
01 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Enrico Gallinucci, M.G. (2019). Approximate OLAP of Document-Oriented Databases: a Variety-Aware
Approach. INFORMATION SYSTEMS, 85, 114-130 [10.1016/j.is.2019.02.004].

Published Version:

Approximate OLAP of Document-Oriented Databases: a Variety-Aware Approach

Published:
DOI: http://doi.org/10.1016/j.is.2019.02.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/691644 since: 2019-07-15

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.is.2019.02.004
https://hdl.handle.net/11585/691644

This is the final peer-reviewed accepted manuscript of: Enrico Gallinucci, Matteo Golfarelli,

Stefano Rizzi, Approximate OLAP of document-oriented databases: A variety-aware approach,

Information Systems, Volume 85, 2019, Pages 114-130, ISSN 0306-4379

The final published version is available online at: https://doi.org/10.1016/j.is.2019.02.004

© 2019 This manuscript version is made available under the Creative Commons Attribution-
NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.is.2019.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Recent years have witnessed an erosion of the relational DBMS predom-

inance to the benefit of DBMSs based on alternative representation models

(e.g., document-oriented and graph-based) which adopt a schemaless represen-

tation for data. Schemaless databases are preferred to relational ones for storing

heterogeneous data with variable schemas and structural forms; typical schema

variants within a collection consist in missing or additional fields, in different

names or types for an field, and in different structures for instances [1]. The ab-

sence of a unique schema grants flexibility to operational applications but adds

complexity to analytical applications, in which a single analysis often involves

large sets of data with different schemas. Dealing with this complexity while

adopting a classical data warehouse design approach would require a notable

effort to understand the rules that drove the use of alternative schemas, plus an

integration activity to identify a common schema to be adopted for analysis —

which is quite hard when no documentation is available. Furthermore, since new

schema variations are often made, a continuous evolution of both ETL process

and cube schemas would be needed.

In this paper we propose an original approach to multidimensional query-

ing and OLAP on schemaless sources, in particular on collections stored in

document-oriented databases (DODs) such as MongoDB1. The basic idea is to

stop fighting against data heterogeneity and schema variety, and welcome it as

an inherent source of information wealth in schemaless sources. So, instead of

trying to hide this variety, we show it to users (basically, data scientist and data

enthusiasts) making them aware of its impact. Specifically, the distinguishing

features of our approach are as follows.

• To the best of our knowledge, this is the first approach to propose a

form of approximated OLAP analyses on document-oriented databases

1The concept of document in the context of DODs should not be confused with the one
considered in Information Retrieval, where a document is basically a collection of keywords
and is organized into chapters, sections, paragraphs, etc.

2

that embraces and exploits the inherent variety of documents.

• Multidimensional querying and OLAP are carried out directly on the data

source, without materializing any cube or data warehouse.

• We adopt an inclusive solution to integration, i.e., the user can include

a concept in a query even if it is present in a subset of documents only.

We cover both inter-schema and intra-schema variety, specifically we cope

with missing fields, different levels of detail in instances, different field

naming.

• Our approach to reformulation of multidimensional queries on heteroge-

neous documents grounds on a formal approach [2], which ensures its

correctness and completeness.

• We propose a set of indicators to make the user aware of the quality of

the query result.

This paper extends our previous contribution [3], mainly by providing the full

formalization of the approach, a deeper discussion of the query indicators, and

an extensive experimental evaluation.

Remarkably, this is not yet another paper on multidimensional modeling

from non-traditional data sources. Indeed, our goal is not to design a single

“sharp” schema where source fields are either included or absent, but rather to

enable an OLAP experience on some sort of “soft” schema where each source

field is present to some extent.

The paper outline is as follows. After giving an overview of our approach in

Section 2, in Sections 3, 4, 5, and 6 we describe its four stages, namely, schema

extraction, schema integration, FD enrichment, and querying. Then, in Section

7 we provide a performance evaluation of the developed prototype, while the

related literature is discussed in Section 8. Finally, in Section 9 we draw the

conclusions.

3

Collection

Schema extraction

Schema integration

FD enrichment

Querying

Local schemas

Global schema, Mappings

Dependency graph

data

metadata

control

LEGEND

Figure 1: Approach overview

2. Approach overview

Figure 1 gives an overview of the approach: in blue the different stages of

the approach, on the right the metadata produced/consumed by each stage.

Remarkably, all schema-related concepts are stored as metadata, so no trans-

formation has to be done on source data. User interaction is required at most

stages. Although the picture suggests a sequential execution of the stages, it

simply outlines the ordering for the first iteration. In the scenario that we en-

vision, the user starts by analyzing the first results provided by the system,

then iteratively injects additional knowledge into the different stages to refine

the metadata and improve the querying effectiveness. We now provide a short

description of each stage; a deeper discussion will be provided in the following

sections.

Schema extraction (Section 3). The goal of this stage is to identify the

set of distinct local schemas that occur inside a collection of documents. To

this end we provide a tree-like definition for schemas which models arrays by

considering the union of the schemas of their elements. This is a completely

automatic stage which requires no interaction with the user.

Schema integration (Section 4). At this stage we rely on inter-schema

mappings and schema integration techniques to determine a (tree-like) global

schema that gives the user a single and comprehensive description of the con-

tents of the collection. In principle, this stage could be completely automated.

In practice, the best results can be obtained through a semi-automatic ap-

4

proach, that allows users to manually validate/refine the mappings proposed by

the system.

FD enrichment (Section 5). Traditional OLAP analyses are carried out

on multidimensional cubes. To enable the OLAP experience in our setting,

a multidimensional representation of the collection must be derived from the

global schema. In particular, we introduce the notion of dependency graph, i.e.,

a graph that provides a multidimensional view of the global schema in terms of

the functional dependencies (FDs) between its fields. Some FDs can be inferred

from the structure of the schema, others by analyzing data; given the expected

schema variety, we specifically look for approximate FDs.

Querying (Section 6). The last stage consists in delivering the OLAP ex-

perience to the user by enabling the formulation of multidimensional queries on

the dependency graph and their execution on the collection. First of all, each

formulated query is validated against the requirements of well-formedness pro-

posed in the literature [4]. Then, the query is translated to the query language

of the DOD and reformulated into multiple queries, one for each local schema in

the collection; the results presented to the user are obtained by merging the re-

sults of the single local queries. To make the user aware of the impact of schema

variety, we show her a set of indicators describing the quality and reliability of

the query result.

The motivation example that we use across the paper is based on a real-world

collection of workout sessions, obtained from a worldwide company selling fitness

equipment. Figure 2 shows a sample document in the collection, organized

according to three nesting levels:

1. The first level contains information about the user, including the facility in

which the session took place, the date, and the total duration in minutes.

2. The Exercises array contains an object for every exercise carried out during

the session, with information on the type of exercise, and the total calories.

3. The Sets array contains an object for every set that the exercise was split

into. For example, the “leg press” exercise has been done in multiple sets,

5

[{ "_id" : ObjectId("54a4332f44cfc02424f961d4"),
"User" :
{ "FullName" : ”John Smith",

"Age" : 42 },
"StartedOn" : ISODate("2017-06-15T10:20:44.000Z"),
"Facility" :
{ "Name" : "PureGym Piccadilly",

"Chain" : "PureGym" },
"SessionType" : "RunningProgram",
"DurationMins": 90,
"Exercises" :
[{ "Type" : "Leg press",

"ExCalories" : 28,
"Sets" :
[{ "Reps" : 14,

"Weight" : 60 },
. . .

] },
{ "Type" : "Tapis roulant" },
. . .

]
} ,
. . .

]

Figure 2: An excerpt of the WorkoutSession collection

the first of which comprises 14 repetitions with a weight of 60 kilograms,

for a total of 28 calories.

3. Schema extraction

The goal of this stage is to introduce a notion of (local) schema for a docu-

ment, to be used in the integration stage to determine a (global) schema for a

collection and then, in the FD enrichment stage, to derive an OLAP-compliant

representation of the collection itself.

The notion of a document is the central concept of a DOD, and it encapsu-

lates and encodes its data in some standard format. The most widely adopted

format is currently JSON, which we will use as a reference in this work.

Definition 1 (Document and Collection). A document d is a JSON ob-

ject. An object is formed by a set of key/value pairs (aka fields); a key is

string, while a value can be either a primitive value (i.e, a number, a string, or

a Boolean), an array of values, an object, or null. A collection D is an array of

documents.

6

Example 1. Figure 2 shows a document excerpted from the WorkoutSession

collection; it contains numbers (e.g., Age), strings (e.g., Chain), objects (e.g.,

User), and arrays (e.g., Exercises). Conceptually, a session is done by a user at

a facility; it includes a list of exercises, each possibly comprising several sets. �

Since there is no explicit representation of schemas in documents, multiple

definitions of schema are possible for the schemas of collections and documents

—with different levels of conciseness and precision. The main difference in these

definitions lies in how they cope with inter-document variety and intra-document

variety.

• Inter-document variety impacts on the definition of the schema for a col-

lection, as it concerns the presence of documents with different fields.

This issue is usually dealt with in one of two ways: either by defining

the schema of the collection as the union/intersection [5, 6] of the most

frequent fields, or by keeping track of every different schema [7]. Our work

mixes the above mentioned approaches in that it builds a global schema

starting from local schemas.

• Intra-document variety impacts on the definition of the schema for a doc-

ument, and is mainly related to the presence in a document of a hetero-

geneous array. For instance, an array of objects can mix objects with

different fields (e.g., the first objects of the Exercises array in Figure 2

contains fields that are missing from the second one). In this work we

adopt a simple representation that, like in [5, 8], considers the union of

the values contained in the array.

We start by giving a “structural” definition of a schema as a tree, then we

reuse it to define the schema of a document and, in Section 4, the schema of a

collection.

Definition 2 (Schema). A schema is a directed tree s = (F,A) with root r ∈

F , where F is a set of fields and A is a set of arcs representing the relationships

between arrays and the contained fields. In particular,

7

1. F = F arr ∪ F prim, F arr is a set of array fields (including r), and F prim

is a set of primitive fields;

2. A includes arcs from fields in F arr to fields in F arr ∪ F prim.

Each field f ∈ F has a name, key(f), a unique pathname (obtained by concate-

nating the names of the fields along the path from r to f , with the exclusion of

r), and a type, type(f) (type(f) ∈ {number, string,Boolean} for all f ∈ F prim,

type(f) = array for all f ∈ F arr). Given field f 6= r, we denote with arr(f) the

array a ∈ F arr such that (a, f) ∈ A. Also, given two arrays ai and aj we say

that ai . aj if ai is nested in aj .

To define the schema of a specific document we need to add identifiers to

arrays. We denote with id(a) the primitive field that identifies an object within

array a. Documents always contain an identifier, id(r) = id. Conversely, array

objects may not contain such a field, but still they can be univocally identified

by their positional index within the array. Therefore, given array a, id(a) can be

recursively defined as the concatenation of id(arr(a)) and the positional index

within a; it is key(id(a)) = id and type(id(a)) = string.

Definition 3 (Schema of a Document). Given document d ∈ D, the schema

of d is the schema s(d) = (F arr ∪ F prim, A) such that

1. F arr includes a field for each array in d, labelled with the corresponding

key and type, plus a root r labelled with the name of D.

2. F prim includes (i) a field for each primitive in d, and (ii) a field for each

id(a) with a ∈ F arr, f 6= r; every field is labelled with its corresponding

key and type (keys of primitives within an object field are “flattened”, i.e.,

prefixed with the object’s key);

3. A includes (i) an arc (r, f) for each field f such that key(f) appears as a

key in the root level of d, and (ii) an arc (a, f) iff key(f) appears as a key

in an object of array a.

