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Abstract

High Performance Computing (HPC) systems are complex machines
with heterogeneous components that can break or malfunction. Auto-
mated anomaly detection in these systems is a challenging and critical
task, as HPC systems are expected to work 24/7. The majority of the
current state-of-the-art methods dealing with this problem are Machine
Learning techniques or statistical models that rely on a supervised ap-
proach, namely the detection mechanism is trained to recognize a fixed
number of different states (i.e. normal and anomalous conditions).

In this paper a novel semi-supervised approach for anomaly detection
in supercomputers is proposed, based on a type of neural network called
autoencoder. The approach learns the normal state of the supercomputer
nodes and after the training phase can be used to discern anomalous con-
ditions from normal behaviour; in doing so it relies only on the availability
of data characterizing only the normal state of the system. This is differ-
ent from supervised methods that require datasets with many examples
of anomalous states, which are in general very rare and/or hard to obtain.

The approach was tested on a real-life High Performance Comput-
ing system equipped with a monitoring infrastructure capable to generate
large amount of data describing the system state. The proposed approach
definitely outperforms the best current techniques for semi-supervised
anomaly detection, with an increase in accuracy detection of around 12%.
Two different implementations are discussed: one where each supercom-
puter node has a specific model and one with a single, generalized model
for all nodes, in order to explore the trade-off between accuracy and ease
of deployment.
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1 Introduction

Supercomputers are large systems comprising multiple high-performance sub-
systems working concurrently and close to the peak of their optimal theoretical
capability. Actually, many things could go wrong and cause a decrease in the
overall performance of a High Performance Computing (HPC) machine: hard-
ware can break, malfunction or be incorrectly configured, software programs can
contain bugs or reach undesirable states. Hence, ensuring reliability and avail-
ability is a major issue in the HPC context. A key challenge to be addressed by
researchers and practitioners is the detection of anomalies and fault conditions
that can arise due to the incorrect or sub-optimal behaviour of a wide variety
of components. This is an important problem for both the scientific computing
community and data centers and clouds providers, since their business strongly
depends on the 24/7 availability of their services. For example, it was estimated
that in 2016 Amazon would have lost 15M$ for one hour of downtime[37]. This
strongly motivates the requirement of an automated procedure for anomaly de-
tection in current supercomputers and data centers, and this need will become
even more pressing for future Exascale systems[74].

Luckily, many modern HPC machines and data centers are equipped with
a monitoring infrastructure that collects information characterizing the state of
the system and underlying components, relying on a vast array of measuring
sensors. However, the large amount of data available is both a boon and a
challenge, since a real-time analysis of the information flow is a daunting task
for system administrators. To mitigate this problem, in this paper an automated
approach for anomaly detection in HPC systems is presented; it makes use of
the data collected by a fine-grain monitoring framework and relies on Machine
Learning (ML) techniques.

The current state-of-the-art methods for anomaly detection in supercomput-
ers belong to the supervised [52] Machine Learning class; these are techniques
that discern normal and faulty states after having been “taught” to do so during
a training phase. In the training phase both normal and anomalous examples
must be provided in order to assure the success of the learning task a labeled
data set is needed. To guarantee a successful learning process the training data
set should be unbiased and balanced[67], that is containing more or less the
same number of examples for each class. These requirements greatly compli-
cate the training task: in supercomputers, large amount of data is available
but labels are scarce1. In addition, fault conditions are not always stored in
logs or databases, but rather the task of assigning labels to a data set is the
sole responsibility of system administrators. Hence, it is not always possible
to have the correct labeled data sets needed by supervised approaches. This
is a widely acknowledged problem and some authors have proposed in recent
years to create balanced labeled data sets using fault injections tools (for in-
stance Netti et al.[54]); these approaches are promising, however none has been
actually deployed and tested on a real in-production supercomputer.

1Identifying anomalies is difficult in the first place and the definition of “anomaly” itself
can vary in different situations.
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Another ML branch does not require labels and is referred to as unsuper-
vised [52, 51] learning. This methodology requires only a data set containing the
features describing the system state (without labels); during the training the
algorithm learns useful properties about the structure of the dataset. Unfortu-
nately, unsupervised learning is very complex and obtaining accurate anomaly
detection with this scheme is very difficult. Therefore, previous works[14] pro-
posed an approach belonging to a third branch of ML, namely semi-supervised
learning, that uses partially labeled data. This method relies on autoencoders[35]
to learn the normal state of the computing nodes of a HPC system (the training
set contains only data describing normal behaviour); once trained, the autoen-
coders can identify anomalous situations. The labels are needed just to obtain
the normal data set; afterwards, the training proceeds in a unsupervised fash-
ion. In this way, faults not included in the training set can be detected too.
Moreover, the proposed approach does not need to inject anomalies during the
training phase (whereas supervised techniques have this requirement), an action
that cannot be possible in the majority of production HPC systems without in-
curring in serious downtime.

This paper significantly extends the previous work by evaluating in depth
the autoencoder-based approach from an engineering and practical point of view
and comparing it with the state-of-the art. The main contributions of this paper
are the following:

• a comprehensive experimental analysis of our approach through the eval-
uation of a larger set of computing nodes belonging to a HPC cluster;

• comparison of two different models based on autoencoders, I) a node-
specific model and II) a single general model, evaluating their performance
and deployment challenges;

• a thorough comparison with alternative techniques from the semi-supervised
field, revealing that our approach has an overall detection accuracy around
12% higher than other methods – we also compare our approach with the
current state-of-the-art method for anomaly detection in HPC, which is
based on supervised ML, hence not directly comparable to ours, and we
show that the gap is very small (around 5%);

• practical guidelines to implement the proposed approach, namely the re-
quirement in terms of data to be collected in order to train the models
and trade-off between data set size and detection accuracy.

