Olkin’s one (see Marshall
and Olkin, 1967).

To proceed, let Tm and T f be non-negative continuous random variables rep-
resenting the remaining lifetimes of a husband and his wife. The Marshall-Olkin’s
probabilistic construction consists in modeling Tm and T f through a stochastic rep-
resentation

(Tm, T f ) = (min(Xm, Z),min(Xf , Z)), (1)

where Xm, Xf and Z are some independent non-negative random variables, Z being
the time of occurrence of the event killing both individuals. In general, the relation
(1) implies that the distribution of (Tm, T f ) has a singularity along the main diagonal
in the first quadrant, due to the fact that P (Tm = T f ) > 0. In order to describe
the dependencies in the joint life survival status, the model (1) has been applied
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by many authors (see Chapter 9 of Bowers et al. (1997), Denuit et al. (2006) and
references therein).

The stochastic representation (1) has been recently improved by Kolev and Pinto
(2018) considering the relation

(Tm, T f ) = (min(Xm, Z),min(Xf , Z/β)),

where β ∈ (0, 1]. One can observe that the common shock identified by the random
variable Z has an immediate killing effect on husband’s life while the corresponding
impact on the life of the spouse is delayed. A similar scenario has been investigated
in Lee and Cha (2018) where a dynamic common shock model is introduced and
studied. An external shock process is assumed so that at the arrival time of each
shock not necessarily both individuals die, but the effect of the occurrence of the
shock for the survived individual results in a change in his/her mortality rate.

Along with other properties of the Generalized Marshall-Olkin model (1) applied
to joint life insurance, Denuit et al. (2006) study the impact of existing dependence
between remaining lifetimes of married couple on the net single premium for a
continuous n−year joint life annuity (paying 1$ per year as long as both spouses
survive) given by

āxy;n̄| =

∫ n

t=0

exp

(
−
∫ t

0

δu du

)
F̄Tm,T f (t, t) dt, (2)

where δu is the instantaneous interest rate at time u and F̄Tm,T f is the joint survival
function of random variables Tm and T f .

Because of the common lifestyle (husband and wife share the same common en-
vironment) it is reasonable to assume that ”individual shocks” identified by Xm and
Xf in (1) are dependent random variables. More specifically, let the distribution of
the pair (Xm, Xf ) be defined via the joint survival function F̄Xm,Xf (x, y) = P (Xm >
x,Xf > y) for x, y ≥ 0, and consider a continuous non-negative random variable Z
with survival function F̄Z(x) = P (Z > x), independent of Xm and Xf . Thus, we
arrive to the Extended Marshall-Olkin model introduced in Pinto and Kolev (2015)
and defined as follows

F̄Tm,T f (x, y) = P (Tm > x, T f > y) = F̄Xm,Xf (x, y)F̄Z(max{x, y}), x, y ≥ 0. (3)

Our aim is to apply Extended Marshall-Olkin distributions generated by relation
(3) in modeling joint life insurance pricing. The associated Extended Marshall-Olkin
copula will be obtained, joining the marginals which could be Gompertz, Makeham
or Weibull distributed, being most appropriate for fitting real data for population
of age over 60 (see Bowers et al., 1997).

Let us note that in the conclusions of Denuit et al. (2006), the authors suggest
another version of the model based on a frailty approach to describe common lifestyle

3



factors, implying an underlying dependence of Archimedean type which combines
with the fatal shock induced by the random variable Z in the stochastic representa-
tion (1). This idea is incorporated in the Extended Marshall-Olkin model. A frailty
approach was further developed in Gouriéroux and Lu (2015).

The plan of the paper is the following. In section 2 we discuss new properties
of the Extended Marshall-Olkin model (3) and associated copula. In section 3 we
show the results of an empirical application and in section 4 we analyze some joint
life insurance products under model (3). Section 5 concludes.

2 Extended Marshall-Olkin Model

In this section we present the Extended Marshall-Olkin model introduced and
studied in Pinto and Kolev (2015). It will be applied to model the residual lifetimes
of a couple involved in a joint life insurance contract. The relevance of the model is
justified by the fact that the induced dependence structure incorporates the common
lifestyle and the possibility of the occurrence of the simultaneous death of the two
individuals in the couple.

Let (Ω,F ,P) be a probability space and let Tmxm = Tm and T fxf = T f be two
continuous random variables denoting the residual lifetimes of a male and a female
in a couple that enter in a joint life insurance contract at ages xm and xf , respectively.
In order to model the dependence structure of the vector (Tm, T f ) from the entry
ages xm and xf , respectively, we consider three non-negative continuous underlying
random variables Xm, Xf and Z connected by the stochastic representation (1).
We assume that the two lifetimes Xm and Xf are dependent, because the two
individuals in the couple share the same lifestyle, the same economic status and
so on. In addition, some independent rare fatal event can cause their simultaneous
death at time Z. Therefore, the joint survival function F̄Tm,T f of the vector (Tm, T f )
is specified by (3), i.e., by the Extended Marshall-Olkin (EMO) model launched by
Pinto and Kolev (2015).

In what follows, we will discuss the flexibility of the EMO model (3) and its
advantages with respect to the Generalized Marshall-Olkin model (where Xm and
Xf are assumed to be independent). Several new properties of the EMO model and
associated copula related to joint life insurance will be established, including the
analysis of mortality intensities.

2.1 Comparisons with the Generalized Marshall-Olkin model

If the underlying distribution of the vector (Xm, Xf ) is positive quadrant de-
pendent, that is F̄Xm,Xf (x, y) ≥ F̄Xm(x)F̄Xf (y) for all x, y ≥ 0, then the resulting
EMO distribution generated by (3) dominates the Generalized Marshall-Olkin type
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distribution of Li and Pellerey (2011), which can be written as

F̄GMO
Tm,T f (x, y) = F̄Xm(x)F̄Xf (y)F̄Z(max(x, y)).

Since the Generalized Marshall-Olkin distributions are positive quadrant dependent,
then this property is satisfied by the EMO distributions as well.