8

Exercises_id
Type
ExCalories

_id
User.FullName

User.Age
StartedOn
Facility.Name
Facility.Chain

SessionType
DurationMins

Sets_id

Reps
Weight

Exercises_id
Type
ExCalories

_id

FirstName
LastName

Date
Gym.Name

Gym.City
Gym.Country
SessionType
DurationSecs

Series_id
ExType
Reps
Weight
SeriesCalories

_id
User.FullName
User.FirstName
User.LastName
User.Age
StartedOn
Facility.Name
Facility.Chain
Facility.City
Facility.Country
SessionType
DurationMins

Sets_id

Reps
Weight
SetCalories

WS

Sets

Exercises

WS

Series

WS

Sets

Exercises

s1 g(D) s2

Figure 3: The schema of the JSON document in Figure 2 (s1), another schema of the same
collection WS (s2), and the global schema (g(D))

Example 2. Figure 3 shows the schema s1 of the document represented in

Figure 2, part of the WorkoutSession collection (from now on, abbreviated in

WS). Each array is represented as a box, with its child primitives listed be-

low (numeric primitives are in italics). Object fields are prefixed with the ob-

ject key (e.g., Facility.Chain). The vertical lines between boxes represent inter-

array arcs, with the root WS on top. It is arr(Exercises.Type) = Exercises and

id(Exercises) = Exercises. id, while Exercises.Sets . Exercises .WS. �

Given collection D, we denote with S(D) the set of distinct schemas of

the documents in D (where two fields in the schemas of two documents are

considered equal if they have the same pathname).

S(D) =
⋃
d∈D

s(d)

Given s ∈ S(D), we denote with Ds the set of documents in D such that

9

s(d) = s.

4. Schema integration

The goal of this stage is to integrate the distinct, local schemas extracted

from D to obtain a single and comprehensive view of the collection, i.e., a global

schema, and its mappings with each local schema.

4.1. Mappings

A mapping is defined as follows:

Definition 4 (Mapping). Given two schemas si and sj, a mapping from si

to sj can be either

• an array mapping with form 〈a, a′〉, where a ∈ F arri and a′ ∈ F arrj ;

• a primitive mapping with form 〈P, P ′, φ〉, where P ⊆ F primi , P ′ ⊆ F primj ,

and φ is a transcoding function, φ : Dom(P)→ Dom(P ′).

We emphasize that this definition supports many-to-many mappings between

primitive fields.

The definition of the global schema for a collection is based on the mappings

determined.

Definition 5 (Global Schema). Given collection D and the corresponding

set of schemas S(D) = {s1, . . . , sn}, the global schema of D is a schema

g(D) = (F,A) where

1. for every si ∈ S(D) there is a mapping 〈ri, r〉 from the root of si to the

root of g(D);

2. every field f in each si is involved in at least one mapping to the fields of

g(D);

3. every field f in g(D) is involved in at least one mapping from some si;

10

4. A includes an arc (f, f ′) only if there is an arc (fi, f
′
i) in a schema si such

that there is a mapping from fi to f and one from f ′i to f ′.

Note that, since g(D) is a tree, it must include exactly one path from the root

to each other node, which excludes “dangling” fields and transitive arcs.

Example 3. Figure 3 shows two sample schemas from the WS collection (s1

and s2) and the corresponding global schema g(D); mappings are represented

with dotted lines. An example of array mapping from s2 to global schema g(D)

is

〈Series,Exercises.Sets〉

Examples of primitive mappings are

〈{Date}, {StartedOn}, φ1〉

〈{FirstName, LastName}, {User.FullName}, φ2〉

〈{Series.ExType}, {Exercise.Type}, φ1〉

where φ1 is the identity function while φ2 is a function that concatenates two

strings. �

A transcoding function transforms values of a set of fields into values of

another set of fields; it is needed for each primitive mapping to enable query

reformulation in presence of selection predicates as well as to enable the results

obtained from all documents to be integrated (see Section 6.2). On the other

hand, array mappings are not associated to a transcoding function because

arrays are just containers and do not have values themselves.

Due to the already mentioned inter-document variety, a field f of the global

schema may not be available in every local schema (e.g., Facility.Chain is absent

in s2 in Figure 3); therefore we need a measure of the support of f with respect

to the different schemas in collection D. Intuitively, given the nested structure

of documents, the support of f could be defined as the percentage of times that

f occurs among the objects of arr(f). However, due to the fact that f may

11

occur at different depths in different documents (e.g., if f = Exercises.ExCalories

in the global schema of Figure 3, arr(f) is Exercises in s1 and Exercises.Sets in

s2), this measure must be computed locally to each schema and then aggregated

to get a global measure. Thus, we define the global support of f as the weighted

average of the local supports calculated on the distinct schemas.

Definition 6 (Local Support of a Field). Given a document schema s =

(F,A), the local support of a field f ∈ F is recursively defined as:

locSupp(f, s) =

1, if f ≡ r∑
s∈Ds perc(f) · locSupp(arr(f), s), otherwise

where perc(f) is the percentage of objects of arr(f) which include f .

Note that the support of f is weighted on the support of its array arr(f); this

is because, for instance, f may occur in every object of arr(f) but arr(f) may be

missing for some object of arr(arr(f)). As a result, it is always locSupp(f, s) ≤

locSupp(arr(f), s).

Definition 7 (Global Support of a Field). Given collection D and the set

of distinct schemas S(D), the global support of a field f ∈ F is:

gloSupp(f) =
∑

s∈S(D)

locSupp(f, s) · |D
s|
|D|

where |Ds| is the number of documents with schema s and |D| is the overall

number of documents.

Example 4. In our working example, let the WS collection have 100 documents

(i.e., |D| = 100) evenly distributed between s1 and s2 (i.e., |Ds1 | = |Ds2 | =

50). Let f = Facility.Name occur 40 times in s1 and 20 times in s2; then,

locSupp(f, s1) = 40
50 ∗ 1 = 0.8, locSupp(f, s2) = 20

50 ∗ 1 = 0.4 and gloSupp(f) =

0.8 ∗ 0.5 + 0.4 ∗ 0.5 = 0.6. �

12

Exercises_id
Type
ExCalories

_id
User.FullName

User.Age
StartedOn

Facility.Name

Facility.Chain

SessionType
DurationMins

Sets_id
Reps
Weight

Exercises_id
Type
ExCalories

_id

FirstName
LastName

Date

Gym.Name

Gym.City
Gym.Country
SessionType

DurationSecs

_id
User.FullName
User.FirstName
User.LastName
User.Age
StartedOn
Date
Facility.Name
Gym.Name
Facility.Chain
Gym.City
Gym.Country
SessionType
DurationMins
DurationSecs

Sets_id
Reps
Weight

WS

Sets

Exercises

WS WS

Sets

Exercises

Series_id
ExType
Reps
Weight
SeriesCalories

Series_id
ExType
Reps
Weight
SeriesCalories

Series Series

s1 g(D) s2

Figure 4: The schema of the JSON document in Figure 2 (s1), another schema of the same
collection WS (s2), and the preliminary global schema (g(D))

4.2. Integration method

Several techniques have been proposed in the literature for the integration

of different schemas [9], which could be reused in our scenario. For instance, the

adoption of a ladder integration strategy would allow to build the global schema

by (i) taking one local schema as the global schema; (ii) iteratively taking each

other local schema, finding its mappings onto the global schema, and updating

the global schema accordingly. However, some mappings may be missed by

adopting a purely incremental strategy (unless a second iteration on the local

schemas is done).

The approach we follow is made of two steps. The first step is automatic and

consists in defining a preliminary global schema as the simple name-based union

13

of all local schemas, according to a one-shot strategy [9] and similarly to [10].

This gives users an overall understanding of the schemas in the collection and

allows to effortlessly create a first set of trivial mappings. Consistently with Sec-

tion 3, to determine the union we consider that fields in different local schemas

are equal if they share the same pathname. Thus, we start from a global schema

g(D) = (F,A) where F is the union of the fields for every s ∈ S(D); arcs and

mappings are defined accordingly as of Definition 5, with all transcodings for

primitive mappings set to the identity function. Figure 4 shows the preliminary

global schema for our working example; here, for instance, primitive field Ses-

sionType has the same pathname in both local schemas s1 and s2, so it appears

only once in the global schema.

In the second step, the preliminary global schema is refined by merging

matching (sets of) fields in the global schema. Existing tools (e.g., Coma 3.0

[11]) can be used to automatically find a list of possible matches between arrays

and primitives (together with a measure of similarity) and show them to the

user; then she will decide which of those should be kept. This way, the user can

also define additional mappings that the automated procedure failed to find. To

efficiently provide the list of possible matches, we restrict the search space by

evaluating a match between two fields only if they are mutually exclusive within

the documents. Specifically, the match between two array fields a, a′ ∈ g(D) is

evaluated only if there is no local schema in S(D) where a and a′ coexist; the

same for two sets of primitive fields P and P ′. The intuition behind this choice

is that, if two fields appear together in the same local schema, then they most

probably express two different kinds of information.

Merging two matching sets of primitive fields P and P ′ in g(D) requires

some mappings to be replaced. For simplicity, consider singleton sets: P = {f},

P ′ = {f ′}. Only one of the two matching fields, say f , is kept in g(D); f ′ is

dropped from g(D) and all mappings 〈{f ′i}, f ′, φ′〉 (where f ′i is a field in local

schema si) are replaced with 〈{f ′i}, f, φ′′〉. Similarly for non-singleton sets. For

instance, consider FirstName and LastName, which the user matches to FullName;

this requires dropping both FirstName and LastName and replacing mappings

14

〈{FirstName}, {FirstName}, φ1〉 and 〈{LastName}, {LastName}, φ1〉 with a single

mapping 〈{FirstName, LastName}, {FullName}, φ2〉. Similarly, merging two ar-

ray fields recursively impacts the children of the array that is removed from the

global schema.

5. FD enrichment

The goal of this stage is to propose a multidimensional view of the global

schema to enable OLAP analyses. The main informative gap to be filled to this

end is the identification of hierarchies, which in turn relies on the identification

of FDs between fields in the global schema.

While in relational databases FDs are represented at the schema level by

means of primary and referential integrity constraints, the same is not true in

DODs. Yet, identifiers are present in DODs: each collection has its (explicit)

id field and, as discussed in Section 3, every nested object has its own (implicit)

identifier (i.e., id(a) with a ∈ F arr). The presence of these identifiers implies

the existence of some exact FDs, that we call intensional as they can be derived

from the global schema without looking at the data. In particular, given global

schema g(D) = (F arr ∪ F prim, A) and array a ∈ F arr, we can infer that:

• id(a) → f for every f ∈ F prim such that arr(f) = a, i.e., the identifier

of a determines the value of every primitive in a (e.g., id → SessionType

and Exercises.Exercises id→ Exercises.Type);

• if a 6= r, then id(a)→ id(arr(a)) —i.e., the identifier of a determines the

identifier of arr(a) (e.g., Exercises.Exercises id→ id and Exercises.Sets.Sets id→

Exercises.Exercises id); this is trivial, since id(arr(a)) is part of id(a).

In practice, additional FDs can exist between primitive nodes, though they

cannot be inferred from the schema; so, they can only be found by querying the

data. More precisely, since DODs may contain incomplete and faulty data, we

have to look for approximate FDs (AFDs [12]), i.e., FDs that “mostly” hold on

data —as done for instance in [13, 14, 15].

15

Definition 8 (Approximate Functional Dependency). Given two fields f

and f ′, we say AFD γ = f f ′ holds if 1− acc(γ) ≤ ε, where acc(γ) = |f |
|(f,f ′)|

denotes the ratio between the number of unique values of f and the number of

unique values of (f, f ′), and ε is a user-defined tolerance. It is acc(γ) ∈ (0..1].

As a practical guideline to set the tolerance ε, we suggest that it is not kept

too strict. Of course a loose tolerance will lead to detecting several AFDs,

some of which will probably be actually not true in the application domain.

However, later in this section, we will explain how AFD detection must be

followed by a user-driven step of editing aimed at removing unwanted AFDs.

Besides, our paradigm for approximate OLAP is based on set of indicators (see

Section 6.5) that enable users to evaluate in advance the quality of a query

before its execution.

Example 5. Consider fields Facility.Name and Facility.Chain, with cardinalities

|Facility.Name| = 2134, |Facility.Chain| = 103, and |(Facility.Name, Facility.Chain)| =

2174. If ε = 0.05, it is 1 − 2134
2174 = 0.02 ≤ ε, thus AFD Facility.Name

Facility.Chain holds.