The approach has been deployed on a real HPC system, D.A.V.I.D.E.,
hosted by the Italian inter-universities consortium CINECA[1]. A monitor-
ing infrastructure for large-scale data collection and storage has been installed
on this supercomputer, ideally suited to create the training set needed for
the autoencoder-based technique and to assess its accuracy using real data.
The paper has the following structure. Section 2 discusses the state-of-the-art
for anomaly detection in HPC systems (supervised techniques) and other ap-
proaches from the literature belonging to the unsupervised and semi-supervised
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areas but never applied to supercomputers. Section 3 describes the target sys-
tem (D.A.V.I.D.E.) and its monitoring infrastructure. Section 4 then introduces
the autoencoder-based approach, providing a detailed explanation of its mode
of operation. Section 5 reports the results of the experimental evaluation; it
contains the method used to inject anomalies in the HPC cluster, the compari-
son with different types of models and the comparison with the state-of-the-art.
Finally, Section 6 summarizes the work and concludes the paper.

2 Related Works

Tuncer et al.[69, 68] propose a method to diagnose performance variations in
HPC systems; performance variation can be also used to describe the difference
between normal and anomalous behaviours. They use a large set of different
measures collected by a monitoring framework; from these measurements, they
extract several statistical features describing the state of the HPC system. These
features then compose a data set used to train several ML algorithms in order
to classify the system behaviour; the best results are obtained with a Random
Forest classifier[15]. Their results are very good and outperform many previous
methods that followed similar schemes (i.e. [13, 47]). This approach is the
current state-of-the-art for anomaly detection in HPC systems, to the best of
our knowledge.

Baseman et al.[11] discuss an analogous technique for fault detection in su-
percomputers. They apply a statistical method called classifier-adjusted density
estimation (CADE) to the HPC context. The main idea of CADE is to combine
a uniform density estimate and the probabilistic output of a classifier in order
to obtain an accurate density estimator, which can be used to discern anoma-
lous states from normal ones. Their approach begins by extracting temporal
relational features and their gradients from the sensor data (coming from a su-
percomputer). Then they use both real and artificially generated data (thanks
to density estimation) to train a supervised classifier (a Random Forest) to
classify each data point depending on its “anomalousness”; the output of the
classifier is not a single class label but rather a probability.

The methods just discussed share a couple of important elements to consider.
First, the authors employ supervised ML techniques; hence a first phase is
needed to create a labeled data set, when the supercomputer must run in each
of the target faulty conditions. Secondly, with the supervised approach, the
classifier can only learn to identify the classes it has been taught to; a new
anomaly encountered at run time and never seen before cannot be properly
detected by this approach. On the contrary, the method proposed in this paper
overcomes both these limitations; labeled and balanced data sets are not needed
– a strong obstacle in supercomputers due the 24/7 availability requirement.

Leaving the supervised learning area, Dani et al.[27] present an unsupervised
approach for anomaly detection in HPC. Their approach markedly differs from
ours since they do not employ datasets containing information describing the
supercomputer status. Their goal is to distinguish log messages generated by
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faulty events from normal messages created by nodes operating under normal
condition. Their method is completely unsupervised and based on clustering
methods (k-means). The focus of the work is exclusively on anomalies recog-
nizable by the node itself, since it has to generate the warning messages used
to identify faults. The proposed approach does not require additional mecha-
nisms to detect anomalies on the nodes since it relies only on the physical data
gathered by a collection framework.

Gabel et al. [33] tackle the problem of predicting machine failures in data
centers. Their semi-supervised approach learns the correct behaviour of the
machines in a data center through the observation of system performance coun-
ters and by learning a statistical model corresponding to the normal state; the
trained model can then identify machines in anomalous states because their be-
haviours differ from the “healthy” machines, after having applied the statistical
tests. They focus on predicting latent faults, errors that are not the result of
abrupt changes but rather the product of a long period of degraded performance;
this focus limits the scope of their approach, since not all anomalies are the out-
come of latent faults, i.e. power outages or unexpected configuration changes.
Their method is not applicable to HPC systems since it is based on observing
differences among machines in a large scale (and possibly distributed) data cen-
ter, while a typical supercomputer is composed by a single machine (albeit a
large one).

In recent years several works from the area of statistical learning (such as
probabilistic models, Bayesian networks, etc.) have been suggested to deal with
the issue of fault identification and diagnosis, in a wide range of fields, from
heat pumps [19] to electrical motors [21], and also applied to complex systems
[20, 18]. These methods are promising but they require labeled data as well and
also the knowledge of domain experts.

Fully supervised approaches for anomaly detection based on neural networks
have been widely discussed in recent years, although never applied to supercom-
puters. Wang et al.[72] propose an approach for fault diagnosis on power sys-
tems based on sparse stacked autoencoder (SSAE) neural networks. SSAE are
are composed by a set of sparse autoencoders disposed in a chain-like structure,
where the output of the previous autoencoder is fed as input to the following one.
In order to perform the fault classification the final layer of autoencoders is typi-
cally a softmax layer. In this approach, Wang et al. use instead a more complex
solution: a Principal Component Analysis (PCA) layer to further extract the
most significant features and a Support Vector Machine (SVM) with a Gaussian
kernel. The accuracy of the classification is around 90%. Shen et al.[61] discuss
a similar supervised method for fault diagnosis in rotating machinery employing
stacked contractive autoencoders (SCAE). The deep contractive autoencoder is
used to extract important features that are then fed into a softmax classification
layer; the advantage of SCAE derives from the fact that this type of neural net-
work is invariant to small changes of the inputs due to its penalty term, without
requiring any prior knowledge or human (domain expert) interactions. Siegel
et al. [62] propose a supervised approach for arc-fault detection in electronic
circuits for the Internet-of-Things, based on a deep neural network acting as a
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classifier and trained on real data. The experimental results are very promising,
reaching an accuracy higher that 99% in the binary classification task (the goal
is to distinguish between faults and normal state). These three methods based
on supervised neural networks [72, 61, 62] have never been applied to the HPC
context and have a detection accuracy comparable to the HPC state-of-the art
[68] (higher than 95%), but are more computationally demanding.