This conclusion might fail under the EMO model if the vector (Xm, Xf ) is neg-
ative quadrant dependent as the following example shows.

Example 2.1. Let (Xm, Xf ) be distributed according to the Gumbel’s type I bivariate
exponential distribution

F̄Xm,Xf (x, y) = exp{−x− y − θxy}, θ ∈ [0, 1], x, y ≥ 0, (4)

which is negative quadrant dependent since

F̄Xm,Xf (x, y) = exp{−x− y − θxy} ≤ exp{−x− y} = FXm(x)FXf (y).

Let Z be exponentially distributed with parameter λ > 0. Then the resulting EMO
distribution (3) is given by

F̄Tm,T f (x, y) = exp{−x− y − θxy − λmax(x, y)}.

If x ≤ y, it can be easily checked that

F̄Tm,T f (x, y) ≥ F̄Tm(x)F̄Tm(y) = e−(1+λ)(x+y)

if and only if y ∈ [0, λ
θ
]. Since a similar result holds for x > y, we have that

F̄Tm,T f (x, y) ≥ F̄Tm(x)F̄Tm(y)

holds if and only if 0 < x ≤ λ
θ

and 0 < y ≤ λ
θ
.

Therefore, although the stochastic representation (1) induces a positive depen-
dence between random variables Tm and T f (because of the common shock pres-
ence), the negative quadrant dependence of the vector (Xm, Xf ) might result in a
vector (Tm, T f ) which is neither positive quadrant dependent nor negative quadrant
dependent.

An interesting relationship between the EMO model (3) and associated Sibuya’s
dependence function is given below.

Remark 2.1. Denote by rXi the force of mortality (hazard rate) associated with
the random variable X i and let HXi be the corresponding cumulative hazard rate for
i = m, f , i.e.,

F̄Xi(x) = P (X i > x) = exp{−HXi(x)} = exp

{
−
∫ x

0

rXi(u)du

}
, i = m, f.
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We obtain from (3) that HT i(x) = HXi(x) +HZ(x), i = m, f , where

F̄Z(x) = P (Z > x) = exp{−HZ(x)} = exp

{
−
∫ x

0

rZ(u)du

}
.

This exponential representation in the bivariate case can be written as follows

F̄Xm,Xf (x, y) = exp{−HXm(x)−HXf (y) +DXm,Xf (x, y)}, x, y ≥ 0,

where DXm,Xf (x, y) = ln
F̄
Xm,Xf

(x,y)

F̄Xm (x)F̄
Xf

(y)
is Sibuya’s dependence function introduced by

Sibuya (1960), satisfying the boundary conditions DXm,Xf (x, 0) = DXm,Xf (0, y) = 0.
Note that DXm,Xf (x, y) is positive or negative, if and only if the vector (Xm, Xf ) is
positive or negative quadrant dependent, respectively.

Thus, the EMO model can be equivalently rewritten as

F̄Tm,T f (x, y) = exp{−HXm(x)−HXf (y) +DXm,Xf (x, y)−HZ(max(x, y))}. (5)

Denuit et al. (2006) establish in their section 2.3 that, if Xm and Xf are inde-
pendent and y > x, then

P (T f > y |Tm > x, T f > x) = P (T f > y |T f > x). (6)

In other words, under the Generalized Marshall-Olkin, model the survival of Tm

to time x is irrelevant for the survival of the female to time y if T f > x. We revise
the last equality in the EMO model in the next statement.

Proposition 2.1. Let (Tm, T f ) follow the EMO model (3) and let us suppose that
y > x. The following inequalities are equivalent

P (T f > y |Tm > x, T f > x) ≤ P (T f > y |T f > x); (7)

P (Xf > y |Xm > x,Xf > x) ≤ P (Xf > y |Xf > x); (8)

P (Xm > x |Xf > y) ≤ P (Xm > x |Xf > x). (9)

Proof. Using relation (5) we obtain

P (T f > y |Tm > x, T f > x) =
F̄Xm,Xf (x, y)F̄Z(y)

F̄Xm,Xf (x, x)F̄Z(x)
=

=
F̄Xm,Xf (x, y)F̄Z(y)F̄Xf (y)F̄Xf (x)

F̄Xm,Xf (x, x)F̄Z(x)F̄Xf (y)F̄Xf (x)
=

=
F̄Xm,Xf (x, y)F̄Xf (x)

F̄Xm,Xf (x, x)F̄Xf (y)
P (T f > y |T f > x) =

= A(x, y)P (T f > y |T f > x).
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We will show now the equivalencies.

(7) ⇔ (8): Let (7) be true. Observe that A(x, y) =
F̄
Xm,Xf

(x,y)F̄
Xf

(x)

F̄
Xm,Xf

(x,x)F̄
Xf

(y)
≤ 1, if and

only if
F̄Xm,Xf (x, y)

F̄Xm,Xf (x, x)
≤ F̄Xf (y)

F̄Xf (x)
,

which is equivalent to the inequality (8).

(7) ⇔ (9): By analogy, A(x, y) ≤ 1, if and only if

F̄Xm,Xf (x, y)

F̄Xf (y)
≤
F̄Xm,Xf (x, x)

F̄Xf (x)
,

that is, if and only if (9) is valid.

Obviously, analogous relations hold in the case when x > y and when T f and
Tm are interchanged.

Since if Xm and Xf are independent random variables then A(x, y) = 1, inequali-
ties in Proposition 2.1 turn to equalities under the Generalized Marshall-Olkin model
and relation (6) holds.

Remark 2.2. Notice that, if Xf is right-tail decreasing in Xm (that implies negative
quadrant dependence), then inequality (9) is fulfilled.

2.2 Copula version of the EMO model and its properties

We will assume hereafter that the distributions of the random variables Xm, Xf

and Z involved in (1) are absolutely continuous with strictly decreasing survival
distribution functions on [0,+∞).

We rewrite the EMO model (3) as

F̄Tm,T f (x, y) = C
(
F̄Xm(x), F̄Xf (y)

)
F̄Z(max(x, y)), (10)

where C is an absolutely continuous copula connecting the survival marginal distri-
butions of Xm and Xf from the entry ages xm and xf respectively.