Based on Definition 8, checking the existence of AFD f f ′ requires to

compare the cardinalities of f and of (f, f ′), which in turns requires two COUNT

DISTINCT queries to be executed. To detect AFDs, some approaches that were

recently devised in the literature (e.g., [14] and [15]) can be reused; interestingly,

in [15] the number of queries to be made for AFD detection is effectively reduced

thanks to the intensional FDs provided by the global schema.

The procedure we adopt to explore the space of all possible AFDs is sketched

in Algorithm 1; it is an adaptation of the well-known Tane algorithm [16] and it

builds on both [14] and [15] to take advantage of the rules proposed to prune the

search space. The goal is to minimize the number of COUNT DISTINCT queries

to execute, as accessing the data can be quite expensive —even considering that

queries must be reformulated from the global schema onto each local schema

due to inter-document variety (how this is done is discussed in Section 6.2).

16

Given the set of primitives F primg , the set of candidate AFDs f f ′, with

f, f ′ ∈ F primg , can be represented using an |F primg | × |F primg | matrix Z whose

rows and columns represent left- and right-hand sides of AFDs, respectively.

Given position i in Z, we will denote the corresponding primitive with fi; thus,

Z[i, j] corresponds to fi and fj and is set to true if fi fj is found to hold on

the stored data, to false otherwise.

A naive approach to fill Z would check each single cell (i.e., each possible

simple AFD) by querying the collection; actually, most queries can be avoided

by orderly exploring the cells of Z, as demonstrated in [14]. Thus, our explo-

ration strategy requires the rows and columns of Z to be ordered by descending

cardinality of the corresponding primitive. These cardinalities are calculated in

Lines 1–2 by calling the CountDistinct procedure (which issues the respective

query) on every primitive, while procedure Initialize (Line 3) creates the or-

dered matrix and initializes every cell to NULL. Then, the exploration strategy

iterates on the upper diagonal (Lines 4–5) to look for AFDs. The search space is

pruned by applying a set of rules; the actual check of AFDs is done in Lines 7–9

and 16–18 by calling CountDistinct on a couple of primitives and by checking

the inequality of Definition 8. The applied pruning rules are the following:

(a) Given two fields f and f ′, an exact FD from f to f ′ cannot hold if |f | < |f ′|.

Thus, if we were looking for exact FDs, we could safely set to false the cells

of Z below the diagonal, i.e., those for which |f | < |f ′| due to to rows and

columns ordering [14]. Conversely, when working with AFDs, we must allow

some tolerance on field cardinalities to accomodate possible errors on data.

Hence, we can safely avoid to measure |(f, f ′)| only if |f ||f ′| < 1− ε. This can

be easily verified by observing that |(f, f ′)| ≥ |f ′|, so |f |
|f ′| ≥

|f |
|(f,f ′)| . But

then, |f ||f ′| < 1−ε implies |f |
|(f,f ′)| < 1−ε, so f f ′ cannot hold. For instance,

setting ε = 0.03, an AFD from Ex.Type (which has 100 distinct values) to

Facility.Chain (103 distinct values) can exist since |100|
|103| = 0.9708 ≥ 1− 0.03.

Inverse AFDs (i.e., cells below the diagonal) are checked in Lines 13–14 and

15–18; notice that, in the first case, the check is inexpensive as it does not

17

Algorithm 1 AFD detection
Input g(D): a global schema; ε: a user-defined tolerance.
Output Z: an AFD matrix
1: for all i ∈ [1, |Fprim

g |] do . Compute field cardinalities

2: |fi| ← CountDistinct(fi)

3: Z ← Initialize
4: for all j ∈ [2, |Fprim

g |] do . Check the AFDs above the diagonal

5: for all i ∈ [j − 1, 1] do
6: if (Z[i, j] = NULL) ∧ ((arr(fi) = arr(fj) ∨ (arr(fi) . arr(fj))) then
7: |(fi, fj)| ← CountDistinct(fi, fj)

8: if (1− |fi|
|(fi,fj)|

≤ ε) then

9: Z[i, j]← TRUE . fi fj holds

10: if
|fi|

|(fi,fj)|
= 1 then . Apply transitivity if fi → fj

11: for all k ∈ [i− 1, 1] s.t. Z[k, i] = TRUE do
12: Z[k, j]← TRUE . fk fj holds

13: if (1−
|fj |

|(fi,fj)|
≤ ε) ∧ ((arr(fj) = arr(fi)) ∨ (arr(fj) . arr(fi))) then

14: Z[j, i]← TRUE . fj fi holds

15: else if (1−
|fj |
|fi|
≤ ε) ∧ ((arr(fj) = arr(fi)) ∨ (arr(fj) . arr(fi))) then

16: |(fi, fj)| ← CountDistinct(fi, fj) . fi fj has not been checked due to rule (b)

17: if (1−
|fj |

|(fi,fj)|
≤ ε) then

18: Z[j, i]← TRUE . fj fi holds

19: return Z

require any extra call to CountDistinct.

(b) AFD f f ′ may exist iff either arr(f) = arr(f ′) (i.e., in each document,

each value of f is associated to a single value of f ′) or arr(f) . arr(f ′) (i.e.,

many values of f are associated to a single value of f ′). If this is not the

case (either because arr(f ′) . arr(f) or because there is an array a such

that arr(f) . a and arr(f ′) . a), then each value of f is associated to many

values of f ′, making it impossible for f to functionally determine f ′. For

instance, given SessionType (whose array is WS) and Exercises.Type (whose

array is Exercises), an AFD can exist only from the latter to the former, not

vice versa. This rule is verified in Lines 6 and 13.

(c) Differently from exact FDs, error accumulation due to faulty instances

prevents from straightly applying transitivity in AFDs, so knowing that

f f ′ and f ′ f ′′ does not necessarily imply that f f ′′. Only in

case it is f f ′ and f ′ → f ′′, we can safely infer that f f ′′ (because

|(f, f ′′)| = |(f, f ′)| since every value in f ′ references only one value in f ′′).

Conversely, in the general case, though it is possible to derive an upper

18

bound of |(f, f ′′)| based on |f ′|, |(f, f ′)|, and |(f ′, f ′′)|, this bound is too

loose to be really effective in avoiding COUNT DISTINCT queries. For this

reason, in Lines 10–12 we only consider the case in which f → f ′.

Now let Γ be the set of (A)FD found for collection D, which includes both

the intensional (exact) FDs inferred from the global schema g(D) as described

above and the extensional (approximate) FDs detected by Algorithm 1. Clearly,

in the general case it is possible that Γ presents cycles, while hierarchies to be

used for OLAP querying are well-known to be directed acyclic graphs (DAGs)

[17]. Hence, these cycles must be removed in order to identify hierarchies. This

can be done through a user-driven step of editing as in classical data-driven

approaches to multidimensional modeling based on FDs (e.g., [13, 18, 14]).

Definition 9 (Dependency Graph). Given the global schema g(D) = (F,A)

and an (acyclic) set of simple and not-trivial (A)FDs Γ, the dependency graph

is defined by a coupleM = (F prim,�) where F prim is the set of primitive nodes

in F and � is a roll-up partial order of F prim derived from Γ. In particular,

fj � fk if either fj fk ∈ Γ or fj → fk ∈ Γ.

The differences between a dependency graph and the global schema it is derived

from are that

1. the global schema is a tree, the dependency graph is induced by a partial

order so it is a DAG;

2. arrays are not present in the dependency graph, but their id’s are;

3. arcs express (A)FDs in the dependency graph, syntactical containment in

the global schema;

4. differently from the global schema, the dependency graph can include arcs

between primitive fields.

Example 6. Figure 5 shows the dependency graph for our working example.

Each primitive field is represented as a circle whose color is representative of

19

Exercises.Type

Exercises.Sets.Weight

Exercises.
Sets.Reps

_id

User.FullName

SessionType
Facility.Name

Facility.City
Facility.Chain User.Age

User.FirstName
User.LastName DurationMins

Exercises._id

Exercises.Sets. _id

Exercises.ExCalories

Exercises.Sets.SetCalories

Legend

 level (supp=1)
 level (supp<1)
 FD (acc=1)
 AFD (acc<1)

Facility.Country

Figure 5: Dependency graph for the global schema in Figure 3

Exercises.
Type

Exercises.
Sets.Reps

_id

DurationMins SessionType

Exercises._id

Exercises.Sets._id

Classes._id

Classes.Name

[{ "_id" : ObjectId("..."),
"SessionType" : "ClassProgram",
"DurationMins": 150,
"Exercises" : [. . .] ,
"Classes" :
[{ "Name" : "Combat",

. . . },
{ "Name" : "KettleBell",
. . . }

] ,
. . .
} ,

. . .
]

Figure 6: Excerpt of the dependency graph (left) in presence of alternative documents (right)

the field global support (the lighter the tone, the lower the support). Identifiers

(e.g., id) are shown in bold. Directed arrows are representative of the (A)FDs

in Γ; for instance, it is id → Facility.Name (FDs are shown in black) and

Facility.Name Facility.Chain (AFDs are shown in grey). Note that, in this

case, the dependency graph is a tree, because in the global schema of Figure 3

arrays are nested within each other. A different situation is the one shown in

Figure 6, where the collection includes documents with two arrays at the same

level, so the dependency graph is not a tree. �

20

6. Querying

In this section we describe the final querying stage. We start by providing

the definition of a multidimensional query and discussing its correctness (Sec-

tion 6.1). Then, we discuss the execution of a query, which mainly involves

its reformulation from the global schema to the local schemas (Section 6.2) and

the translation of each reformulated query into the MongoDB language (Section

6.3). Finally, we introduce a set of indicators describing the quality and relia-

bility of the query result (Section 6.4) and explore the issue of query evolution,

i.e., the formulation of new queries by applying OLAP operators on the previous

queries (Section 6.5).

6.1. Query formulation

First of all, we define a multidimensional query as follows.

Definition 10 (Md-query). Given dependency graphM = (F prim,�), a mul-

tidimensional query (from now on, md-query) on M is a triple q = 〈G, p,m, ϕ〉

where:

• G is the query group-by set, i.e., a non-empty set of fields in F prim such

that for all couples fj , fk in G it is fj 6� fk;

• p is an (optional) selection predicate; it is a conjunction of Boolean pred-

icates, each involving a field in F prim;

• m ∈ F prim is the query measure, i.e., the numerical field to be aggregated;

• ϕ is the operator to be used for aggregation (e.g., avg, sum);

• there exists in M one single field f such that either f � f or f = f for

all other fields f mentioned in q (either in G, p, or m).

We will refer to all the fields in G and p as the query levels. Field f is called

the fact of q (denoted fact(q)) and corresponds to the coarsest granularity of

M on which q can be formulated. An example of a case in which a fact cannot

be determined is the one in Figure 6, with G = {Classes.Name,Exercises.Type}.

21

Example 7. The following md-query on the WS collection, q1, measures the

average amount of weight lifted by elderly athletes per city and type of exercise:

q1 = 〈 {Facility.City,Exercises.Type},

(User.Age ≥ 60),Exercises.Sets.Weight, avg 〉

It is fact(q1) = Exercises.Sets. id. �

In [4] the authors outline the constraints that must hold for an md-query to

be considered well-formed, namely, the base integrity constraint (stating that

the levels in the group-by set must be functionally independent on each other)

and the summarization integrity constraint [19], which in turn requires disjoint-

ness (the measure instances to be aggregated are partitioned by the group-by

instances), completeness (the union of these partitions constitutes the entire

set), and compatibility (the aggregation operator chosen for each measure is

compatible with the type of that measure). Remarkably, Definition 10 already

ensures that md-queries meet the base integrity constraint (because the query

group-by set cannot include fields related by (A)FDs). As to the summarization

integrity constraint, since the goal of our approach is to enable an immediate

querying of data with no cleaning beforehand, we adopt a “soft” approach to

avoid being too restrictive. So, after each query has been formulated by the

user, it undergoes a check (sketched in Algorithm 2) that can possibly return

some warnings to inform the user of potentially incorrect results. Specifically,

the disjointness constraint ensures that the granularity of the measure is not

coarser than the one of the group-by set levels (Line 3); if this is false, the same

instance of m will be double counted for multiple instances of the group-by

set [4]). The completeness constraint ensures that the levels in the group-by

set have full global support (Line 5); this constraint is easily contradicted as it

clashes with the schemaless property of DODs. Finally, the compatibility con-

straint is not considered at all since its verification would require to properly

categorize measures (i.e., flow, stock and value-per-unit) and levels (i.e, tem-

poral and non-temporal), but this information can hardly be inferred from the

schema or even provided by the user [15].