Although not yet applied to the HPC field, many semi-supervised and unsu-
pervised approaches (especially Machine and Deep Learning based) have been
proposed to tackle the anomaly detection issue in other fields [26, 40, 46, 43].
In particular DL models have been fostered by the rise in computational power
guaranteed by GPUs and the availability of large amount of data to train deep
neural networks. Goldstein et al. [34] perform an extensive study comparing
the performance of several unsupervised anomaly detection techniques. It is a
very thorough work that considers the accuracy of each method together with
computational demands and sensitivity to parameters.

3 Target HPC System & Data Collection

The proposed approach depends on the availability of monitoring data describ-
ing the HPC system state, thus the test case had to be a supercomputer with an
integrated monitoring framework with data from many different sources. This
section describes the chosen HPC system and its data collection infrastructure.

3.1 D.A.V.I.D.E.

D.A.V.I.D.E. (Development for an Added Value Infrastructure Designed in Eu-
rope) [6] is an Energy Aware Petaflops Class HPC system based on Power Ar-
chitecture and coupled with NVIDIA Tesla Pascal GPUs with NVLink, hosted
by CINECA in Bologna, Italy. The design of D.A.V.I.D.E. has been developed
by E4 Computer Engineering [2] for PRACE [5], with the goal of obtaining an
energy efficient cluster for scientific computing. D.A.V.I.D.E. is based on Open-
POWER platform, a key feature that allowed the out-of-band monitoring used
in the monitoring infrastructure. D.A.V.I.D.E. is composed by 45 nodes con-
nected with Infiniband EDR 100 GB/s network, with a total peak performance
of 990 TFlops and an estimated power consumption of less than 2 kW per node.
Each node hosts two IBM POWER8 Processors with NVIDIA NVLink and four
Tesla P100 data center GPUs, with the intra-node communication layout opti-
mized for best performance. The system was ranked #440 in TOP500[31] and
#18 in GREEN500[32] in November 2017 list.

3.2 EXAMON Monitoring Framework

The data collection infrastructure deployed in D.A.V.I.D.E. is called Examon
[12, 10] Data originated by heterogeneous sources (for example from both phys-
ical sensors and software modules) is gathered and stored in a single structure
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with a uniform access format. This greatly helps the creation of a data set
providing an overall view of the whole cluster and its state.

The primary components of the Examon infrastructure are several low-
overhead software daemons running along the computing nodes, tightly cou-
pled with them. These daemons monitor many performance and utilization
metrics and the power consumption of each node. The data is then sent to a
management backbone, through a lightweight TCP/IP communication layer
based on the open-source MQTT (MQ Telemetry Transport) protocol [64].
The power consumption at the plug is measured by an embedded monitoring
board (Beaglebone Black, BBB [22]), which samples, pre-processes and sends
data via MQTT[49]. The embedded monitoring board periodically issues IBM
Amester commands [24], for an out-of-band monitoring of the nodes perfor-
mance. Amester (Automated Measurement of Systems for Temperature and
Energy Reporting) is a software tool to remotely collect power, thermal, and
performance metrics from IBM servers. It connects to OpenPOWER systems
by accessing the service processor firmware, therefore it does not use any of the
processing cycles of the processor and has no impact on performance.

The Amester commands exploit the IPMI interface to the OpenPOWER
POWER8 on-chip controller[17, 59] (OCC), to get OCC sensor readings. The
IPMI interface (Intelligent Platform Management Interface) [3, 25] provides
management and monitoring capabilities independently of the host system’s
CPU, firmware and operating system. It defines a series of interfaces that can
be used for out-of-band monitoring and management of computer nodes. The
IPMI Amester commands are sent to the OCC through the board management
controller (BMC), using a python script. The python script executes on the
embedded monitoring board (BBB). The received data are then sent to the
MQTT backbone to be processed by Examon. The granularity of the data in
Examon is 5s and 10s respectively for IPMI metrics and OCC metrics. The final
destination of the data collected by the measuring agents is a distributed and
scalable time series database (KairosDB[4]), built on top of a NoSQL database
Apache Cassandra[8] (the single point of access for all data). Beside the fine-
grained measurements coming from the physical sensors, coarse-grained data is
computed and stored (averaging the fine-grain measures over 5 minutes period).

Figure 1 summarizes the scheme of the data gathering framework installed
on D.A.V.I.D.E., Examon; the figure displays also the anomaly detection scheme
(yellow rectangles and numbered circles) that will be described in Sec. 4. The
monitoring infrastructure resides on one of the two front-end nodes of the su-
percomputer (Davide Front-End 1 ); the second front-end node hosts the job
manager that handles the jobs submitted by users (SLURM ). The data col-
lected on the computing nodes is gathered by the MQTT central broker; the
Kairos and Cassandra databases reside on the same node and are tightly cou-
pled with the broker. Data coming from the 45 computing nodes and the job
scheduler is sent to the broker and stored for analysis and visualization purposes.

The approach proposed in this paper considers only coarse-grained, aggre-
gated data, with all the entailed limitations. For instance this choice clearly
limits the type of anomalies that can be detected: events that last for periods
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Figure 1: Architecture of data collection infrastructure deployed on
D.A.V.I.D.E., plus anomaly detection scheme

shorter than the aggregation time window (5 minutes), and that leave no trace
or permanent damage, will not be taken into consideration. The aggregated
information then constitutes the data set used to train the autoencoders em-
ployed by our approach; for each one of the 45 nodes of D.A.V.I.D.E. there are
around 170 metrics (also referred to as the features, adopting ML terminology),
i.e. core loads, temperatures, fan speed, power consumption of whole nodes,
consumption of single subcomponents, etc. Since there are hundreds of metrics,
reporting all of them would hinder the comprehension of the paper; this online
repository contains a comprehensive description of the Examon infrastructure
[9]; the collected metrics can be found in the document called “Metrics List &
Description”. 2.