Observe that the joint distribution of (Tm, T f ) specified by (10) is not absolutely
continuous since the probability of the event {Tm = T f} is not negligible. In fact,

P
(
Tm = T f > t

)
= E

[
P
(
Z ≤ Xm, Z ≤ Xf , Z > t|Z

)]
=

=

∫ +∞

t

C
(
F̄Xm(z), F̄Xf (z)

)
dFZ(z),

(11)

from which

P
(
Tm = T f

)
=

∫ +∞

0

C
(
F̄Xm(z), F̄Xf (z)

)
dFZ(z) > 0.
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The marginal survival distribution functions of Tm and T f can be obtained from
(3) as follows

F̄Tm(x) = F̄Xm(x)F̄Z(x) and F̄T f (x) = F̄Xf (x)F̄Z(x), x ≥ 0. (12)

Applying Sklar’s theorem in (10) we get the dependence structure between Tm

and T f expressed by the associated survival copula

CTm,T f (u, v) = C
(
F̄Xm ◦ F̄−1

Tm(u), F̄Xf ◦ F̄−1
T f

(v)
)
F̄Z
(
max

(
F̄−1
Tm(u), F̄−1

T f
(v)
))
, u, v ∈ [0, 1],

where ◦ is the composition operator. Thanks to (12), we have

F̄Xm ◦ F̄−1
Tm(u) =

u

F̄Z ◦ F̄−1
Tm(u)

and F̄Xf ◦ F̄−1
T f

(u) =
u

F̄Z ◦ F̄−1
T f

(u)
,

yielding

CTm,T f (u, v) = C

(
u

F̄Z ◦ F̄−1
Tm(u)

,
v

F̄Z ◦ F̄−1
T f

(v)

)
min

(
F̄Z ◦ F̄−1

Tm(u), F̄Z ◦ F̄−1
T f

(v)
)
,

which will be referred as EMO copula. By construction, the copula CTm,T f is not ab-
solutely continuous since the singularity of the joint distribution of (Tm, T f ) induces
a singularity on the set

S = {(u, v) ∈ [0, 1]2 : v = g(u) = F̄T f ◦ F̄−1
Tm(u)}. (13)

As we noted earlier, in Denuit et al. (2006) the authors assume that Xm and
Xf are independent random variables in the stochastic representation (3). As a
consequence of their Proposition 4.1, the authors deduce that under the Generalized
Marshall-Olkin model, increasing dependence between Tm and T f can be achieved
by increasing the force of mortality of the common shock rZ and decreasing both
individual ones rXm and rXf , such that rXm + rZ and rXf + rZ remain fixed. A
nice interpretation of this fact was offered by one of the referees as follows: ”If
the common shock becomes more significant, therefore adding positive dependence
to the model, then, with fixed marginal distributions for Tm and T f , Xm and Xf

become less significant, and, since these are independent, will in no way compensate
for the stronger common effect”.

Such a conclusion is not always true if Xm and Xf are dependent, i.e., when
the EMO model is valid. In order to analyze this point, let us consider two ran-
dom variables Z and U representing the common shocks, such that their survival
functions fulfill F̄Z(x) ≥ F̄U(x) for all x ≥ 0. Notice that, the corresponding joint
survival distributions for Tm and T f , F̄Tm,T f (x, y; F̄Z) and F̄Tm,T f (x, y; F̄U) satisfy
the relation

F̄Tm,T f (x, y; F̄Z) ≤ F̄Tm,T f (x, y; F̄U), x, y ≥ 0 (14)
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if and only if, the corresponding copulas CTm,T f (u, v; F̄Z) and CTm,T f (u, v; F̄U) satisfy
the inequality

CTm,T f (u, v; F̄Z) ≤ CTm,T f (u, v; F̄U), u, v ∈ [0, 1]. (15)

Moreover, since the marginal distributions of Tm and T f are assumed to be un-
changed, the two copulas in (15) share the same singularity curve (see (13)). Under
the above notations we will prove the following

Proposition 2.2. Let C be the copula of the vector (Xm, Xf ). If C(u,v)
u

is non-

decreasing in u and C(u,v)
v

is non-decreasing in v for u, v ∈ [0, 1] and if F̄Z(x) ≥
F̄U(x) for all x ≥ 0, then (14) holds for all (x, y) ∈ [0,+∞)2.

Proof. Let us consider the case x > y. Then (14) rewrites

C

(
F̄Tm(x)

F̄Z(x)
,
F̄T f (y)

F̄Z(y)

)
F̄Z(x) ≤ C

(
F̄Tm(x)

F̄U(x)
,
F̄T f (y)

F̄U(y)

)
F̄U(x)

and this is equivalent to

C
(
F̄Tm (x)

F̄Z(x)
,
F̄
Tf

(y)

F̄Z(y)

)
F̄Tm (x)

F̄Z(x)

≤
C
(
F̄Tm (x)

F̄U (x)
,
F̄
Tf

(y)

F̄U (y)

)
F̄Tm (x)

F̄U (x)

.

Thanks to the assumptions we have that

C
(
F̄Tm (x)

F̄Z(x)
,
F̄
Tf

(y)

F̄Z(y)

)
F̄Tm (x)

F̄Z(x)

≤
C
(
F̄Tm (x)

F̄U (x)
,
F̄
Tf

(y)

F̄Z(y)

)
F̄Tm (x)

F̄U (x)

≤
C
(
F̄Tm (x)

F̄U (x)
,
F̄
Tf

(y)

F̄U (y)

)
F̄Tm (x)

F̄U (x)

.

Similar arguments hold in the case x < y and the thesis follows.

Remark 2.3. In fact, the sufficient conditions on the copula C in Proposition 2.2
are equivalent to Xf being right tail decreasing in Xm, and Xm being right tail
decreasing in Xf , respectively, both implying negative quadrant dependence of the
two random variables (see for more details Section 5.2.2 in Nelsen, 2006).