22

Algorithm 2 Validity check of an md-query

Input M = (Fprim,�): a dependency graph; q = 〈G, p,m, ϕ〉: an md-query
Output status: a validity status
1: status← “valid′′

2: for each f ∈ G do
3: if id(arr(f)) � id(arr(m)) then
4: status← “warning′′ . Disjointness failed

5: if gloSupp(f) < 1 then
6: status← “warning′′ . Completeness failed

7: return status

Example 8. Query q1 passes the validity check of Algorithm 2 with a complete-

ness warning, because gloSupp(Facility.City) < 1. On the other hand, q1 meets

the disjointness constraint because

id(arr(Facility.City)) = id

id(arr(Exercises.Type)) = Exercises. id

id(arr(Exercises.Sets.Weight)) = Exercises.Sets. id

Exercises.Sets. id � id

Exercises.Sets. id � Exercises. id

�

As previously mentioned, an md-query fails the completeness constraint if

one or more levels in the group-by set do not have full support. This issue is

strictly related to the one of incomplete hierarchies in data warehouse design.

The related work proposes three alternative strategies to replace missing values

in a hierarchy level lj with placeholders: balancing by exclusion (i.e., replacing

all missing values with a single value “Other”), downward balancing (replacing

with values from the closest level lk such that lk � lj), and upward balancing

(replacing with values from the closest level lk such that lj � lk) [18]. Whereas

they were originally meant to be applied when populating a data warehouse

from an operational source, these strategies can be directly applied at query

time, e.g., by using the $ifNull operator in MongoDB, which allows to replace

a missing value in a field with a custom value or with the value of another field.

23

Thus, when an md-query fails the completeness constraint, we ask the user to

indicate the desired strategy to replace missing values in the levels without full

support.

6.2. Query reformulation

Once an md-query has been formulated by the user on the dependency graph

corresponding to the global schema, it has to be reformulated on each local

schema to effectively cope with inter-document variety. To this end we rely on

a formal approach to enable md-query reformulation in a business intelligence

network (BIN), i.e., a federated data warehouse architecture [2]. The BIN ap-

proach presents a framework that enables the reformulation of a query from a

source multidimensional schema to a target multidimensional schema and has

been proved to be complete and provide all certain answers to the query. In

this section, we discuss how the proof of correctness and completeness can be

extended to our approach as well. In particular, the reformulation of a query

from the global schema to each local schema is necessary in our approach in two

situations: (i) when the collection is queried to detect AFDs (Section 5) and

(ii) when the user issues an md-query on the collection (Section 6). To this end

we need to prove that the data schemas, the mappings, and the queries which

we consider in our work are a particular case of those used as a reference in the

BIN context.

Data schema. The reference schema in the BIN context is a classical multi-

dimensional schema featuring a fact, a set of hierarchies (each made of levels),

and a set of measures (each coupled with an aggregation operator). The de-

pendency graph of Definition 9 can be thought of as a sort of “multi-fact”

multidimensional schema with no explicit distinction between levels and mea-

sures. However, when an md-query is formulated as in Definition 10, exactly

one fact is implicitly determined, group-by levels are explicitly distinguished

from measures, and an aggregation operator is coupled to each measure. So,

from the data schema point of view, there is no difference between the context

of BINs and the one of this paper.

24

Mappings. The primitive mappings of Definition 4 can be expressed, according

to the BIN terminology, using either same or equi-level predicates. same predi-

cates are used for measures, and can be annotated with an expression; since in

Definition 10 measures are required to be numerical, the associated transcodings

must be translatable into an expression. equi-level predicates are used for levels,

and can be directly annotated with a transcoding. Remarkably, in [2] these two

types of mappings are called exact since they enable non-approximate query

reformulations. Note that array mappings are not used for query reformulation

but only for determining the global schema, so they are not considered here.

Queries. An md-query (Definition 10) has a group-by set, a (conjunctive)

selection predicate, and a measure. A BIN query has a group-by set, a (con-

junctive) selection predicate, and an expression involving one or more measures.

By simply picking a single measure and the identity expression, situation (ii) is

addressed. As to situation (i), i.e., querying aimed at checking AFDs, we re-

mark that the query for checking AFD l l′ can be expressed as a BIN query

with group-by set {l, l′} and a dummy measure, on whose result a simple COUNT

DISTINCT is then executed.

Based on the considerations above, we can state that a query of the global

schema can be correctly reformulated into a set of local queries, one on each local

schema. Then, each local query is separately executed on the DOD; specifically,

each query must target only the documents that belong to a specific local schema

s. This is done in two steps. First, the information about which document has

which schema (obtained in the schema extraction stage) is stored in a different

collection (called WorkoutSession-schemas in our example) in the following form:

a document is created for every schema s ∈ S(D), containing an array ids with

the id of every document d ∈ Ds. Then, the query on schema s is executed by

joining it with the list of identifiers in WorkoutSession-schemas). Finally, a post-

processing activity is required to integrate the results coming from the different

local queries.

25

Example 9. Consider an md-query that calculates the total amount of burnt

calories by facility, excluding workout sessions that are shorter than 30 minutes:

q = 〈 {Facility.Name}, (DurationMins ≥ 30),Exercises.ExCalories, sum 〉

Consider the local schemas s1 and s2 from Figure 3. The reformulation of q onto

s1 has no effect; conversely, the reformulation onto s2 generates the following

md-query:

q′ = 〈 {Gym.Name}, (DurationSecs
60 ≥ 30),Series.SeriesCalories, sum 〉

Note that, since sum is a distributive aggregation operator, the aggregation of Se-

ries.SeriesCalories is correctly computed using only one aggregation. Conversely,

the usage of an algebraic operator (e.g., avg) would require the computation of

pre-aggregates; this is possible by extending Definition 10 to include such com-

putation as discussed in [2].

6.3. Query execution

In this subsection we explain how, after reformulation, each single query

obtained can be translated to MongoDB on the corresponding local schema.

Md-queries are translated to MongoDB according to its query language (called

aggregation framework), which allows to declare a multi-stage pipeline of trans-

formations to be carried out on the documents of a collection. The most im-

portant transformations are defined by the following operators:

• $match: it is used to apply predicate selections; its equivalent in SQL is

the where clause.

• $project: it is used to apply transformations to the single fields; its

equivalent in SQL is the select clause.

• $group: it is used to group the documents and calculate aggregated val-

ues); its equivalent in SQL is the group by clause.

• $unwind: it is used to unfold an array by creating a different document for

every object inside the array); its equivalent in SQL is the unnest clause.

26

Given md-query q = 〈G, p,m, ϕ〉 on M and global schema g(D) = (F,A),

the translation of q into the MongoDB language is done as follows:

1. As fact(q) represents the granularity level of the query, it is necessary

to unfold every array involved in the path from the root r to fact(q). If

fact(q) = r, no unwind stage is necessary; otherwise, an unwind stage

is added for fact(q) and for every array a in g(D), a 6= r, such that

fact(q) � id(a). The order of these stages reflects the order of the arrays in

g(D), beginning from the one closest to r. The process of determining the

ordered list of arrays, LA, is described as a recursive function in Algorithm

3.

2. If p 6= ∅, a $match stage is defined listing every selection predicate.

3. A $project stage is defined to keep only the fields that are required for the

following stages, i.e., m and every group-by level. If there is one (or more)

incomplete level f ∈ G (i.e., such that gloSupp(f) < 1), the replacement

of the missing values of f is done at this stage, according to the balancing

strategy chosen by the user. In case of downward or upward balancing,

the closest primitives to f (i.e., any f ′ such that f � f ′ or f ′ � f) may

not have full support either; thus, an ordered list of primitives, LP , must

be scanned until a primitive with full support is found (or until no more

primitives are available). This process is described as a recursive function

in Algorithm 4; the process is stopped when fact(q) is encountered (Line

9 in downward balancing) or when the end of the graph is reached (Line

15 in upward balancing). In any case, f may functionally determine (or be

determined by) two ore more fields due to a branch in the hierarchy (e.g.,

Facility.Name Facility.City and Facility.Name Facility.Chain); in this

case, the user intervention is required to choose which of the determined

field should be chosen for balancing (Lines 8 and 14). Ultimately, a new

field named balanced is added and valued TRUE if any of the projected

fields has been affected by the balancing strategy, FALSE otherwise.

27

Algorithm 3 unfold(a, r)
Input a: an array field; r: the root
Output LA: the ordered list of array fields to be unfolded
1: if a = r then
2: LA← 〈〉 . Empty list
3: else
4: LA← 〈unfold(arr(a), r), a〉
5: return LA

Algorithm 4 balance(f, dir, q)
Input f : a primitive field; dir: a balancing direction (either “downward” or “upward”); q: an

md-query
Output LP : the ordered list of primitives to be used for balancing f
1: if gloSupp(f) = 1 then
2: LP ← 〈f〉
3: else
4: fbal ← ∅
5: if dir = “downward” then
6: F ′ ← {f ′ ∈ Fprim s.t. f ′ � f}
7: if |F ′| > 1 then
8: fbal ← askUser(F ′)
9: else if fact(q) 6∈ F ′ then . F ′ = {f ′}

10: fbal ← f ′

11: else . dir = “upward”
12: F ′ ← {f ′ ∈ Fprim s.t. f � f ′}
13: if |F ′| > 1 then
14: fbal ← askUser(F ′)
15: else if F ′ 6= ∅ then . F ′ = {f ′}
16: fbal ← f ′

17: if fbal 6= ∅ then
18: LP ← 〈f, balance(fbal, dir, q)〉
19: else
20: LP ← 〈f〉
21: return LP

4. A $group stage is defined including the fields that identify a group (i.e.,

every level f ∈ G plus the balanced field), the measure m to be aggre-

gated, and its aggregation functions ϕ. Additionally, two new measures

named count and count-m are added to count, respectively, the number

of aggregated objects and the number of aggregated objects that actually

contain a value for m.

The query-independent fields balanced, count, and count-m are needed to calcu-

late the indicators of the query, which will be discussed in Section 6.4.

Example 10. The MongoDB query obtained from q1 considering a downward

balancing strategy is the following.

db.WS.aggregate({
{ $unwind: "$Exercises" },
{ $unwind: "$Exercises.Sets" },

28

{ $match: { "User.Age": { $gte: 60 } } },
{ $project: {
"Facility.City": { $ifNull:

["$FacilityCity","$FacilityName"] }
},
"Exercises.Type": 1,

"Exercises.Sets.Weight": 1,

"balanced": {
$cond: ["$FacilityCity",false,true]

}
} },
{ $group: {
" id": {

"FacilityCity","$FacilityCity",

"ExercisesType","$Exercises.Type",

"balanced","$balanced"

},
"Exercises.Sets.Weight": {

$avg: "$Exercises.Sets.Weight"

},
"count": { $sum: 1 },
"count-m": { $sum: {

$cond: ["$Exercises.Sets.Weight",1,0]

} }
} }

}

�

The final results shown to the user are composed by further aggregating the

results of each query. Note that this operation can be performed in-memory, as

OLAP queries usually produce a limited number of records and the transcoding

functions provide homogeneous values.

6.4. Query evaluation

In our schemaless scenario, the evaluation of the query results cannot tran-

scend from the evaluation of the query itself. In particular, it is important to

understand the coverage of the query with respect to the collection (which may

be influenced by the support of the fields, the quality of the mappings, and the

29

selectivity of the selection predicate), as well as the reliability of the results. For

these reason, we introduce some indicators to evaluate the quality of md-queries.

Our indicators are inspired by the concept of attribute density defined in [20]

and adapt it to the OLAP peculiarities.