4 Anomaly Detection with Autoencoders

This section introduces the autoencoder-based model. The core goal of the
model is to learn the “correct” behaviour of a supercomputer, in order to de-
tect anomalous conditions. More precisely, the proposed approach focuses on
detecting anomalies that happen at the node-level. The critical assumption is
that an autoencoder can learn the representation of the normal state of a super-
computer node (looking at the measured features); afterwards, the model can
be used to notice representation changes that underlie anomalous conditions.
This happens because an autoencoder is a neural network trained to copy its
input x to its output y. Internally it has hidden layers h encoding the represen-

2For reference, the list of Amester sensors names are [23]: PWR250US,
PWR250USFAN, PWR250USIO, PWR250USSTORE, PWR250USGPU, PWRAPSSCH0,
FREQA2MSP0, IPS2MSP0, PWR250USP0, PWR250USVDD0, CUR250USVDD0,
PWR250USVCS0, PWR250USMEM0, SLEEPCNT2MSP0, WINKCNT2MSP0,
TEMP2MSP0, TEMP2MSP0PEAK, UTIL2MSP0, FREQ250USP0Cy, FREQA2MSP0Cy,
IPS2MSP0Cy, NOTBZE2MSP0Cy, NOTFIN2MSP0Cy, TEMP2MSP0Cy, UTIL2MSP0Cy,
NUTIL3SP0Cy, CMBW2MSP0Cy, PWRPX250USP0C, VOLT250USP0VX, MRD2MSP0Mx,
MWR2MSP0Mx, M4RD2MSPxMy, M4WR2MSPxMy
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tation of the data. An autoencoder is composed by two subparts: an encoding
function h = f(x) and a decoding function that reconstructs the input y = g(h).
Typically, autoencoders do not simply learn the identity function g(f(x)) = x
but are designed not to be able to copy perfectly, thus the output of an autoen-
coder is generally different from its input; this difference is called reconstruction
error. The reconstruction error is used to identify anomalies. During training,
an autoencoder learns the relationships among the features in the input set. If
new, previously unseen, data is given to the trained autoencoder as input, it
can reproduce it accurately (with a low reconstruction error), as long as the
new data is similar to the one encountered in the training set – the correlation
between the features of the new data must be similar to the one learned by the
autoencoder. If this condition does not hold, the autoencoder cannot correctly
reconstruct the input and the reconstruction error is greater.

The overall scheme of the approach is depicted in Figure 1 (indicated by the
numbered circles). The autoencoder-based model (yellow rectangles called AE
Model and Trained AE in the figure) is trained using the data collected by the
monitoring infrastructure installed in the target supercomputer (further details
on the autoencoder are provided in Section 5). The training phase exploits nor-
mal data collected in a sufficiently long period of time (see Sec. 5.6 for practical
guidelines); the training happens offline without real-time requirements. The
training phase can take place in any machine; for the proposed approach one
of the supercomputer nodes was used. The trained models were then directly
deployed on the node that hosts the monitoring infrastructure. The model must
be not too computationally demanding since it must be computed for each node
and should not create an excessive overhead that would disrupt the data col-
lection task. Having the autoencoder-based model on the same machine of the
monitoring infrastructure reduces the storage requirements (once an anomaly
has been detected unnecessary data can be discarded) and eliminates commu-
nication costs (since both data and detection model share the same host). The
goal of having a lightweight model guided the design of the autoencoder net-
works (topology, parameters, etc); the details will be provided in Sec. 5.4, where
the implementation and experimental methodology are described.

4.1 General Model VS Node-Specific Models

The proposed approach focuses on single HPC nodes, however supercomputers
are composed by clusters of nodes – a strategy to tackle this issue must be
defined. For instance, is it better to have a model for each node in the cluster,
where each model is a particular neural network with its own hyperparameters,
or rather to have a unique model to be applied to each node? To rephrase, it
is crucial to understand the trade-off between I) node-specific models and II) a
unique general model. In general, from the engineering perspective, it would be
easier and more practical to have a single model that can be applied to all nodes,
since this would simplify the training phase and deployment. However, there
are some doubts that need to be taken into account. Has a general model the
same detection accuracy of a set of models dedicated to each node? Are node-
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specific models prone to overfitting? How to train a general model? Sec. 5.4
will show the comparison between the different types of autoencoders and will
answer these questions.

5 Experimental Evaluation

This section assesses the accuracy of the autoencoder-based approach for anomaly
detection, by describing the controlled way to inject anomaly and the detec-
tion results. The accuracy of the proposed approach is compared with semi-
supervised techniques from the literature. Finally, the impact of the training
set size is evaluated.

5.1 Anomaly Injection

Many kinds of sources can lead to anomalous behaviour and faulty states in HPC
nodes. This work focuses on a specific type of anomaly that can often arise in
real supercomputers, namely misconfiguration at the single node level – more
precisely, wrongly configured computing nodes. Nowadays, most Linux systems
(such as D.A.V.I.D.E.) can handle different operating modes that decide how
the clock speed of the CPU is managed. This mechanism is allowed by a kernel-
level driver typically referred to as frequency governor [16]; different modes (or
policies) can be specified and each one of them has a different impact on the
clock speed, frequency and power consumption of the CPUs – given the same
computational load, the power consumption of a supercomputer node can vary
according to the frequency governor value.

Four different policies were selected. The first one, conservative, is the de-
fault policy on D.A.V.I.D.E. and it corresponds to the normal data used during
the training phase. The conservative policy sets the CPU frequency according
to the current workload. The anomalies were injected in the test set by changing
the frequency governor to a non-default mode. The three anomalous policies
are: 1) powersave, that statically sets the CPU frequency to the lowest frequency
available; 2) performance, that sets the CPU frequency to the highest value al-
lowed in the frequency range; 3) on-demand, that scales the frequency according
to the workload similarly to the conservative policy, but is more “aggressive”,
as it jumps to the highest frequency and then possibly backs off as the idle time
increases. These are not hard failures, i.e. even with the wrong configuration
the system remains operational. Hence, they are more subtle to track than hard
failures. However, they do impact performance and they are representative of
classes of misbehavior that decrease the efficiency of a machine: tracking down
slower than expected nodes is a high-priority goal in large-scale systems, as slow
nodes may severely impact service latency [28, 41, 29]. The experiments were
conducted on a subset of D.A.V.I.D.E. nodes (precisely 24 nodes, slightly more
than half of the system), whose frequency governor policies were changed for
periods of time ranging from dozens of minutes to a couple of days.
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5.2 Experimental Setup

The experiments were performed in an offline setup, not to hinder the supercom-
puter in production and to operate in a controlled setting. Several months of
D.A.V.I.D.E. activity were collected and used as the main data set; the collected
features were normalized in the range [0, 1], by removing the mean and scaling
to unit variance, as neural networks work better with normalized values[70, 35].
In an online setting the standardization process could be performed on the real-
time new data by storing the mean and variance computed on the training set
(the training of the model would still happen offline).