If the non-decreasing requirements on the copula C in Proposition 2.2. fail to
hold, then inequality (14) might be not satisfied for all x, y ≥ 0. In next example
and remarks we discuss this phenomenon.

Example 2.2. Let F̄Tm(x) = e−λmx, F̄T f (x) = e−λfx, F̄Z(x) = e−λx and F̄U(x) =
e−µx with λm > λf > µ > λ > 0. Applying (10), we have

F̄Tm,T f (x, y; F̄Z) = C
(
e−(λm−λ)x, e−(λf−λ)y

)
e−λmax(x,y) (16)
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and
F̄Tm,T f (x, y; F̄U) = C

(
e−(λm−µ)x, e−(λf−µ)y

)
e−µmax(x,y). (17)

Let C be the Clayton copula joining marginals Xm and Xf , i.e.,

C(u, v) = (u−θ + v−θ − 1)−1/θ, θ > 0, u, v ∈ [0, 1].

Assume that x ≥ y. Then (14) holds if and only if(
e(λm−λ)θx + e(λf−λ)θy − 1

)−1/θ
e−λx ≤

(
e(λm−µ)θx + e(λf−µ)θy − 1

)−1/θ
e−µx

from which(
e(λm−λ)θx + e(λf−λ)θy − 1

)
eθλx ≥

(
e(λm−µ)θx + e(λf−µ)θy − 1

)
eθµx,

that is
eλθx

(
eθ(λf−λ)y − 1

)
≥ eµθx

(
eθ(λf−µ)y − 1

)
.

This means that the inequality (14) is fulfilled only for those pairs (x, y) so that

y ≤ x ≤ 1

(µ− λ)θ
log

(
eθ(λf−λ)y − 1

eθ(λf−µ)y − 1

)
.

A similar restriction holds when y > x.

Remark 2.4. There are cases in which inequality (14) is reversed for all (x, y) ∈
[0,+∞)2. Consider the Example 2.2 and let θ go to +∞. As a result we obtain that
C(u, v) = min(u, v) (that is, Xm and Xf are comonotonic random variables) and,

since 1
(µ−λ)θ

log
(
e
θ(λf−λ)y−1

e
θ(λf−µ)y−1

)
→ 0, we conclude that

F̄Tm,T f (x, y; F̄Z) ≥ F̄Tm,T f (x, y; F̄U), for all (x, y) ∈ [0,+∞)2.

Remark 2.5. In the specific case when Xm and Xf are comonotonic random vari-
ables with the connecting copula C(u, v) = min(u, v) and under the assumption that
Tm and T f share the same exponential distribution with parameter λ̄ (i.e., when
λm = λf = λ̄ in Example 2.2), from (16) and (17) we get

F̄Tm,T f (x, y; F̄Z) = e−λ̄max(x,y) and F̄Tm,T f (x, y; F̄U) = e−λ̄max(x,y).

Hence,
F̄Tm,T f (x, y; F̄Z) = F̄Tm,T f (x, y; F̄U). (18)

Moreover, equality (18) is always true if C(u, v) = min(u, v) and if Tm and
T f are identically distributed (not necessarily exponential). Indeed, let F̄Tm(x) =

10



F̄T f (x) = H̄(x) for all x ≥ 0. In the presence of the common shock arrival time

identified by Z, we have that F̄Xm(x) = F̄Xf (x) = H̄(x)

F̄Z(x)
, and therefore

F̄Tm,T f
(
x, y; F̄Z

)
= min

(
H̄(x)

F̄Z(x)
,
H̄(y)

F̄Z(y)

)
· F̄Z (max(x, y)) = H̄(max(x, y)).

By analogy, F̄Tm,T f
(
x, y; F̄U

)
= H̄(max(x, y)), and thus (18) is satisfied for all

(x, y) ∈ [0,+∞)2.

One of the referees interpreted this conclusion as follows: “The effect of a higher
rate of occurrence of simultaneous death is exactly offset by the effect of a reduced
significance of Xm and Xf”.

2.3 Mortality intensities relations

Following Gouriéroux and Lu (2015) we analyze the behavior of the individual
mortality intensities with respect to the occurrence or not of the death of the other
individual in the couple.

In order to simplify the notations, given a differentiable function f(x, y), we
denote by ∂1f(x, y) and ∂2f(x, y) the two first partial derivatives with respect to
the first and the second argument.

The mortality intensity at time y of the male in the couple in the case in which
both individuals are alive at time y, is defined as

λm (y|Tm > y, Tf > y) = lim
h→0+

P (y < Tm ≤ y + h|Tm > y, Tf > y)

h
.

But

lim
h→0+

P (y < Tm ≤ y + h|Tm > y, Tf > y)

h
=

1

F̄Tm,T f (y, y)
lim
h→0+

F̄Tm,T f (y + h, y)− F̄Tm,T f (y, y)

h
=

=
−∂1F̄Xm,Xf (y, y)F̄Z(y) + F̄Xm,Xf (y, y)fZ(y)

F̄Tm,T f (y, y)

from which

λm (y|Tm > y, Tf > y) =
−∂1F̄Xm,Xf (y, y)

F̄Xm,Xf (y, y)
+
fZ(y)

F̄Z(y)
.

Notice that the mortality intensity at time y of the male in the couple, in the case
in which both individuals are alive at time y, turns out to be the sum of the hazard
rate in y of Xm given that Xf > y and the hazard rate of Z in y.
The corresponding intensity for the female is defined and obtained similarly:

λf (y|Tm > y, Tf > y) =
−∂2F̄Xm,Xf (y, y)

F̄Xm,Xf (y, y)
+
fZ(y)

F̄Z(y)
.
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On the other side, the mortality intensity at time y of the male in the couple in the
case in which his wife dies at time y, is defined as

λm|f (y|Tm > y, Tf = y) = lim
h→0+

P (y < Tm ≤ y + h|Tm > y, Tf = y)

h
.