For the sake of defining the indicators, let n be the number of raw objects

that are queried. This value depends not only on the selection predicates, but

also on the granularity of the query. For instance, with reference to our working

example, if fact(q) = id (and no selection predicates are provided), then n

corresponds to the number of documents in the collection (i.e., |D|); otherwise,

if fact(q) = Exercises. id, then n corresponds to the total number of exercises,

obtained by applying the $unwind operator in the query (as seen in Section 6.3).

Also, let E be the set of distinct groups returned by an md-query q; then, we

denote with |e| the number of objects that have been aggregated by each group

e ∈ E (measured by the count field as of Section 6.3).

The first indicator we introduce is level density : when the group-by set of

md-query q includes a level that does not have full support (i.e., in some local

schemas that level is null or it does not exist), q fails the completeness constraint

(as stated in Section 6.1) and a balancing strategy is adopted to replace the

missing values. This leads to a result set in which one or more groups in E

contain placeholders. We can then say that E = Eorig ∪ Ebal, where Eorig

contains the groups whose values are the original ones, while Ebal contains the

groups whose values are determined by balancing. Unless balancing by exclusion

is done, identifying the latter groups may not be obvious for users. Thus, on

the one hand, we need to distinguish these groups from the others for an easier

interpretation of the results; on the other, we want to quantify the weight of

these groups with respect to the others. Both evaluations are provided by the

level density indicator, which is defined both at group level and at query level.

In particular, the group level density (i.e., the level density of a specific group

e) is:

30

Table 1: Sample excerpt from the WS collection

id SessionType Facility.Name Facility.City Facility.Chain DurationMins
1 BeginnerProgram PureGym London London null 92
2 BeginnerProgram PureGym London London null 120
3 AdvancedProgram BestGym London London TopOfTheBest null
4 AdvancedProgram TopGym null TopOfTheBest 108
5 AdvancedProgram TopGym null TopOfTheBest 96

Table 2: Results obtained from Table 1 by grouping on Facility.City and calculating the average
DurationMins with downward balancing

Facility.City avg(DurationMins)
London 106
TopGym 102

levelDensity(q, e) =

TRUE, if e ∈ Eorig

FALSE, if e ∈ Ebal

In practice, this indicator is the negation of the balanced field introduced in

Section 6.3. Conversely, the query level density is calculated as the percentage

of aggregated objects belonging to Eorig:

levelDensity(q) =

∑
e∈Eorig |e|
n

Example 11. Consider the sample data in Table 1 and md-query q = 〈{Facility.City},

TRUE,DurationMins, avg〉, which determine the results in Table 2: it is Eorig =

{London} and Ebal = {TopGym}. Then, levelDensity(q, London) = TRUE and

levelDensity(q, TopGym) = FALSE, while levelDensity(q) = 0.60.

The second indicator we introduce is measure density. When the measure of

the query does not have full support, the values reported in the results offer only

a partial summary of the aggregated objects. The more aggregated objects lack

the value of that measure, the less the result is precise. Measure density may

vary significantly from group to group. For instance, in our example, missing

values may be concentrated in facilities that adopt old and faulty equipment;

31

in this case, though the overall percentage of missing values is significant, the

values obtained from the other facilities would be very precise and trustworthy.

Similarly to level density, measure density is evaluated at both the group

and query levels. Let |e|m be the number of objects that have been aggregated

by each group e ∈ E and that actually have a value for m (this is measured by

the field count-m as of Section 6.3; clearly, it is |e|m ≤ |e|). Then, the group

measure density of group e is:

measureDensity(q, e) =
|e|m
|e|

The query measure density of query q is:

measureDensity(q) =

∑
e∈E |e|m
n

Example 12. Consider the sample data in Table 1 and the same query q as in

Example 11. Then, measureDensity(q, London) = 0.67 and measureDensity(q,TopGym) =

1.00, while measureDensity(q) = 0.80.

Level and measure densities enable an evaluation of the reliability of query

results. The problem with these indicators is that they must be computed at

query time, whereas (considering that the execution time for md-queries is often

significant) it would be important for users to have a feedback on the quality of

the query before it is executed. Although this cannot be done exactly, we can

provide an estimate of the indicators that, at least, gives a first hint to the user.

Level and measure densities essentially depend on the support of the levels and

the measure involved in the query, respectively, thus we can rely on the support

to provide estimated values at the query level (clearly, indicators at the group-

by level cannot be estimated without accessing the data). In particular, we can

estimate the measure density of a query as the support of the provided measure:

estMeasureDensity(q) = gloSupp(m)

32

The actual measure density of the query varies depending on the query selection

predicate. Thus, if no selection predicate is present, the estimate reflects the

true value. As to level density, we can define the estimated level density of a

query as the product of the supports of the query group-by levels:

estLevelDensity(q) =
∏
l∈G

gloSupp(l)

Indeed, the support of a level l can be interpreted as the probability that l is

null in a document of the collection. Since there is no a-priori evidence of any

inter-level dependency, given two levels l and l′, the presence of a null in l or in

l′ within the same document can be thought of as independent events A and B,

so that P (A ∩ B) = P (A) ∗ P (B). Nonetheless, the distance of the estimated

value from the real one can be significant; in fact, the true level density (in

absence of selection predicates) falls within a range that is quite ample:

levelDensity(q) ∈
[

max{0,
∑
l∈G

gloSupp(l)− (|l| − 1)},min
l∈G

gloSupp(l)

]

The intuition behind formula 6.4 is that the support of the single group-by

levels is an upper bound to the level density of the query. The lower bound

depends on how the different levels intersect with each other: two levels do

intersect if the sum of their supports is greater than 1, three levels do intersect

if the sum of their supports is greater than 2, and so on.

Example 13. Consider the sample data in Table 1 and md-query q = 〈{Facility.City,

Facility.Chain}, TRUE,DurationMins, avg〉. Then, levelDensity(q) ∈ [max{0, 0.6+

0.6− 1},min{0.6, 0.6}] = [0.2, 0.6], while estLevelDensity(q) = 0.6 ∗ 0.6 = 0.36

and estMeasureDensity(q) = 0.8.

A significant improvement in estimating the values of level and measure

densities can be achieved by relying on schema profiling techniques. In a pre-

vious work [1], schema profiling is introduced as a way to identify the hid-

den rules that drive the usage of different schemas in a collection. In par-

33

Algorithm 5 Find local schemas hit by an md-query
Input p = {p1, . . . , pk}: a selection predicate that conjuncts k simple predicates; R: a set of

profiling rules; S(D): the set of local schemas
Output Sq(D): a subset of local schemas
1: Sq(D)← S(D)
2: PredsToCheck ← {p}
3: while PredsToCheck 6= ∅ do
4: NextPredsToCheck ← ∅
5: for all p′ ∈ PredsToCheck do
6: if ∃r ∈ R, r = (pr, Sr(D)) s.t. pr = p′ then
7: Sq(D)← Sq(D) ∩ Sr(D)
8: else if |p′| > 1 then
9: for all pi ∈ p′ do

10: NextPredsToCheck ← NextPredsToCheck ∪ {p′ \ {pi}}
11: PredsToCheck ← NextPredsToCheck
12: return Sq(D)

ticular, a rule indicates that, in presence of a specific value of a field (e.g.,

SessionType = “AdvancedProgram”), only a specific subset of the local schemas

is used. The original goal of schema profiling is to acquire a better knowl-

edge of the collection; however, the rules obtained with schema profiling can be

integrated in our approach to refine the estimates of the indicators.

More formally, a profiling rule is a couple r = (pr, Sr(D)), where pr is a selec-

tion predicate and Sr(D) ⊆ S(D) is the corresponding subset of local schemas.

Given a set of rules R (all with different selection predicates) and an md-query

q with selection predicate p defined as the conjunction of k simple predicates,

the subset of local schemas hit by q, denoted Sq(D), can be determined as ex-

plained in Algorithm 5. The idea is to iterate over R (lines 3 to 11) to find the

rule(s) that fit p the most. At first, a rule whose predicate consists of exactly

all the k simple predicates of p is searched; if it does not exist, we search for

rules with any combination of (k − 1) simple predicates, and so on up to single

simple predicates. Eventually, Sq(D) is determined as the intersection of all the

Sr(D)’s for the rules whose predicates (even partially) match p (Line 7).

Once Sq(D) is determined, the estimation of level and measure densities can

be improved by restricting the global support of the query levels and measure

to the local schemas in Sq(D). This can be achieved by refining the definition

34

of global support as follows:

gloSupp(f) =
∑

s∈Sq(D)

locSupp(f, s) · |D
s|
|D|

Example 14. Consider the sample data in Table 1 and md-query q = 〈{Facility.City,

Facility.Chain}, (SessionType = “AdvancedProgram”),DurationMins, avg〉. As in

Example 13 (where q had no selection predicate), levelDensity ∈ [0.2, 0.6]

and estLevelDensity(q) = 0.36, while estMeasureDensity(q) = 0.8. Con-

sider S(D) = {sa, sb, sc}, where sa refers to the first two documents, sb to

the third and scc to the last two. Also, consider rule r = (SessionType =

“AdvancedProgram”, {sb, sc}). Then, gloSupp(Facility.City) becomes 0.33 (in-

stead of 0.6), gloSupp(Facility.Chain) becomes 1 (instead of 0.6) and gloSupp(DurationMins)

becomes 0.67 (instead of 0.8). Finally, estLevelDensity(q) becomes 1 ∗ 0.33 =

0.33 and estMeasureDensity(q) becomes 0.67 (which, in this case, are exact

estimates).

6.5. Query evolution

Consistently with an OLAP scenario, an md-query can evolve into another

with the application of an OLAP operation; the resulting sequence of queries

is called an OLAP session. In particular, the permitted operations are the

following ones.

• The replacement of the query measure with a different one, or the selection

of a different aggregation operator. If a new measure is chosen, a new

validity check is required to verify whether the disjointness requirement

still holds.

• The addition/removal/modification of a selection predicate. This opera-

tion has no impact on the validity of the query.

• The roll-up (or drill-down) of one of the group-by levels, which leads to

replacing a level f with a level f ′ such that f � f ′ (or f ′ � f).

35

Roll-ups and drill-downs imply a navigation of the dependency graph on

the relationships between f and f ′, which represent (A)FDs. From a multidi-

mensional standpoint, the navigation of an AFD with accuracy lower than 1

leads to a violation of the roll-up semantics, i.e., the results of the second query

will not be a correct composition (or decomposition) of the results of the first

query. This happens because the FD is not strictly true in some cases, which

compromises the correctness of the aggregation. Thus, we evaluate the impact

of these operations by means of another indicator. In particular, this indicator

quantifies the accuracy of the aggregated results of a query during an OLAP

session with respect to the results obtained from the previous query. Let ω be

the OLAP operation applied to md-query q to obtain q′ by rolling up (or drilling

down) from level f to f ′, and let Γ′ ⊆ Γ be the set of AFDs in the path between

f and f ′. Then, the accuracy of ω is

acc(ω) =
∏
γ∈Γ′

acc(γ)

Example 15. Consider q1 from Example 7, which measures the average amount

of weight lifted by elderly athletes per city and type of exercise. Let ω be a drill-

down from Facility.City, which produces the following md-query:

q2 = 〈 { id,Exercises.Type}, (User.Age ≥ 60),Exercises.Sets.Weight, avg 〉

Drilling down from Facility.City to id implies the navigation of Facility.Name

Facility.City (with accuracy 0.98) and id → Facility.Name (with accuracy is 1).

Thus, it is acc(ω) = 0.98 ∗ 1 = 0.98.