The normalized data set was then divided in three parts: I) the training
set DSTr, composed exclusively by examples belonging to periods of normal
behaviour (with no anomalies injected); II) the test set without anomaliesDSTe

N ;
III) the test set with anomalies DSTe

A , with examples drawn solely from periods
corresponding to anomaly injections. The training set DSTr is used to train the
autoencoder while the two different test sets serve to assess the accuracy of our
method. The data used to create these three sets correspond to a 83-days long
period of D.A.V.I.D.E. lifetime (in production phase), comprising March, April
and May 2018. During most of this time D.A.V.I.D.E. was in the “normal”
state (frequency governor set to conservative), precisely for 66 days (80% of
the time); in the remaining 17 days anomalies were injected by changing the
frequency governor for periods ranging from hours to days. DSTe

A corresponds
to the 17 days with anomalies. The remaining days were randomly split between
DSTr and DSTe

N , with 80% of the data to the former and 20% to the latter.

5.3 Detection Accuracy

As mentioned in Section 4, faulty states are identified using the reconstruction
error, thanks to the observation that the reconstruction errors obtained with the
test set without anomaly (DSTe

N ) follow a distribution very different from those
generated by the test set with anomalies (DSTe

A ). The reconstruction error of an
autoencoder with multivariate input and output3 can be computed in different
ways. As said in Sec. 4, the reconstruction error is the difference between the
output and the input; this difference is usually computed feature-wise and then
averaged (also referred to as normalized). Alternatively, the maximum error can
be used; in this paper, this was the chosen error, after a preliminary exploration.
The exact formula is the following:

Emax
i = max

j∈NF
(Y i

j −Xi
j) (1)

where X is the input vector and Y is the output vector; i is an index indicating
the example in the data set and j is an index ranging among all features NF .
Using this type of error instead of the normalized one leads to more diverse
errors distributions for the different data sets.

3The input is composed by the vector with all the features collected by the monitoring
infrastructure
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Figure 2: Autoencoder reconstruction error distributions of several nodes; nor-
mal examples (yellow/orange hues) and anomalous examples (blue hues)

Figure 2 displays the errors distributions for some of the nodes that were
injected with anomalies; not all tested nodes were included to increase readabil-
ity. The errors distributions are presented as histograms: on the x-axis there
is the value of the reconstruction error and on the y-axis there is the number
of examples with corresponding error. The error reported is the one obtained
by using node-specific autoencoders (see Sec. 4.1 and Sec. 5.4 for details). The
nodes reported in the figure are davide17, davide27, davide28, davide42 and
davide45 ; these nodes were injected with two types of anomalies: frequency
governors powersave and performance. The blue bars correspond to the distri-
bution of the errors obtained with the normal test set while the red bars are
the errors generated by the examples in the anomaly test set. The nodes can
be distinguished by the different hues. To increase clarity, Figure 3 reports the
error distributions for two nodes, davide27 and davide45, with the distribution
of normal errors in blue and anomaly distribution in red.

It is clear that normal test set and anomalous test set have very different
errors distributions; most of the normal errors are lower than 0.1 (the majority is
even smaller than that) while the anomaly-generated errors have higher values.
This crucial observation suggests a criterion to detect anomalies. In practice,
for each node a threshold Θ is selected; whenever an unseen example is fed to
the autoencoder-based model the reconstruction error is computed (according
to Eq. 1): if the corresponding error is greater than Θ the example is classified
as anomalous, normal otherwise. It remains to be decided how to choose the
value of Θ; moreover, a preliminary analysis shown that different nodes can
have different optimal values for this parameter. The value Θ can be decided
by looking at the n-th percentile of the errors distribution of the normal data
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(a) davide27 (b) davide45

Figure 3: Autoencoder reconstruction error distributions of two nodes; normal
examples (blue) and anomalous examples (red)

set4. The quality of the n value is determined by the overall accuracy obtained
in the anomaly classification task over all the examples in the test sets (DSTe

N

and DSTe
A ); as accuracy measure, the F-score[70] was chosen (values in the [0, 1]

range, with values closer to 1 indicating higher accuracy). For each node, the
optimal Θ has been found by varying n in the range [70, 100] (values selected
after a preliminary analysis) and by measuring the corresponding accuracy;
then, n and related Θ with the highest F-score were picked.

In the case of the generic model for all computing nodes the mechanism is
totally analogous, with n and Theta chosen depending on the errors computed
forDSTe

N andDSTe
A ; the only difference is that for the general model the training

set and test set are not specific for a node (details in Sec. 5.4). The best n value
for the general model is equal to 94; for the node-specific models the best n can
differ for each node, for example it is equal to 99 for nodes such as davide16,
davide29 and davide45, down to 80 for davide12, passing through intermediate
values such as 89 for davide28 and 91 for davide13. n and hence Theta are then
obtained without the assistance of domain experts, but rather by looking at the
errors distribution of the training set. Their optimal values are task (and node)
specific and are computed via a simple exploration of the parameters space.
Figure 4 shows the impact of these parameters on the detection accuracy; on
the x-axis there is n (in the range [70, 100]) while the y-axis reports the accuracy,
measured as weighted F-score, precision and recall (drawn with three different
lines and markers, respectively, blue dots, red diamonds and green crosses).
The precision is inversely proportional to the number of false positives and the
recall is inversely proportional to the number of false negatives; values closer
to one indicate fewer false positives or negatives. The grey vertical dashed line
pinpoints the best n for the corresponding node. The results of the node-specific

4The n-th percentile is a statistics indicating the value below which a given percentage of
observations in a group of observations falls. For example, the 90-th percentile is the value
below which 90% of the observations may be found.
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(a) davide13 (b) davide26

(c) davide28 (d) davide45

Figure 4: Node Specific Models – Detection Accuracy VS n-th percentile for
nodes davide13, davide26, davide28, and davide45

autoencoders for 4 different nodes are shown, davide13, davide26, davide28, and
davide45.