But, since, for x > y

P (Tm > x|Tf = y) = ∂2F̄Xm,Xf (x, y)F̄Z(x)/F̄ ′T f (y),

lim
h→0+

P (y < Tm ≤ y + h|Tm > y, Tf = y)

h
= −

lim
h→0+

∂2F̄Xm,Xf (y+h,y)F̄Z(y+h)−∂2F̄Xm,Xf (y,y)F̄Z(y)

h

∂2F̄Xm,Xf (y, y)F̄Z(y)
=

=
−∂2F̄Xm,Xf (y, y)fZ(y) + fXm,Xf (y, y)F̄Z(y)

−∂2F̄Xm,Xf (y, y)F̄Z(y)

and

λm|f (y|Tm > y, Tf = y) =
fZ(y)

F̄Z(y)
+

fXm,Xf (y, y)

−∂2F̄Xm,Xf (y, y)

that is, the mortality intensity at time y of the male in the couple in the case in
which his wife dies at time y is the sum of the hazard rate in y of Xm given that
Xf = y and the hazard rate of Z in y.
Similarly, the corresponding intensity for the female is

λf |m (y|Tm > y, Tf = y) =
fZ(y)

F̄Z(y)
+

fXm,Xf (y, y)

−∂1F̄Xm,Xf (y, y)
.

As proposed in Gouriéroux and Lu (2015), the ratios

γm|f (y) =
λm|f (y|Tm > y, Tf = y)

λm (y|Tm > y, Tf > y)
=

f
Xm,Xf

(y,y)

−∂2F̄Xm,Xf (y,y)
+ fZ(y)

F̄Z(y)

−∂1F̄Xm,Xf (y,y)

F̄
Xm,Xf

(y,y)
+ fZ(y)

F̄Z(y)

(19)

and

γf |m(y) =
λf |m (y|Tm > y, Tf = y)

λf (y|Tm > y, Tf > y)
=

f
Xm,Xf

(y,y)

−∂1F̄Xm,Xf (y,y)
+ fZ(y)

F̄Z(y)

−∂2F̄Xm,Xf (y,y)

F̄
Xm,Xf

(y,y)
+ fZ(y)

F̄Z(y)

(20)

represent a measure of the impact of the wife (husband) death on the husband (wife)
mortality intensity. In particular, the case γm|f (y) = 1 (γf |m(y) = 1) corresponds to
no impact.

12



In order to simplify the notation we set

θ(x, y) =
F̄Xm,Xf (x, y)fXm,Xf (x, y)

∂1F̄Xm,Xf (x, y)∂2F̄Xm,Xf (x, y)
. (21)

Through a straightforward computation, from (19) and (20), we have that

γm|f (y) = 1⇔ γf |m(y) = 1⇔ θ(y, y) = 1. (22)

Apart from the case of no impact, the mortality intensities of two individuals
in the couple can react in the same way to the death of the other spouse, which
corresponds to γm|f (y) = γf |m(y) 6= 1. This is always the case when fZ(y)

F̄Z(y)
= 0 that

is when no external catastrophic event is considered, while in the general case when
fZ(y)

F̄Z(y)
> 0, it is trivial to check that

γm|f (y) = γf |m(y) 6= 1⇔ ∂1F̄Xm,Xf (y, y) = ∂2F̄Xm,Xf (y, y).

Conversely, the case in which the male in the couple is more affected by the death
of his wife than the female by the death of her husband corresponds to γm|f (y) >
γf |m(y) and we have that

γm|f (y) > γf |m(y)⇔ ∂1F̄Xm,Xf (y, y) < ∂2F̄Xm,Xf (y, y) and θ(y, y) > 1

or ∂1F̄Xm,Xf (y, y) > ∂2F̄Xm,Xf (y, y) and θ(y, y) < 1.

Clearly, the opposite situation, that is γm|f (y) < γm|f (y) holds in the complementary
cases.

Remark 2.6. Notice that all the above listed relations only depend on the joint
distribution F̄Xm,Xf . It can be easily checked that in the case in which Xm and Xf

are independent (which corresponds to the Generalized Marshall-Olkin distribution
of Li and Pellerey, 2011) the model satisfies condition (22) that is the mortality
intensities are not sensitive to the mortality status of the other spouse in the couple.

Remark 2.7. In Gouriéroux and Lu (2015), the ratios γm|f and γf |m are interpreted
as measures of the broken-heart effect. This is not the case in our model, in fact,
as shown by (19) and (20), they also depend on the rate of the arrival time of some
external catastrophic event that is of course not linked to the broken-heart effect.
Clearly, in the EMO model, the broken-heart effect modeling is the one considered
in the absolutely continuous part of the distribution.

Remark 2.8. It is worthwhile mentioning that the ratio θ(x, y) in (21) was already
introduced in Oakes (1989) in the study of the dependence introduced by frailties. We
remark that, in our EMO model, the function θ(·, ·) only depends on the underlying
copula function C and that, by integration, it can be easily verified that

θ(x, y) ≥ 1 ⇒ C(u, v) ≥ uv

that is θ(x, y) ≥ 1 implies that Xm and Xf are positively quadrant dependent.
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3 Empirical Analysis

In this section we will apply the Extended Marshall-Olkin distribution to a sam-
ple of censored residual lifetimes of couples of insureds extracted from a dataset of
annuities contracts of a large Canadian life insurance company1. This dataset has
already been analyzed in many papers: see Frees et al. (1996), Carriere (2000),
Youn and Shemyakin (1999), Shemyakin and Youn (2006), Ji et al. (2011), among
the others.

Since the interval of the entry ages of the insured considered in the dataset is
very wide, we will concentrate our analysis on the subsample made of couples of
individuals whose minimum entry age is 60. After having additionally removed
data corresponding to contracts involving insureds of the same sex and multiple
contracts on the same couple, the resulting dataset contains information about 9535
married couples during an observation period of five years from December 29, 1988 to
December 31, 1993. The dataset is both left and right censored. It is left truncated
as the annuitant information are recorded only from the date they enter the study:
this means that insureds who have died before the beginning of the observation
period were not taken into account in the study. On the other hand, the dataset is
right censored in the sense that most of the insureds were alive at the end of the
observation period. From each couple we can draw four different information: the
entry ages xm and xf for the male and the female, respectively, and the corresponding
censored residual lifetimes under the observation period, t̂m and t̂f .