7. Experimental evaluation

Before presenting an experimental evaluation of our approach in terms of

effectiveness and efficiency, we briefly discuss the organization of the metadata

collected throughout the different phases. As shown in Figure 1, each phase

of the approach produces and/or consumes some metadata: global and local

schemas, mappings, and dependency graphs. An appropriate modeling of these

36

Schema

Local

Schema

Global

Schema

Field

Primitive Array

Array

Mapping

Primitive

Mapping

Mapping

Functional

Dependency

schemaContains*

determinant

arrayContains*

hasRoot

toArray

fromArray

toPrimitive*

fromPrimitive*

dependent

id

accuracy transcoding

accuracy

type

name

path

Legend

Class (introduced by schema extraction)

Generalization

Property

Annotation

Intensional

Functional

Dependency

Extensional

Functional

Dependency

Class (introduced by schema integration)

Class (introduced by FD enrichment)

Figure 7: Metamodel of our approach

metadata is important to enable the interoperability of these phases. Since

schemas are trees (Definition 2) while dependency graphs are DAGs (Definition

9), a natural choice is a database for graph data modeling. In particular, we

rely on the triplestore of the Apache Jena Java framework to model metadata

in RDF. Figure 7 shows the metamodel; boxes represent classes, while arrows

represent different kinds of relationships between classes (i.e., standard gener-

alizations, custom properties, and annotations). The use of the asterisk (*) in

the property name is used to indicate a multiplicity higher than one. The color

of the classes is representative of the phase in which they are first instantiated:

white for schema extraction, light grey for schema integration, and dark grey

for FD enrichment.

7.1. Efficiency

As a proof of concept for our approach we have developed some Java pro-

totypes to support the main phases and tested them on two reference environ-

ments. The first one consists of a single Windows 7 machine, with a 4-core

i7-2600 CPU @3.40 GHz and 16 GB of RAM; the second one is a cluster of

seven CentOS 6 machines with an 8-core i7-4790 CPU @3.60 GHz and 32 GB

37

orderedProducts.
product

_id

date customer

orderedProducts._id
[{ "_id" : ObjectId("..."),

"date3" : ISODate("2018-01-01T08:15:16.000Z"),
"customer3" : "cu34402",
"city3" : "ci278",
"state3" : "st92",
"country3" : "co4",
"orderedProducts2" :
[{ "product2" : "pr9879",

"type2" : "ty253",
"supplier2" : "su1888",
"quantitty2" : 68

},
. . .

] ,
} ,

. . .
]

orderedProducts.
type

orderedProducts.
supplier

orderedProducts.
quantity

city

state

country

Figure 8: Excerpt of the dependency graph (left) for the synthetic collection Orders (right)

of RAM. Our reference real-world collection, WS, is stored on a Mongo DB 3.4

and randomly sharded on the cluster; it contains 5 M workout sessions with 6

different local schemas (mostly due to missing fields), 35 M exercises and 85

M sets. For a variety-aware evaluation, we also built two synthetic collections.

The first one is called Orders and simulates a collection of orders of products by

customers; it contains 5 M documents with 160 different local schemas (mostly

due to variety in the field names and comprising a total of 150 different fields).

Figure 8 shows a sample document and the derived dependency graph. The

second synthetic collection is called HighlyNested and simulates a scenario in

which each document has many arrays nested into each other; it contains 5 M

documents with only 1 local schema, while the nested levels contain 15 M, 45

M, 135 M, and 405 M documents, respectively.

The prototypes are focused on schema extraction, AFD detection and query

execution. Schema integration is currently done manually for WS (given the low

number of schemas in our reference collection, this is still feasible) and automat-

ically for Orders (which is feasible given the synthetic nature of the collection).

Indeed, from the performance point of view, schema matching is not a particu-

larly demanding task: as reported in [11], the schema matching tool COMA

(available at https://dbs.uni-leipzig.de/Research/coma.html) can per-

form 468 millions root-based match comparisons (i.e., considering the full path

of each field) in 41 seconds. This is quite promising, considering that the num-

38

Table 3: Execution times for schema extraction
Collection # records DB size Time (standalone) Time (cluster)

WS 5 K 2 MB 4 sec 3 sec
50 K 20 MB 33 sec 19 sec
500 K 197 MB 6 min 3 min
5 M 1.7 GB 60 min 32 min

Orders 5 K 2 MB 1 sec 1 sec
50 K 24 MB 10 sec 6 sec
500 K 245 MB 2 min 1 min
5 M 2.4 GB 19 min 10 min

HighlyNested 5 K 25 MB 11 sec 9 sec
50 K 253 MB 2.5 min 1.5 min
500 K 2.5 MB 28 min 15 min
5 M 25 GB 4.7 hr 2.5 hr

ber of comparisons in our working example would not exceed the order of the

tens of thousands. As to querying we remark that formulation, translation to

MongoDB, evaluation, and evolution are all done in negligible time. Reformu-

lation is done with polynomial complexity [2].

Schema extraction. Our implementation of schema extraction is loosely

inspired by the free tool variety.js and consists of a simple routine that connects

to the desired collection on MongoDB, extracts the local schemas, and writes

the results on the triplestore. Execution times have been measured on the whole

collection as well as on smaller samples to evaluate scalability. Times are shown

in Table 3. In both reference environments, the time increases linearly with

the size of the database, while the parallel architecture halves the times of the

standalone environment. We also observe that times are consistent with those

of related approaches that perform schema extraction on JSON datasets, such

as [5].

A comparison between WS and the synthetic datasets shows that the time

for schema extraction is independent of the number of local schema, but depends

on the complexity of the documents; with respect to WS, the execution times

on Orders decrease even if the number of local schemas is higher (because the

documents are simpler) and increase on HighlyNested even if the number of local

schemas is lower (because the documents are more complex).

39

Table 4: AFDs detected from one primitive (rows) to another (columns) in the WS dataset;
cells set to TRUE are in green

f U
se
r.
F
u
ll
N
a
m
e

U
se
r.
L
a
st
N
a
m
e

F
a
ci
li
ty
.N

a
m
e

U
se
r.
F
ir
st
N
a
m
e

E
x.
E
xC

a
lo
ri
es

E
x.
S
et
s.
S
et
C
a
lo
ri
es

F
a
ci
li
ty
.C
it
y

E
x.
S
et
s.
W
ei
g
h
t

D
u
ra
ti
o
n
M
in
s

S
ta
rt
ed

O
n

F
a
ci
li
ty
.C
h
a
in

E
x.
T
yp

e

U
se
r.
A
g
e

E
x.
S
et
s.
R
ep

s

F
a
ci
li
ty
.C
o
u
n
tr
y

S
es
si
o
n
T
yp

e

User.FullName - × × × (b) (b) × (b) × × × (b) X (b) × ×
User.LastName (a) - × × (b) (b) × (b) × × × (b) × (b) × ×
Facility.Name (a) (a) - × (b) (b) X (b) × × X (b) × (b) (c) ×

User.FirstName (a) (a) (a) - (b) (b) × (b) × × × (b) × (b) × ×
Ex.ExCalories (a) (a) (a) (a) - (b) × (b) × × × × × (b) × ×

Ex.Sets.SetCalories (a) (a) (a) (a) (a) - × × × × × × × × × ×
Facility.City (a) (a) (a) (a) (a) (a) - (b) × × × (b) × (b) X ×

Ex.Sets.Weight (a) (a) (a) (a) (a) (a) (a) - × × × × × × × ×
DurationMins (a) (a) (a) (a) (a) (a) (a) (a) - × × (b) × (b) × ×

StartedOn (a) (a) (a) (a) (a) (a) (a) (a) (a) - × (b) × (b) × ×
Facility.Chain (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) - (b) × (b) × ×

Ex.Type (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) × - × (b) × ×
User.Age (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) - (b) × ×

Ex.Sets.Reps (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) - × ×
Facility.Country (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) - ×

SessionType (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) -

AFD detection. This phase is done in two steps starting from the global

schema in Figure 3. At first, the cardinality of each primitive field (excluding

ids, for which intensional FDs are directly inferred) is determined via a call to

CountDistinct in Algorithm 1, aimed at sorting the fields by descending values

(ranging from over 400 thousand for User.FullName to 3 for SessionType). The

times required mostly depend on the nesting level of the field: as shown in Table

5, fields in the root of the document took 1 to 5 seconds, fields in the Exercise

array took about 32 seconds, while fields in the Exercise.Sets array took 50 to

55 seconds.

Then, Algorithm 1 is run with ε = 0.05; Table 4 shows the AFD matrix Z,

with cells set to true in green. Specifically, among true cells, for those marked

with (c) the existence of the AFD has been inferred by the transitivity rule listed

in Section 5 (the only case is Facility.Name Facility.Country), while for those

marked with X the check has been done and the AFD has been shown to hold

(e.g., Facility.Name Facility.Chain holds with accuracy 0.98, as reported in

Example 5). Among false cells, those marked with (a) and (b) indicate that the

40

Table 5: Query execution times (in seconds) for checking AFDs from one primitive (rows) to
another (columns); the times for the queries avoided are in grey. The table also shows the
cardinality of each primitive and the time (in seconds) for calculating it

f |f | T
im

e
fo
r
d
is
ti
n
c
t
co

u
n
t

U
se
r.
F
u
ll
N
a
m
e

U
se
r.
L
a
st
N
a
m
e

F
a
ci
li
ty
.N

a
m
e

U
se
r.
F
ir
st
N
a
m
e

E
x.
E
xC

a
lo
ri
es

E
x.
S
et
s.
S
et
C
a
lo
ri
es

F
a
ci
li
ty
.C
it
y

E
x.
S
et
s.
W
ei
g
h
t

D
u
ra
ti
o
n
M
in
s

S
ta
rt
ed

O
n

F
a
ci
li
ty
.C
h
a
in

E
x.
T
yp

e

U
se
r.
A
g
e

E
x.
S
et
s.
R
ep

s

F
a
ci
li
ty
.C
o
u
n
tr
y

S
es
si
o
n
T
yp

e

User.FullN 416K 5 - 12 11 11 70 110 10 108 10 10 9 104 10 96 11 10
User.LastN 228K 4 12 - 5 5 53 89 4 79 4 3 3 66 2 81 2 2
Fac.Name 2134 1 11 5 - 3 42 67 3 66 2 2 2 39 2 63 2 2

User.FirstN 1845 3 11 5 3 - 40 68 3 67 2 2 2 39 2 62 2 2
Ex.ExCal 803 33 70 53 42 40 - 68 39 67 37 38 37 39 38 67 37 37

Ex.S.SetCal 515 54 110 89 67 68 68 - 68 75 67 67 66 66 65 70 65 64
Fac.City 298 1 10 4 3 3 39 68 - 70 2 2 2 37 1 62 1 1

Ex.S.Wght 204 54 108 79 66 67 67 75 70 - 66 65 65 65 65 68 63 63
DurMins 160 1 10 4 2 2 37 67 2 66 - 1 1 36 1 60 1 1

StartedOn 122 1 10 3 2 2 38 67 2 65 1 - 1 36 1 61 1 1
Fac.Chain 103 1 9 3 2 2 37 66 2 65 1 1 - 37 1 61 1 1
Ex.Type 100 32 104 66 39 39 39 66 37 65 36 36 37 - 40 62 39 39
User.Age 70 1 10 2 2 2 38 65 1 65 1 1 1 40 - 60 1 1
Ex.S.Reps 40 53 96 81 63 62 67 70 62 68 60 61 61 62 60 - 74 73

Fac.Country 5 1 11 2 2 2 37 65 1 63 1 1 1 39 1 74 - 1
SessType 3 1 10 2 2 2 37 64 1 63 1 1 1 39 1 73 1 -

existence of the AFD has been excluded by the first and second pruning rule in

Section 5, respectively, while for those marked with × the AFD has been checked

and has turned out not to hold. The only case when a check has to be done for

an inverse AFD is for Exercise.Type Facility.Chain, because Facility.Chain

Exercise.Type was excluded thanks to rule (b) and 1− |Exercise.Type||Facility.Chain| = 1− 100
103 =

0.03 ≤ ε. Overall, the rules of Algorithm 1 allow to save 35 AFD checks, i.e.,

29% of the 120 checks above the diagonal.

The times (in seconds) required to run each call to CountDistinct is shown

in Table 5. Note that this table reports the times for every couple of primitives

and in both directions; this is done to simplify the read of the table and to quan-

tify the time saving due to the pruning rules that exclude checking some AFDs.

In particular, consider that if f f ′ is checked (i.e., CountDistinct(fi, fj)

is called) then checking f ′ f is immediate (i.e., it does not require to call

CountDistinct(fj , fi), because its result is clearly the same as CountDistinct(fi, fj)).