Selecting higher values of n means rising the threshold Theta used to discern
anomalous points from normal ones. Higher values lead to a more conservative
anomaly detection criterion – thus minimizing the number of false positives, at
the expense of missing some anomalous points. This decreases the number of
false alarms. However, parameters n and Theta allow more flexible and goal-
oriented approaches: decreasing their values leads to a more sensitive anomaly
detection, with fewer missed anomalies but with an increased number of false
alarms. The best trade-off can be decided by system administrators and facility
owners.

5.4 Comparison between different autoencoders

This section compares two types of autoencoder-based approach: I) a set of
node-specific autoencoders, on for each node in the HPC cluster or II) a single
general model. In the first case, each node has its own autoencoder; training
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and test set are drawn from the data set of the node. In the general case, a single
autoencoder is trained with normal data coming from multiple nodes; clearly,
this leads to a much larger training set compared to the node-specific ones and
the training time increases as well. After the training, the general model is
evaluated by feeding it with the test set of a single node (whose normal data
was part of the training set as well); the tests were repeated on all nodes.

All autoencoders share the same network configuration. They have a fairly
simple structure composed by three layers: 1) an input layer with as many
neurons as the number of features; 2) a densely connected intermediate sparse
layer[57, 58] with a number of neurons equal to the number of feature multiplied
by ten, with Rectified Linear Units[53] (ReLu) as activation functions and a L1
norm regularizer[7, 35]; III) a final dense output layer with the same number
of neurons as the input layer and with linear activations. To reduce overfitting,
a Dropout layer was applied [63] to the output of layers 1 and 2 (dropout rate
equal to 0.2). Each autoencoder is trained with Adam optimizer[42] minimizing
the mean absolute error; the number of epochs used in the training phase is 100
and the batch size has a fixed value (32). The hyperparameters for the Adam
optimizer were: learning rate 0.001, β1 = 0.9, β2 = 0.999, decay 0.0. 10% of the
training set was used for validation. This network topology and hyperparam-
eters values were obtained after a preliminary empirical evaluation, following
the criteria of finding a good trade-off between accuracy and complexity of the
model. Simpler models have lower computational and memory demands and
can be used for real-time inference without degrading the supercomputer per-
formance or incurring in an additional cost in the computing nodes’ telemetry
system. For the training, one of the nodes of D.A.V.I.D.E. itself was used; the
average training time was 65.5 seconds for the node-specific models, while the
time required to train the general model was 672 seconds (slightly more than
11 minutes). For test phase, the trained models were loaded on the embedded
monitoring boards to perform detection (offline fashion, for the moment). Due
to the relatively simple topology of the autoencoder networks, even with the
limited computing capacity of the monitoring boards, the inference time (the
time required to process an example from the test set) was very short, around
0.011 seconds – for both node-specific and general models. This is a negligible
time w.r.t. the sampling rate of 5 (or 10) seconds.

Table 1 reports the results of the experiments comparing node-specific and
general models. The first column from the left indicates the node and the
second column (anomaly type) specifies the kind of anomaly injected in the
node. We selected a subset of all nodes that were injected with anomalies
in order create a more compact view – the remaining tested nodes (davide4,
davide5, davide29, davide30, davide31, davide32, davide33, davide34, davide35,
davide36 ) presented similar numbers; the final row, Average, represents the
average values computed on all nodes used for the experiments. The rest of
the table reports the F-scores for all classes (F-scores N, A, and W correspond,
respectively, to the F-score computed on the normal test set, the anomaly test
set and the weighted F-score) and for both the dedicated models (from the
third column to the fifth one) and the general model (the last three columns).
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Node Anomaly Type
Dedicated Models General Model

F-Score N F-Score A F-Score W F-Score N F-Score A F-Score W

davide10 ondemand 0.965 0.883 0.946 0.923 0.621 0.853
davide11 ondemand 0.973 0.937 0.963 0.999 0.487 0.869
davide12 ondemand 0.704 0.774 0.747 0.893 0.835 0.874
davide13 ondemand 0.956 0.962 0.959 0.97 0.881 0.934
davide16 powersave 0.994 0.97 0.99 0.999 0.82 0.97
davide17 powersave 0.994 0.977 0.991 0.999 0.879 0.987
davide18 powersave 0.994 0.973 0.99 0.984 0.838 0.957
davide19 powersave 0.978 0.999 0.99 0.999 0.926 0.999
davide26 performance 0.904 0.708 0.846 0.949 0.558 0.828
davide27 performance 0.925 0.842 0.9 0.986 0.782 0.923
davide28 performance 0.92 0.822 0.892 0.996 0.72 0.914
davide29 performance 0.99 0.863 0.981 0.995 0.574 0.963
davide42 powersave 0.993 0.983 0.99 0.99 0.853 0.952
davide45 powersave 0.956 0.962 0.99 0.979 0.823 0.943

Average NA 0.943 0.898 0.935 0.956 0.726 0.919

Table 1: Comparison between node-dedicated and general models

The values reported are the average obtained after repeating the training and
test phases for 10 times. The first thing to be noticed, is that, on average, the
accuracy is pretty good, as highlighted by the weighted F-scores higher than 0.91
(that corresponds to an accuracy higher than 90%). In general, the F-scores for
the anomaly class are significantly smaller than the normal class; this is due to
the relatively higher number of false negatives compared to the number of false
positives. If the system administrators decide that is more important not to
miss any anomaly and hence to increases the accuracy detection of anomalous
examples, a simple but effective strategy is to lower the threshold used for the
classification (Theta, modulated by varying n).