3.1 Estimation procedure

As done in Dufresne et al. (2018) for the same dataset, we will apply the two-
stage parametric method for censored data introduced in Shih and Louis (1995).

Differently from the setup of those papers, our survival joint distribution is not
absolutely continuous with respect to the Lebesgue measure in R2. However, it re-
sults to be absolutely continuous with respect to a measure dominating the Lebesgue
one and having the same singularity straight line (for a formal and detailed study
of the method in the case of multivariate Pareto distributions, we refer the reader
to Asimit et al., 2016). This fact allows to implement the maximum-likelihood esti-
mation technique to the density with respect to this dominating measure as already
done in literature in the non censored data case for many extensions of the clas-
sical Marshall-Olkin distribution (see Karlis, 2003, Kundu and Dey, 2009, Kundu
and Gupta, 2013, Asimit et al., 2016) and also for the EMO distribution in Pinto
and Kolev (2015). However, because of the large amount of the parameters to be
estimated, we will consider (unlike the mentioned cases in which the maximum-

1We wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and
Valdez, for allowing the use of the data in this paper.
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likelihood estimation is conducted in one step for all parameters) the two-stage
approach for censored data of Shih and Louis (1995), using the density with respect
to the dominating measure instead of that with respect the Lebesgue measure.

More precisely, according to Asimit et al. (2016) we consider the dominating
measure µ on the plane defined, for every Borel set B of the plane as

µ(B) = L2(B) + L1(s(B))

where L2 and L1 denote the Lebesgue measures on the plane and on the straight
line, respectively, and

s(B) = {x ∈ R : (t, s) ∈ B, t = s = x}.

The density of the Extended Marshall-Olkin distribution with respect to µ, fTm,T f ,
is given in Lemma 6.3 in Pinto and Kolev (2015) and in terms of our notation can
be rewritten as

fTm,T f (t, s) =


fXm,Xf (t, s)F̄Z(t) + ∂2F̄Xm,Xf (t, s)fZ(t), t > s ≥ 0
fXm,Xf (t, s)F̄Z(s) + ∂1F̄Xm,Xf (t, s)fZ(s), 0 ≤ t < s

C(F̄Xm(x), F̄Xf (x))fZ(x), t = s = x ≥ 0
.

We assume that the involved marginal distributions as well as the underlying copula
function C belong to some parametric families: let θj be the vector of parameters of
the distribution of T j, for j = m, f , and α be the vector of the remaining dependence
parameters.

Let now consider a sample of i = 1, . . . , n censored observed residual lifetimes
pairs. According to Shih and Louis (1995), if (Cm

i , C
f
i ) denote independent random

censoring times for the male and the female individuals in the couple i, observations(
t̂
m
, t̂
f
)

=
{

(t̂mi , t̂
f
i ) : i = 1, . . . , n

}
are defined as

t̂mi = min(tmi , C
m
i ) and t̂fi = min(tfi , C

f
i ), i = 1, . . . , n

where tmi and tfi are the residual lifetimes. If δi,j = 1{t̂ji=t
j
i}

for i = 1, . . . , n and

j = m, f , the likelihood of the vector of parameters θ =
(
θm,θf ,α

)
is

L
((
t̂
m
, t̂
f
)

;θ
)

=
n∏
i=1

[
fTm,T f (t

m
i , t

f
i ;θ)

]δi,mδi,f
·
[
−∂1F̄Tm,T f (t

m
i , C

f
i ;θ)

]δi,m(1−δi,f )

·

·
[
−∂2F̄Tm,T f (C

m
i , t

f
i ;θ)

](1−δi,m)δi,f
·
[
F̄Tm,T f (C

m
i , C

f
i ;θ)

](1−δi,m)(1−δi,f )

(23)
The two-stage parametric estimation consists in
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1. estimating
(
θm,θf

)
applying the maximum likelihood estimation technique

separately to the marginal distributions (which correspond to assuming inde-
pendence in the likelihood (23));

2. given the so obtained estimates
(
θ̂
m
, θ̂

f
)

, find the estimator α̂ of α, by solving

argmax
α

L
((
t̂
m
, t̂
f
)

;
(
θ̂
m
, θ̂

f
,α
))

.

3.2 The joint lifetimes model specification

In actuarial literature many families of distributions have been proposed and
studied to fit the distributional properties of residual lifetimes. Taking into account
the dataset on which we want to test the EMO model, we assume that marginal
residual lifetimes follow a Gompertz law, taking into account the fact that in Frees
et al (1996) and in Carriere (2000) it was proved that this distribution performed a
very good fit in this dataset (the same choice is done in Dufresne et al., 2018, and in
a generalized approach in Luciano et al., 2008 and 2016, and Ji et al, 2011). More
precisely, we assume that residual lifetimes survival distributions from ages xm and
xf are given by

F̄Tm(t) = exp
(
am

(
1− e

t
σm

))
and F̄T f (t) = exp

(
af

(
1− e

t
σf

))
with am = exp

(
xm−Mm

σm

)
and af = exp

(
xf−Mf

σf

)
, where Mi and σi, for i = m, f

are the corresponding mode and dispersion parameters of the unconditional distri-
butions.

As for the external independent shock arrival time Z, we assume that it is ex-
ponentially distributed with parameter λ = λ(xm, xf ). Since from (12) it follows
that

F̄Tm(t) ≤ min
(
F̄Xm(t), F̄Z(t)

)
and F̄T f (t) ≤ min

(
F̄Xf (t), F̄Z(t)

)
,

then, necessarily

exp
(
am

(
1− e

t
σm

))
≤ e−λt and F̄T f (t) = exp

(
af

(
1− e

t
σf

))
≤ e−λt

for all t ≥ 0 and this condition is satisfied if and only if

λ ≤ min

(
am
σm

,
af
σf

)
. (24)

Thanks to (10) and (12), the joint survival distribution function of (Tm, T f ) is

F̄Tm,T f (t, s) = C

eam(1−e
t
σm

)
+λt
, e
af

(
1−e

t
σf

)
+λt

 e−λmax(t,s).
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M̂m M̂f σ̂m σ̂f
86.1143493 92.036869 9.564189 7.819468

Table 1: Maximum likelihood estimators of the parameters of the marginal distri-
butions.