41

Table 6: AFDs detected from one primitive (rows) to another (columns) in the Orders dataset;
cells set to TRUE are in green

f cu
st
o
m
er

o
p
.p
ro
d
u
ct

o
p
.s
u
p
p
li
er

ci
ty

d
a
te

o
p
.t
yp

e

st
a
te

co
u
n
tr
y

o
p
.c
a
te
g
or
y

co
n
ti
n
en

t

customer - (b) (b) X × (b) (c) (c) (b) (c)
op.product (a) - X × × X × × (c) ×
op.supplier (a) (a) - × × × × × × ×

city (a) (a) (a) - × (b) X (c) (b) (c)
date (a) (a) (a) (a) - (b) × × (b) ×

op.type (a) (a) (a) (a) (a) - × × X ×
state (a) (a) (a) (a) (a) (a) - X (b) (c)

country (a) (a) (a) (a) (a) (a) (a) - (b) X
op.category (a) (a) (a) (a) (a) (a) (a) (a) - ×
continent (a) (a) (a) (a) (a) (a) (a) (a) (a) -

First of all, Table 5 shows that the execution times are influenced by two fac-

tors: the nesting level of the involved primitives and the respective cardinalities.

The time increases significantly when fields with high cardinality are involved;

indeed, the highest execution times (almost 2 minutes) are registered on AFD

checks from User.FullName (i.e., the primitive with the highest cardinality) to

primitives in the Exercise.Sets array (the array with the highest nesting level).

Remarkably, thanks to the pruning rules of Algorithm 1, the call to CountDistinct

is actually skipped for many couples of fields in both directions. Interestingly,

the skipped calls are often among the most expensive ones. Indeed, the overall

cost for checking the AFDs drops from 69 minutes (if no rule were applied) to

32 minutes, with a 54% reduction in execution time.

To evaluate the impact of the transitivity rule (c) in Algorithm 1, Table 6

shows the AFD matrix Z for the Orders dataset (execution times range between

30 and 95 seconds). Since the dataset is synthetic, we simulate the best case

scenario, in which all detected FDs are exact, so that the transitivity rule can

always be applied. In this case, the rule is applied 7 times for a total time saving

of 305 seconds, i.e., a 15% reduction in execution time. In a real scenario, this

value may be more or less attenuated by the presence of AFDs that prevent

the rule to be applied. Nonetheless, this demonstrates that its impact on the

performance can be significant.

42

Query Reformulated query Time (seconds)

q_a q_a_1 6.3

q_a q_a_2 5.5

q_b q_b_1 18.9

q_b q_b_2 16.4

q_b q_b_3 16.4

q_c q_c_1 41.7

q_c q_c_2 28.2

q_c q_c_3 41.8

Local query 1 Local query 2 Local query 3

qa 6.3 5.5

q_b 18.9 16.4 16.4

q_c 41.7 28.2 41.8

6.3
18.9

41.7

5.5

16.4

28.2

16.4

41.8

0

20

40

60

80

100

120

se
co

nd
s

qa qb qc

Figure 9: Execution times of three queries (qa, qb and qc) split into the execution times of the
required local queries

Query execution. Consider the following three md-queries:

qa = 〈 {User.Age,Facility.Chain}, TRUE,DurationMins, avg 〉

qb = 〈 {User.FullName}, (SessionType = “AdvancedProgram”),Exercises.ExCalories, sum 〉

qc = 〈 {Facility.Name,Exercises.Type}, (StartedOn ≥ 01/01/2018),User.Age, max 〉

Due to the reformulation on the local schemas, 6 local md-queries are created

from each of the three global ones. A simple optimization is done, when possible,

to merge the local queries that involve the same fields on different local schemas;

for instance, with reference to Figure 3, a query counting the documents by

SessionType can be translated into a single local query, as every local schema

has the same representation of SessionType. Due to this optimization, qa, qb,

and qc are reformulated into either 2 or 3 local queries. The execution times

in seconds for each query (subdivided into the times for each local query) are

shown in 9; the times for qb and qc are higher due to the necessity of unwinding

arrays.

7.2. Effectiveness

In this section we focus on the querying phase to evaluate the effectiveness

of our approach. In the WS collection, the 5 M workout sessions are distributed

among the six schemas as indicated in Table 7; the schemas of s1 and s2 are the

ones shown in Figure 3, while the others are variations of these two.

43

Table 7: Cardinality of local schemas for the WS collection
Local schema si |Dsi | Percentage

s1 2208852 44%
s2 1446653 29%
s3 825592 17%
s4 349874 7%
s5 113356 2%
s6 39319 1%

The goal of these tests is to measure how querying benefits from our approach

compared to a plain scenario, in which no schema integration has been done.

Consider qa, qb and qc as defined in the closing part of Section 7.1. With no

integration and reformulation, these queries could only hit the fields that share

the exact pathname. In this case we can reasonably assume that they would be

formulated on the fields that exist in s1, i.e., the local schema with the highest

cardinality. We simulate a progressive integration of the other local schemas

(in the same order as they are listed in Table 7) and evaluate the variation of

different metrics: the global support of the fields involved in the query and the

indicators of query level and measure densities. These variations are shown in

Figure 10, where each chart corresponds to a single query.

First, we observe that the benefits vary from query to query. For instance,

levelDensity(qa) and measureDensity(qc) are not affected by the progressive

integration, because they involve fields (i.e., User.Age and Facility.Chain) that

are always used with the same name and path. Remarkably, in the two other

cases there is a significant increase of the global support of most fields and,

consequently, of the query indicators.

7.3. Case study

We conclude our experimental evaluation by presenting a case study that

simulates an OLAP session by the user, in order to illustrate the benefits of the

indicators. Let the user begin the session with the following md-query, which

retrieves the average user age in the different facility chains:

q′ = 〈{Facility.Chain}, TRUE,User.Age, avg〉

44

0.4

0.6

0.8

1

1 2 3 4 5 6

qa
gloSupp(User.Age)
gloSupp(Facility.Chain)
gloSupp(DurationMins)
 levelDensity(q) measureDensity(q)

|S(D)|

0.6

0.8

1

1 2 3 4 5 6

qb

|S(D)|

gloSupp(User.FullName)
gloSupp(SessionType)
gloSupp(Exercise.ExCalories)
 levelDensity(q) measureDensity(q)

0.4

0.6

0.8

1

1 2 3 4 5 6

qc

|S(D)|

gloSupp(Facility.Name)
gloSupp(Exercise.Type)
gloSupp(StartedOn)
gloSupp(User.Age)
compl(q)
prec(q)

Figure 10: Effectiveness for three md-queries, measured in terms of global support, level
density, and measure density

Along with the results, the indicators show that levelDensity(q′) = 0.51 and

measureDensity(q′) = 0.61. The low values of both densities tell the users

that either some mappings are missing (in that case, the user can go back to

the schema integration stage to check the local schemas and possibly add some

mapping she had overlooked) or the data is incomplete. In both cases, the

results are not really useful, as many values are missing and those that are

present may have fallen into uncertain groups (i.e., those for which a balancing

strategy is applied).

To improve the quality of the results, the user formulates a new query

45

q′′ trying to filter out the session for which the data is missing. One op-

tion is to exclude short-lasting sessions (i.e., where DurationMins ≥ 30); the

other is to consider only sessions of a given type (e.g., where SessionType =

“AdvancedProgram”). Given the presence of a profiling rule on SessionType, the

user knows in advance that the second filter will lead to levelDensity(q′′) = 1

and measureDensity(q′′) = 0.73, because the query will be restricted to local

schemas s1 (where both Facility.Chain and User.Age are present) and s4 (where

only Facility.Chain is present). Thus, the user issues the following md-query:

q′′ = 〈{Facility.Chain},SessionType = “AdvancedProgram”,User.Age, avg〉

Although the measure density is not substantial, the level density is high enough

to guarantee a reliable reading of the results, as no values have been aggregated

in uncertain groups. Moreover, group measure density helps the user in iden-

tifying the groups for which the result is most reliable: among the 103 chains,

over 30% of them have a group measure density greater than 0.95 in q′′. An

analytical tool may display the results with a heat map for an intuitive reading.

Finally, the user wants to see the results from a different perspective by

formulating a query q′′′ that drills down from Facility.Chain to Facility.Name:

q′′′ = 〈{Facility.Name},SessionType = “AdvancedProgram”,User.Age, avg〉

Since acc(Facility.Name Facility.Chain) = 0.98, the user is aware that the

results of q′′′ are not completely consistent with those of q′′. However, the

high accuracy indicates that there is only a small error in the data, hinting

to the fact that this could be simply due to the presence of facilities with the

same name that belong to different chains. Ultimately, this points the user

towards the correct decomposition, which can be obtained by grouping by both

Facility.Chain and Facility.Name in query q′′′′:

q′′′′ = 〈{Facility.Chain,Facility.Name},SessionType = “AdvancedProgram”,User.Age, avg〉

46

8. Related literature

The rise of NoSQL stores has captured a lot of interest from the research

community, which has proposed a variety of approaches to deal with the schema-

less feature. Early works had already focused on schema discovery from web

data [21] and XML objects [22], but the attention has now shifted to the widely

adopted JSON format and to key/value repositories in general. Dealing with

schemaless sources often requires the adoption of data integration techniques

[23] to provide a unified view of the diverse available data —much like in the

integration or federated querying of different databases [2, 24]. As this is not

the primary focus of the paper, we refer the reader to a recent survey on the

subject [25].

A first distinction from the closely related works lies in how each of them

approaches the problem of schema discovery. Some works aim at providing a

comprehensive view of the schema variety in JSON documents; e.g., [7] proposes

a reverse engineering process to derive a versioned schema model, where multiple

versions of the same field are created for every intensional variation detected in

the collection. Other works provide a more concise representation that tends

to hide schema variety. For instance, [6] couples a clustering technique with

schema matching techniques to identify a skeleton containing the smallest set of

core fields, [10] simply models the union of all the fields in a collection, while [5]

adopts regular expressions to model the variability of a field type. Our work is

closer to the latter group, although our global schema captures the entire variety

of fields and enables the user to choose the fields to focus on, while assisting

her with quality indicators of the final queries. Several free tools have also

been released to perform schema detection on different platforms (MongoDB,

ElasticSearch, Couchbase, Apache Drill), although they are mostly limited to

collecting the union of the fields. In a previous work [1] we followed a different

approach and devised a schema profiling algorithm that explains the schema

variety in a collection in terms of the extensional values found in the documents

(e.g., it could find that different schemas depend on the different values for

47

SessionType).

The most distinguishing feature of our approach is the definition of a mul-

tidimensional representation of the schema in order to enable OLAP analyses

directly on the DOD. From this point of view, a work closely related to ours

is [15], which proposes a schema-on-read approach for md-queries over DODs.

They build a multidimensional schema from the union of fields found in the

collection; then, the OLAP experience is proposed at query time, giving sugges-

tions for roll-up and drill-down operations based on the last query formulated

by the user. The work in [15] differs from our under several aspects:

• [15] exclusively focuses on the multidimensional representation of JSON

data and overlooks the schemaless property of DODs: in particular, inter-

document variety is considered only in terms of fields with varying support.

Conversely, our approach proposes the schema extraction and schema in-

tegration phases to fully capture inter-document variety and maximize the

support of each field.

• AFD detection is covered by both approaches; however, in [15] it is ac-

tivated on demand only after the user has written a query. We believe

this represents a limitation, as the user discovers hierarchies only by issu-

ing queries. Also, [15] proposes pruning rules for AFD detection, but our

strategy improves them by also taking transitivity into consideration.

• As to querying, [15] provides limited support to the OLAP experience (due

to the aforementioned absence of an integration step and of a comprehen-

sive FD enrichment), while no support is given to the user to evaluate

queries and OLAP operations in terms of level density, measure density

and accuracy.