As a second observation, different accuracies are generally obtained with
nodes with different types of injected anomalies. Nodes whose frequency gov-
ernor policy was changed to powersave have an average weighted F-score equal
to 0.99 with dedicated models and 0.968 with the general model; the average
values for nodes whose policy was changed to performance are 0.905 and 0.907,
and finally for those nodes with ondemand anomalies the average values are
0.904 and 0.883. It appears that all models are better at detecting anomalies of
the powersave type; this can be explained by thinking at the peculiar character-
istics of a supercomputing cluster. The vast majority of the software running
in HPC systems are scientific applications and numerical computations; these
are generally very CPU-intensive applications that run for most of their dura-
tion at the highest possible frequency allowed by the clock of computing units.
Hence, the performance frequency governor policy resembles the normal opera-
tional behaviour of a supercomputer node, at least compared to the powersave
mode which decreases the frequency to the minimum allowed one. Similarly,
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setting the frequency governor to ondemand policy leads to a state that is not
too different from the normal one; clearly, non-negligible differences still remain
and that is the reason why anomalies are still detected. Finally, there is a very
moderate difference between the dedicated models and the general one. As one
could have expected, the node-specific models have a slightly higher accuracy,
with an average weighted F-score equal to 0.935 compared to 0.919, that is a
1.7% difference. In practical terms, this result suggests that the general model
can be adopted without losing too much accuracy, if the easier deployment is
to be preferred. It can be worth pointing out that while the time needed to
train the single general model is longer than the average training time of node
dedicated models (more or less eleven times longer), training all node-specific
models takes longer than training the general one.

5.5 Comparison with the state-of-the-art

As discussed in Section 2, the vast majority of techniques for anomaly detection
in HPC systems and data centers belongs to the supervised methodology. For
instance, the current state-of-the-art (to the best of our knowledge) is the ap-
proach proposed by Tuncer et al.[68]. The approach falls in an entirely different
category, hence a direct comparison with this technique is not fair. Nevertheless,
applying Tuncer’s technique to the problem considered in in this paper shows
that the proposed method has an accuracy very close to the current state-of-the-
art, without having all the limitations related to the supervised training. The
average accuracy over all nodes with the supervised method is very high, with
an average weighted F-score equal to 0.99. For a more comprehensive compari-
son, a subset of techniques for semi-supervised anomaly detection found in the
literature has been selected. The experimental setup is the same used for the
autoencoder-based model: during the training phase the algorithms from the
literature are taught to recognize the normal behaviour of a HPC cluster node
(using the training set DSTr); afterwards, they were fed with previously unseen
input, both normal and anomalous (the test sets DSTe

N and DSTe
A ), and the

detection accuracy was computed. For every algorithm a dedicated approach
was chosen (a distinct model for each node.

In general, semi-supervised methods for anomaly detection identify anoma-
lies by exploiting their dissimilarity from the normal state. They are based on
learning the normal behaviour of the target system, via ML or statistical mod-
els; faults are then detected because they present a different signature w.r.t.
the learnt one. The most common fall in one the following categories: prob-
ability density estimation [73, 45, 48, 71], one-class Support Vector Machine
(SVM)[60, 36], elliptical envelope [56, 39], Isolation Forest[66, 30] and neigh-
bourhood identification [44, 65]. Since there is no clear technique outperforming
all the others[50, 38] , a subset of algorithms from the literature were imple-
mented. All the alternative algorithms were implemented in Python, using the
ML and statistics module scikit-learn[55]; all non-specified parameters were set
to their default values, as defined in the library.

Table 2 reports the weighted F-scores for the algorithms from the literature
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(columns from 2 to 9) and the weighted F-scores obtained with the proposed
autoencoder-based method (column 10, node-specific approach, and 11, general
model). Each row of the table corresponds to a node (again a subset of all nodes
where anomalies were injected). F-scores for the Tuncer’s method are not re-
ported because its accuracy is extremely high for all nodes, ranging from 0.990
to 0.999. From left to right the algorithms are the following. Gaussian Mixture
Models (GMM in the table) are probabilistic models that assume that all the
data points are generated from a mixture of a finite number of Gaussian distri-
butions with unknown parameters. During the training phase the parameters
can be estimated from a training data set using the Expectation-Maximization
(EM) algorithm, hence modeling the structure of the normal state of the su-
percomputer nodes. Once trained, new data can be fed as input to the GMM
and it will generate a corresponding probability; a high value indicates that the
new example has the same distribution seen during the training (normal state),
otherwise it is probably an anomaly. GMM was implemented with four differ-
ent types of covariance matrices: diagonal (Diag in the table), spherical Spher),
tied and full.

The Elliptical Envelope (EE ) algorithm models the data as a high dimen-
sional Gaussian distribution with possible covariances between feature dimen-
sions. It attempts to find an boundary ellipse that contains most of the data.
Any data outside of the ellipse is classified as anomalous. The Isolation For-
est (IF ) algorithm is based on random forests; it is particularly effective for
high-dimensional data sets. The ensemble (a forest of decision trees) “isolates”
observations by randomly selecting a feature and then a split value between the
maximum and minimum values of the feature. The number of split required to
isolate a sample is equivalent to the path length from the root node to the termi-
nating node. This length (average over a forest of trees) measures the normality
of an example. Random partitioning produces shorter paths for anomalies.
Hence examples that, once fed to the forest, generate shorter path length are
highly likely to be anomalies. A one-class Support Vector Machine (SVM ) can
be used to detect outliers in semi-supervised fashion. A SVM model is trained
to learn a closed frontier around the training examples, which correspond to the
normal state. Then new examples are classified as normal if they lay within the
frontier-delimited subspace, anomalous (different from the original distribution)
otherwise. Two different kinds of kernels were used, polynomial of third degree
(Poly) and Radial Basis Function (RBF ).