Clayton Gumbel Frank Ind

α̂ λ̂(%) BIC α̂ λ̂(%) BIC α̂ λ̂(%) BIC λ̂(%) BIC
1.1678 0.1178 3039.03 1.0651 0.1255 3046.478 2.2518 0.1096 3035.478 0.1368 3091.377

(0.0047) (0.0000) (0.0001) (0.0000) (0.0107) (0.0000) (0.0000)

Table 2: Maximum likelihood estimators and relative standard errors. Copula and
exponential parameters are assumed to be constant across the dataset. The order
of magnitude of standard errors is lower than 5× 10−8.

3.3 Empirical results

As described in subsection 3.1, at stage one, we compute the maximum-likelihood
estimators of the parameters of the marginal Gompertz distributions. The estimated
parameters are listed in Table 1.

At stage two, we estimate the intensity of Z, λ, and the parameter α of the con-
sidered copula family: in the analysis both parameters are assumed to be constant
that is independent of the entry ages. As copulas families, we consider the Clay-
ton, the Frank and the Gumbel ones. Moreover, in order to compare the Extended
Marshall-Olkin model to the classical Generalized Marshall-Olkin model, we also
consider the product copula, that is the independence case.

As done in Ji et al. (2011), in order to take into account a delay in reporting
the exact date of death, we consider as simultaneous deaths (due to catastrophic
events) those occurring by a 5 days lag. Because of (24), given the estimated pa-
rameters of the marginal distributions, the constant intensity λ of the occurrence
of a catastrophic event will be constrained to be lower than λmax = 0.2126%. The
obtained maximum-likelihood estimators are showed in Table 2.

In order to compare the considered copula models we calculate the Bayesian
Information Criterion, modified in order to take into account the presence of censored
data as suggested in Volinsky and Raftery (2000), that is

BIC = −2 · LL+ k · log r

where LL is the maximum value of the log-likelihood, k is the number of parameters
to be estimated and r is the number of censored data.

Comparing BIC values, the best performance is achieved by the Frank copula
with parameter 2.2518 and external shock intensity parameter 0.1096%.
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Figure 1: Dynamics of mortality intensities ratios γm|f and γf |m under the previously
estimated model. Left: xm = xf = 60; middle: xm = 80, xf = 60; right: xm = xf =
80.

In Figure 1, under the estimated model (that is marginal distributions of Gom-
pertz type with parameters in Table 1, Frank copula with parameter α = 2.2518
and external catastrophic event with arrival intensity λ = 0.1096%), we compare the
dynamics of the mortality intensities ratios in (19) and (20) during the observation
period. The cases of younger and older spouses with the same ages (60-60 and 80-
80) and the case of a large age difference with the husband 20 years older than his
wife, are considered. It can be clearly observed that in any case the male mortality
intensity is much more increased by the occurrence of the wife death than vice versa
and the difference reduces when both are old. We remind that these coefficients are
the results of the compounded effects of the broken-heart effect and the possibility
of the occurrence of a catastrophic event causing the death of the widower and that
(see Remark 2.7) the differences between the two ratios are due to the assumption
of the possible occurrence of the external fatal event.

4 Insurance pricing

In what follows we will analyze some very common joint life insurance products
under the EMO model. For the sake of simplicity, we will assume a constant interest
rate intensity r > 0.

Continuous n−years joint life annuity
This contract pays 1$ per year as long as both spouses survive up to a term n.

The net premium is given in equation (2)

āxy;ne =

∫ n

0

e−rtF̄Tm,T f (t, t) dt =

∫ n

0

e−rtF̄Xm,Xf (t, t)F̄Z(t) dt.

Since the dependence structure of Tm and T f depends on the underlying copula C
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and on the hazard rate of Z, let us analyze the effect of the two on the annuity
premium.

If C1 � C2, meaning that C1(u, v) ≥ C2(u, v), then, if

F̄
(i)

Tm,T f
(t, s) = Ci

(
F̄Xm(t), F̄Xf (s)

)
F̄Z(max(t, s)), for i = 1, 2,

it follows that

ā
(1)
xy;ne =

∫ n

0

e−rtF̄
(1)

Tm,T f
(t, t) dt ≥

∫ n

t=0

e−rtF̄
(2)

Tm,T f
(t, t) dt = ā

(2)
xy;ne.

• If the relationship between a husband and his wife is good, then the possible
bivariate model accounting for the positive dependence between spouses’ life-
times should be based on positive quadrant dependence property. In such a
case C(u, v) ≥ uv and the corresponding net single premium āEMO

xy;ne > āGMO
xy;ne .

Therefore, if the common lifestyle is comfortable for a couple, then the EMO
model is more conservative, indicating a higher net single premium in com-
parison to model (1).

• If C(u, v) < uv, the net single premium āEMO
xy;ne is less than āGMO

xy;n̄| . This is

the case when the relationship between spouses (between Xm and Xf ) is neg-
ative. For example, let (Xm, Xf ) be distributed according to the Gumbel’s
type I bivariate exponential distribution as in (4) which is negative quadrant
dependent. So, in the case of negative quadrant dependence, pricing using the
Generalized Marshall-Olkin model, implies an overestimation of the premium.

As observed in Section 2 (more specifically in Proposition 2.2, Example 2.2
and Remarks 2.4 and 2.5) the effect on the joint survival distribution (and con-
sequently on the joint life annuity premium) of different hazard rates of Z (keeping
the marginal distributions of Tm and T f unchanged) is less immediate.