Another similar work is [26], which proposes a MapReduce-based algorithm

to compute OLAP cubes on columnar stores. The approach is meant to work

on a data warehouse (i.e., a database already comprising facts and dimensions);

besides, it is limited to the computation of the cubes, while the querying aspect

48

is mentioned as future work. Also [27] aims at delivering the OLAP experi-

ence, but its operational data source is a graph-based database, whose data

model is entirely different from the one of DODs. Finally, [28] builds on [6] to

propose a complete architecture that ingests NoSQL data and provides schema-

on-read functionalities, but without mentioning multidimensional enrichment

and OLAP analyses.

On the issue of schema variety on DODs, [29] is a recent work that builds

on a simple mapping strategy to hide the variety within a single, comprehensive

query. Whereas the approach promisingly proposes a simpler querying mecha-

nisms, it only covers a limited set of schema variants and does not support the

OLAP scenario.

Since schema variety in a collection often consists of different representation

of the same data (e.g., due to schema evolution or to the ingestion of data

from different sources), the problem of schema discovery is often coupled with

schema matching algorithms. [30] provides a comprehensive summary of the

different techniques envisioned for generic schema matching (which ranges from

the relational world to ontologies and XML documents); it is mentioned as a

baseline reference in [6], while [31] starts from there to define its own algorithm

for schema matching on NoSQL stores based on subtree matching. In [32] a

tool is presented to automatically identify evolution in the schema of instances

in NoSQL databases: once a schema change is detected, the tool either updates

the database instances to enforce schema consistency or provides a code to deal

with this issue on the application side. This structured approach differs from

our schema-on-read scenario, which transparently handles schema differences

and avoids to update the original data.

Several works have focused on bringing NoSQL back to the relational world.

[33] discusses an approach to provide schema-on-read capabilities for flexible

schema data stored on RDBMSs; this is done by mapping the document struc-

ture on different tables and by providing a data guide as the union of every

possible field at any level. Differently from our approach, no advanced schema

matching mechanism is provided. [34] proposes an algorithm to provide a generic

49

relational encoding of arbitrary JSON documents; in particular, documents are

stored in ternary relations that contain rows for every key in every document

(i.e., each row stores the document id, the key name, and the key value). A

more sophisticated algorithm is proposed in [31], where normalized relational

schemas are automatically generated from NoSQL stores. It relies on AFD de-

tection to build relationships between entities and it provides its own schema

matching algorithm. Based on this approach, a vision for a new paradigm called

adaptive schema databases has been proposed in [35]; it is a conceptual frame-

work that devises global schemas as time-evolving and user-dependent relational

views that are mapped to local schemas via probabilistic mappings —whereas

mappings are deterministic in our approach.

The work we present in this paper is based on [3], where the approach was

originally motivated and introduced. Here we have improved our previous work

under several substantial aspects: (i) the integration method we adopt to build

the global schema is explained; (ii) the procedure to explore the space of all

possible AFDs is formalized; (iii) the algorithms for the composition of the

MongoDB queries are formalized; (iv) the discussion of the query indicators

has been extended to evaluate both the whole query and the single groups in

the result and to predict the value of the indicators before executing the query

(to improve the accuracy of the prediction, also the possibility of adopting a

schema profiling technique [1] is considered); (v) an experimental evaluation is

presented to discuss the prototypical environment and to evaluate the schema

extraction and FD enrichment phases in terms of efficiency and effectiveness.

9. Conclusions

In this paper we have presented an original approach to OLAP on DODs.

Our basic claim is that the heterogeneity and schema variety intrinsic to DODs

should be considered as a source of information wealth and showed to users

together with quality indicators that assess its impact. At the core of our ap-

proach are (i) the building of a global schema that maps onto the different

50

local schemas within a collection, (ii) the translation of this schema into mul-

tidimensional form enhanced by the detection of approximate FDs, and (iii)

the reformulation of queries from the global schema onto the local schema to

improve the completeness of the result. After describing in detail the different

phases of our approach, we have experimentally evaluated it from the points of

view of efficiency and effectiveness.

As part of our future work we plan to make several improvements to the

approach, on both its theoretical grounds and its technological implementation.

The first step will be to increase the efficiency of the querying phase. Though

the query execution times depend on the performance of MongoDB, we argue

that a more sophisticated optimization of query reformulation may reduce the

impact of issuing separate queries for each local schema. In this direction, we

will evaluate techniques such as [29] that overcome the same problem by issuing

a single but more complex query. Another aspect to consider is the introduction

of online repairing of AFDs [36, 37, 38]: the idea is to automatically repair the

errors in AFDs at query time, so that the user can directly receive the correct

results without the need to modify the original data. Another direction is to

broaden the scope of the approach to a scenario with multiple collections, thus

extending the support to the whole DOD. On the implementation side, we aim to

build a fully working prototype. Also, since DODs usually provide connectors to

big data tools (e.g., Apache Spark), we will evaluate alternative query languages

and execution engines to enhance the performance and expressiveness of the

approach.

References

[1] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema profiling of document-oriented

databases, Inf. Syst. 75 (2018) 13–25.

[2] M. Golfarelli, F. Mandreoli, W. Penzo, S. Rizzi, E. Turricchia, OLAP query

reformulation in peer-to-peer data warehousing, Inf. Syst. 37 (5) (2012)

393–411.

51

[3] E. Gallinucci, M. Golfarelli, S. Rizzi, Variety-aware OLAP of document-

oriented databases, in: Proc. DOLAP, Vienna, Austria, 2018.

[4] O. Romero, A. Abelló, Multidimensional design by examples, in: Proc.

DaWaK, Krakow, Poland, 2006, pp. 85–94.

[5] M. A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, C. Sartiani, Schema

inference for massive JSON datasets, in: Proc. EDBT, Venice, Italy, 2017,

pp. 222–233.

[6] L. Wang, S. Zhang, J. Shi, L. Jiao, O. Hassanzadeh, J. Zou, C. Wangz,

Schema management for document stores, Proc. VLDB Endowment 8 (9)

(2015) 922–933.

[7] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring versioned schemas from

NoSQL databases and its applications, in: Proc. ER, 2015, pp. 467–480.

[8] J. L. C. Izquierdo, J. Cabot, Discovering implicit schemas in JSON data,

in: Proc. ICWE, 2013, pp. 68–83.

[9] C. Batini, M. Lenzerini, S. Navathe, A comparative analysis of method-

ologies for database schema integration, ACM Computing Surveys 18 (4)

(1986) 323–364.

[10] M. Klettke, U. Störl, S. Scherzinger, O. Regensburg, Schema extraction

and structural outlier detection for JSON-based NoSQL data stores., in:

Proc. BTW, Vol. 2105, 2015, pp. 425–444.

[11] S. Maßmann, S. Raunich, D. Aumüller, P. Arnold, E. Rahm, Evolution of

the COMA match system, in: Proceedings of the 6th International Work-

shop on Ontology Matching, Bonn, Germany, October 24, 2011, 2011.

[12] I. F. Ilyas, V. Markl, P. Haas, P. Brown, A. Aboulnaga, CORDS: Auto-

matic discovery of correlations and soft functional dependencies, in: Proc.

SIGMOD, 2004, pp. 647–658.

52

[13] B. Vrdoljak, M. Banek, S. Rizzi, Designing web warehouses from XML

schemas, in: Proc. DaWaK, 2003, pp. 89–98.

[14] M. Golfarelli, S. Graziani, S. Rizzi, Starry vault: Automating multidimen-

sional modeling from data vaults, in: Proc. ADBIS, 2016, pp. 137–151.

[15] M. L. Chouder, S. Rizzi, R. Chalal, EXODuS: Exploratory OLAP over

document stores, Inf. Syst. 79 (2019) 44–57.

[16] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, TANE: An efficient al-

gorithm for discovering functional and approximate dependencies, Comput.

J. 42 (2) (1999) 100–111.

[17] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, What can hierarchies

do for data warehouses?, in: Proc. VLDB, Edinburgh, Scotland, 1999, pp.

530–541.

[18] M. Golfarelli, S. Rizzi, Data warehouse design: Modern principles and

methodologies, McGraw-Hill, Inc., 2009.

[19] H. Lenz, A. Shoshani, Summarizability in OLAP and statistical data bases,

in: Proc. SSDBM, 1997.

[20] F. Naumann, J. C. Freytag, U. Leser, Completeness of integrated informa-

tion sources, Inf. Syst. 29 (7) (2004) 583–615.

[21] S. Nestorov, J. Ullman, J. Wiener, S. Chawathe, Representative objects:

Concise representations of semistructured, hierarchical data, in: Proc.

ICDE, 1997, pp. 79–90.

[22] J. Hegewald, F. Naumann, M. Weis, XStruct: Efficient schema extraction

from multiple and large XML documents, in: Proc. ICDE Workshops, 2006,

pp. 81–81.

[23] M. Lenzerini, Data integration: A theoretical perspective, in: Proceed-

ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on

53

Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, 2002,

pp. 233–246.

[24] J. Koh, A. L. P. Chen, Efficient query processing in integrated multiple

object databases with maybe result certification, IEEE Trans. Knowl. Data

Eng. 14 (4) (2002) 691–708.

[25] B. Golshan, A. Y. Halevy, G. A. Mihaila, W. Tan, Data integration:

After the teenage years, in: Proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2017, Chicago, IL, USA, May 14-19, 2017, 2017, pp. 101–106.

[26] K. Dehdouh, Building OLAP cubes from columnar NoSQL data ware-

houses, in: Proc. MEDI, Almeŕıa, Spain, 2016.

[27] A. Castelltort, A. Laurent, NoSQL graph-based OLAP analysis, in: Proc.

KDIR, Rome, Italy, 2014, pp. 217–224.

[28] R. Hai, S. Geisler, C. Quix, Constance: An intelligent data lake system, in:

Proc. SIGMOD, San Francisco, USA, 2016, pp. 2097–2100.

[29] H. B. Hamadou, F. Ghozzi, A. Péninou, O. Teste, Towards schema-

independent querying on document data stores, in: Proceedings of the 20th

International Workshop on Design, Optimization, Languages and Analyti-

cal Processing of Big Data co-located with 10th EDBT/ICDT Joint Con-

ference (EDBT/ICDT 2018), Vienna, Austria, March 26-29, 2018., 2018.

[30] E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema

matching, VLDB J. 10 (4).

[31] M. DiScala, D. J. Abadi, Automatic generation of normalized relational

schemas from nested key-value data, in: Proc. SIGMOD, San Francisco,

USA, 2016, pp. 295–310.

[32] S. Scherzinger, E. C. de Almeida, T. Cerqueus, L. B. de Almeida,

P. Holanda, Finding and fixing type mismatches in the evolution of object-

NoSQL mappings, in: Proc. Workshops EDBT/ICDT, 2016.

54

[33] Z. H. Liu, D. Gawlick, Management of flexible schema data in RDBMSs -

opportunities and limitations for NoSQL, in: Proc. CIDR, Asilomar, USA,

2015.

[34] C. Chasseur, Y. Li, J. M. Patel, Enabling JSON document stores in rela-

tional systems, in: Proc. WebDB, New York, USA, 2013, pp. 1–6.

[35] W. Spoth, B. S. Arab, E. S. Chan, D. Gawlick, A. Ghoneimy, B. Glavic,

B. C. Hammerschmidt, O. Kennedy, S. Lee, Z. H. Liu, X. Niu, Y. Yang,

Adaptive schema databases, in: Proc. CIDR, Chaminade, USA, 2017.

[36] Y. Gao, X. Miao, Query Processing over Incomplete Databases, Synthesis

Lectures on Data Management, Morgan & Claypool Publishers, 2018.

[37] S. De, Y. Hu, Y. Chen, S. Kambhampati, Bayeswipe: A multimodal system

for data cleaning and consistent query answering on structured bigdata, in:

2014 IEEE International Conference on Big Data, Big Data 2014, Wash-

ington, DC, USA, October 27-30, 2014, 2014, pp. 15–24.

[38] J. Garćıa-Garćıa, C. Ordonez, Repairing OLAP queries in databases with

referential integrity errors, in: DOLAP 2010, ACM 13th International

Workshop on Data Warehousing and OLAP, Toronto, Ontario, Canada,

October 30, 2010, Proceedings, 2010, pp. 61–66.

55