The last two rows correspond, respectively, to the average value computed
over all nodes and the optimality gap, that is the distance (expressed as percent-
age) from the weighted F-score obtained with the supervised approach (optimal
solution); the optimality gap is computed only with the average weighted F-
scores. It is very easy to see that the autoencoder-based models (both the
node-specific ones and the general model) significantly outperform the methods
from the literature, since all algorithms have accuracies lower than 90%, and
the highest weighted F-score is reached by Isolation Forest with 0.821 – this is a
value 10.6% lower than the general model and 12.2% lower than the average re-
sult for node-specific models. Furthermore, the optimality gap is much smaller
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Node
GMM

EE IF
SVM AE

Diag Spher Tied Full Poly RBF Dedicated General

davide10 0.916 0.927 0.924 0.922 0.911 0.941 0.262 0.811 0.946 0.853
davide11 0.91 0.909 0.921 0.923 0.801 0.946 0.237 0.65 0.963 0.869
davide12 0.864 0.865 0.887 0.191 0.154 0.278 0.216 0.608 0.747 0.874
davide13 0.897 0.876 0.892 0.904 0.434 0.953 0.16 0.66 0.959 0.934
davide16 0.854 0.515 0.855 0.884 0.915 0.923 0.606 0.926 0.99 0.97
davide17 0.272 0.267 0.269 0.509 0.914 0.929 0.613 0.931 0.991 0.987
davide18 0.882 0.858 0.888 0.875 0.715 0.923 0.614 0.933 0.99 0.957
davide19 0.887 0.523 0.524 0.909 0.762 0.919 0.624 0.941 0.99 0.999
davide26 0.893 0.895 0.894 0.895 0.376 0.701 0.218 0.609 0.846 0.828
davide27 0.165 0.162 0.161 0.922 0.825 0.652 0.389 0.656 0.9 0.923
davide28 0.926 0.756 0.788 0.939 0.773 0.912 0.406 0.635 0.892 0.914
davide29 0.843 0.841 0.799 0.842 0.882 0.89 0.455 0.92 0.981 0.963
davide42 0.722 0.356 0.718 0.295 0.793 0.853 0.727 0.935 0.99 0.952
davide45 0.394 0.561 0.518 0.752 0.627 0.67 0.661 0.933 0.99 0.943

Average 0.745 0.665 0.717 0.769 0.706 0.821 0.442 0.796 0.935 0.919
Opt. gap (%) 24.8 32.8 27.6 22.3 28.7 17.1 55.3 19.6 5.6 7.2

Table 2: Comparison with state-of-the-art

for the proposed methods which, on average, have a F-score just 6.2% smaller
than the supervised method, while the average distance for the literature meth-
ods is 28.5% and the best gap is obtained with Isolation Forest and is equal to
17.1% – more than twice the optimality gap with the autoencoder-based general
model.

5.6 Data Set Size Impact

Finally, this section analyses the effect of the training set size on the anomaly
detection accuracy. This is a very important aspect since it could be costly
to gather enough data describing the normal state of a supercomputer. To be
precise, the issue is not obtaining large amount of data but rather to be sure that
in a given period no faults or anomalous conditions happened. This analysis
was performed by varying the size of training set; in practice the size of the
original training set was reduced by drawing random subsets with smaller sizes.
Figure 5 shows the impact of the size of the training set on the accuracy of
the detection (considering only node-specific models); on the x-axis there is the
size of the training set while the y-axis reports the weighted F-score obtained
with the model trained with the corresponding training set size – the size is
measured as the number of examples in the data set (i.e. the number of data
points collected by the monitoring infrastructure in the selected period). Each
dashed line represents a node; the black solid line is the average computed
over all nodes that were injected with anomalies. The original training set size
corresponds to roughly 12k examples (or around 8 weeks of monitoring).
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Figure 5: Training set size impact on the anomaly detection accuracy

As seen in the previous section, the results differ significantly for different
nodes; nodes with anomalies of powersave type (such as davide17 and davide45 )
have higher accuracies than nodes with performance or ondemand frequency
governors (i.e. node davide26, light violet line, or davide11, light blue line).
For certain nodes, a larger number of examples is needed to reach good level of
accuracies – let assume that 90% is a good level of accuracy w.r.t. the state-
of-the-art (see Sec. 5.5). However, looking at the average value over all nodes
(black solid line), F-scores higher than 0.9 are reached with relatively small
data set size, around 500 examples, which correspond to about 42 hours of
continuous monitoring and gathering of data. With more normal training data
higher accuracies can be obtained, for example a data set size of 1k samples
(around 3 and a half days) corresponds to an average F-score equal to 0.938, a
very accurate detection rate.

6 Conclusion

This paper presented an approach to solve the problem of automated anomaly
detection in High Performance Computing systems. This is a very complex
task with high relevance in real-world supercomputers, since nowadays the vast
majority of anomaly and fault diagnosis is performed by system administrators.
The proposed approach belongs to the semi-supervised Machine Learning field,
in contrast with most of the state-of-the-art and techniques from the literature
that rely on supervised scheme. The latter methodology is very common but
not easily employed in the supercomputing setting, where it is not easy to find
or to build labeled and unbiased data sets to be used for training.

The proposed approach overcomes this limitation as it focuses on learning
only the behaviour of a HPC cluster in its normal state, thus requiring only
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to identify and monitor a limited period of time when the supercomputer was
operating without faults. For this reason, a high-accuracy detection method
was developed and applied to a HPC machine in production. Two two different
kinds of models were considered, one where each cluster node has its own specific
autoencoder-based model and one where a single model is applied to all nodes.
The former models have higher accuracy while the general one is more easily
deployable. In order to have good accuracy on most of the HPC cluster nodes,
four days of monitored data are sufficient.

The proposed method was compared with other algorithms coming from
the semi-supervised area (never tested before on the HPC settings) and the re-
sults show that the autoencoder-based approach significantly outperforms them,
with an improvement in accuracy as high as 12%. A comparison among all semi-
supervised techniques (including the approach described in this paper) and the
best current algorithm for HPC anomaly detection was carried out. The com-
parison is based on an unfavorable setting for semi-supervised methods, but
nevertheless experimental results show that the autoencoder model has an ac-
curacy very similar to the state-of-the-art supervised techniques, with a decrease
of only 5.6%, while for the rest of semi-supervised methods there is a perfor-
mance decrease of at least 17% (and usually much worse).
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