In Figure 2 we analyze the behavior of the net single premium of a term contin-
uous annuity with term n = 5 years with respect to different values of the intensity
of Z (that is assumed to be exponentially distributed with intensity λ), different
families of Archimedean copulas C and different levels of dependence (measured
through the Kendall’s tau parameter). The distributions of the residual lifetimes of
both individuals in the couple are of Gompertz type with the parameters estimated
in the previous section and showed in Table 1 and the pairs of entry ages analyzed
are again 60-60, 80-60 and 80-80. In all entry ages cases, the copula that gives the
greatest premium is the Gumbel one: this is clearly due to the fact that the Gum-
bel copula exhibits positive upper tail dependence. Moreover, in all cases, as the
value of λ increases, the impact of the different copulas become less relevant. This
is due to the fact that, as λ increases, since the marginal distributions of Tm and
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T f remain unchanged, F̄Xm and F̄Xf must increase (according to (12)) until, for λ
sufficiently large and consistent with the assumed marginal distributions of Tm and
T f (see (24)), they are very close to 1 and so the impact of different copula types
reduces. However, in all cases, we observe an increase in the premium value with λ.
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Figure 2: Continuous 5-year joint life annuity premiums by different entry ages. The
premiums dynamics are analyzed with respect to the external fatal shock intensity
λ (on the horizontal axis, expressed in percentages), with respect to different under-
lying copulas and with respect to different levels of dependence given by different
Kendall’s tau coefficients. The instantaneous rate of interest is r = 0.01. Left:
xm = xf = 60; middle: xm = 80, xf = 60; right: xm = xf = 80.

Joint life, last survivor and simultaneous death policies
A joint life policy pays a fixed lump sum on the first death between the spouses.
The expected present value of the future cash-flow (in case of a unitary lump sum)
is

Ā(1)
xmxf

= E
[
e−rmin(Tm,T f )

]
= 1− r

∫ +∞

0

e−ryF̄Tm,T f (y, y)dy.

As for the last survivor unitary policy, the lump sum is paid on the second of the
two deaths. The expected present value is

Ā(2)
xmxf

= E
[
e−rmax(Tm,T f )

]
= Āxm + Āxf − Āxmxf
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where Āxm and Āxf are the individual whole life insurance policies.

In Figure 3 we analyze the behavior, with respect to the fatal event intensity λ, of
the expected present value of a last survival policy where the marginal distributions
are those estimated from the considered sample. The analysis is again conducted
varying the copulas and the level of dependence. Again the copula that induces
higher prices (whatever is the level of dependence) is the Gumbel copula but the
impact of a different copula is almost irrelevant with very old couples. In any case
the expected present value increases with the level of dependence.
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Figure 3: Last survival policy expected present value compared to λ when the copula
function changes. The dependence is measured by Kendall’s τ coefficient. In the
x-axis there is the parameter λ in percentage form. The parameters of marginal
distributions are those estimated from our sample. The constant interest rate is
r = 0.01. Left: xm = xf = 60; middle: xm = 80, xf = 60; right: xm = xf = 80.

Such a policy does not distinguish between the case in which only one of the
two individuals in the couple dies first and the case in which both spouses die
simultaneously. We can introduce a policy which pays a different lump sum to
the heirs in case of simultaneous death. Let L denote the lump sum paid in case of
simultaneous death and l the one paid in case of the first single death. The expected

21



present value of the future cash flow is

ĀSxmxf (l, L) = L · E
[
e−rmin(Tm,T f )1{Tm=T f}

]
+ l · E

[
e−rmin(Tm,T f )1{Tm 6=T f}

]
=

= L ·
∫ +∞

0

e−ryF̄Xm,Xf (y, y)fZ(y)dy + l ·
[
Āxmxf −

∫ +∞

0

e−ryF̄Xm,Xf (y, y)fZ(y)dy

]
where we have used (11). Figure 4 shows its dynamics, again with respect to λ,
where, as in the previous examples, the marginal distributions are those estimated
by the sample. The entry ages are xf = xm = 60 and the sum paid in case of the first
single death, l, is fixed to 10, whereas the sum paid in case of simultaneous death, L,
can assume four values, 10, 10.5, 11, 12. Here, the copula is Frank and the levels of
dependence are the same as before. We can observe that the behavior changes from
decreasing to increasing as the value of the sum L increases. More precisely, when L
becomes greater than 11 the curves turn to be increasing from decreasing and this
property is accentuated with the increase in the level of dependence. This is clearly
due to the fact that as the benefit in case of simultaneous death is much bigger than
that in case of the first “single” death, then the impact on the premium of a greater
intensity of simultaneous death becomes more relevant inducing an increase in the
premium.

5 Conclusions

This paper introduces the Extended Marshall-Olkin model (see Pinto and Kolev,
2015) as a probabilistic model for the evaluation of insurance products written on
the residual lifetimes of the two individuals in a couple. The approach is based
on modeling the dependence between lifetimes using copula functions and combin-
ing the two approaches already considered in existing literature: i) the absolutely
continuous copula based approach introduced in the seminal paper of Frees et al.
(1996), where the copula is used to capture associations based on the environmental
factors and lifestyle shared by the two lives; ii) the approach based on the classical
Marshall-Olkin construction (see Denuit et al, 2006), in order to account for the
occurrence of a fatal event causing the simultaneous death with a positive proba-
bility. The model is estimated on a Canadian insurer dataset and the impact on
the premium calculation on policies written on the joint lives and on the event of
simultaneous death are analyzed.

However, since the broken-heart effect is not related to the fatal exogenous catas-
trophic event, the modeling of this kind of association in the EMO model is the same
as that in the classical absolutely continuous copula based approach and additional
effort will be needed to further generalize the model in order to improve the mod-
eling of this type of dependence. For example, one might consider an EMO model
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Figure 4: Last survival policy expected present value compared to λ when the lump
sum paid in case of simultaneous death changes. The copula function is Frank with
three different levels of dependence measured by Kendall’s τ coefficient. In the
x-axis there is the parameter λ in percentage form. The parameters of marginal
distributions are estimated from our sample. The constant interest rate is r = 0.01.
In each plot we set l = 10 and xf = xm = 60.
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generated by
(Tm, T f ) = (min(YmX

m, Z),min(YfX
f , Z)),

where Ym, Yf ∈ (0, 1) are random variables incorporating the broken-heart syn-
drome.
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