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Abstract: This paper examines the effects of weather shocks on agricultural yields. Using data on 

wheat and corn yields from seven Italian provinces over the period 1866-2014. We find that 

the effects of weather shocks are asymmetric, with much larger impacts on the lower tail of 

the distribution than the upper tail. The analysis also shows slow dynamic adjustments. This 

indicates that negative shocks have significant and persistent effects on agricultural 

productivity.  
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Weather Shocks and their Long-Term impact on Agricultural Yields:  

Evidence from Italy  

 

1. Introduction 

A large body of literature has analyzed the impact of climatic factors and shocks in 

agriculture (e.g., Mendelsohn et al., 1994; Maddison, 2000; Parry et al., 2004; Lobell and Field 

2007; Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009; Hertel et al., 2010; Lobell 

et al., 2011; De Salvo et al., 2013; Bassu et al. 2014; Rosenzweig et al., 2014; Di Falco and 

Veronesi, 2014; Van Passel et al., 2016). Of special concerns are the effects of heat stress and 

drought on crop yields (e.g., Lobell et al., 2013, 2014). Related issues are the adverse effects of 

climate change and its implications for agricultural productivity growth (e.g., Brisson et al., 

2010; Ray et al., 2012) and agricultural risk (e.g., Kim et al. 2014; Lunt et al., 2016). The 

dynamic effects of weather shocks on the probability distribution of agricultural production 

remain, however, poorly understood. This implies a need to study how weather shocks affect 

yield distributions and their dynamics. The objective of this paper is to explore such issues, with 

an application to crop yields in Italy. This paper presents an empirical investigation of how 

weather shocks, measured as annual differences from the long term rainfall and temperature 

means, affects the distribution of agricultural production using a dynamic quantile autoregression 

(QAR) approach (Koenker and Xiao, 2006). A QAR model provides a flexible representation of 

the distribution of crop yields. It also allows for yield dynamics to vary across quantiles of the 

distribution (Koenker and Xiao, 2006; Chavas and Di Falco, 2017). Estimating QAR models of 
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crop yields provides the information needed to understand the role of weather shocks and their 

effects on agricultural productivity both in the short run and in the long run.  

We use crop yield data for wheat and corn in seven Italian provinces over the period 

1866-2014. This dataset provides a great case study for three reasons. First, Italy exhibits large 

agroclimatic variations, going from a relatively cool climate in the North to a moderate climate 

in the center and to a hotter and drier Mediterranean climate in the South. Second, the analysis 

covers a century. The long data period is important for our analysis as it allows estimating the 

evolution of yield distributions, with special attention given to estimated patterns in the lower tail 

of the distributions. Third, the investigation focuses on two major grains that differ in their 

response to adverse weather shocks. Corn is more productive under favorable weather 

conditions, while wheat is more drought tolerant.  

The key results are as follows. First, we show that the effects of weather shocks are 

asymmetric, with much larger impacts on the lower tail of the distribution than on the upper tail. 

Second, we document how these effects vary across provinces and across crops.  Third, we find 

slow dynamic adjustments, indicating that weather shocks have significant long-term effects on 

agricultural productivity. These novel results contribute to two broad strands of literature in 

agricultural and resource economics. First, and most obvious, is the expanding literature using 

cross sectional analysis, structural approaches and panel data to estimate the impact of climatic 

factors in agriculture (e.g., Mendelsohn et al., 1994; Schlenker et al., 2006; Deschenes and 

Greenstone, 2007; Lobell et al., 2011; Fisher et al., 2012).  This paper is the first to adopt a 

dynamic approach to understand how weather conditions affect crop yields and their dynamics. 

The second strand of related literature is the one on risk exposure and climatic shocks. Shocks 

such as droughts or floods are indeed important contributors to food production risk (e.g., Adams 
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et al., 1990; Mearns et al., 1997; Mendelsohn, 2007; Lobell and Field, 2007; Rozensweig et al., 

2014; IPCC, 2014; Nelson et al., 2014). Crop failures correspond to events located in the lower 

tail of the yield distribution. This paper provides a study of how weather shocks affect the lower 

tail of the yield distribution and how the effects can differ in the short run versus the longer run. 

Assessing such issues is also relevant in evaluating the resilience of agro-ecosystems and their 

ability to recover from adverse shocks (e.g., Chavas and Di Falco, 2017).  

The paper is organized as follows. Section 2 presents a general model of yield dynamics 

and its QAR representation. Sections 3 and 4 report the estimated QAR model applied to wheat 

yield and corn yield in Italy. The implications of the results are discussed in section 5. Finally, 

section 6 concludes. 

 

2. The Model 

This section presents our conceptual model. Consider an agricultural production system 

exhibiting productivity 𝑦𝑡�ℝ at time 𝑡. The crop productivity evolves over time according to the 

𝑚-th order stochastic difference equation  

𝑦𝑡=𝑓(𝑦𝑡−1,…,𝑦𝑡−𝑚, 𝑧𝑡,𝑒𝑡), (1) 

where 𝑧𝑡 is a vector of exogenous variables and 𝑒𝑡 is a vector of random variables with a given 

distribution function.. Equation (1) can be alternatively written as  

𝑤𝑡≡𝑦𝑡𝑦𝑡−1�𝑦𝑡−𝑚+1=𝑓𝑦𝑡−1,…,𝑦𝑡−𝑚,𝑧𝑡,𝑒𝑡𝑦𝑡−1�𝑦𝑡−𝑚+1≡𝑔(𝑤𝑡−1, 𝑧𝑡,𝑒𝑡), (2) 

Under the differentiability of 𝑓(�) and evaluated at point (𝑤𝑡−1,𝑧𝑡,𝑒𝑡), consider the 

(𝑚×𝑚) Jacobian matrix 𝐷𝑤𝑡−1,𝑧𝑡,𝑒𝑡=𝜕𝑔(𝑤𝑡−1,𝑧𝑡,𝑒𝑡)/𝜕𝑤𝑡−1. Let the Eigenvalues of 
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𝐷𝑤𝑡−1,𝑧𝑡,𝑒𝑡 be (𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡,…,𝜆𝑚(𝑤𝑡−1,𝑧𝑡,𝑒𝑡)), where 𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡 is the dominant 

root with the largest modulus |𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡|. The Eigenvalues provide useful information about 

the dynamics of 𝑦𝑡. Around point (𝑤𝑡−1,𝑧𝑡,𝑒𝑡), the local forward trajectory of 𝑦𝑡 diverges 

(converges) if 𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡>1 (<1), with ln(|𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡|) measuring the rate of 

divergence of neighboring forward paths (Wiggins, 2003). When 𝑓(𝑦𝑡−1,…,𝑦𝑡−𝑚, 𝑧𝑡,𝑒𝑡) is 

linear in (𝑦𝑡−1,…,𝑦𝑡−𝑚), the system exhibits linear dynamics and the roots (𝜆1,…,𝜆𝑚) are 

independent of (𝑤𝑡−1,𝑧𝑡,𝑒𝑡). In particular, the system is globally stable (unstable) if 𝜆1<1 

(>1). In situations where (𝑤𝑡−1,𝑧𝑡,𝑒𝑡) are held constant over time, global stability means that 

lim𝑡→∞𝑦𝑡→𝑦𝑒, 𝑦𝑒 being a unique steady state equilibrium that is eventually reached under any 

initial condition 𝑦0 (Wiggins, 2003). Alternatively, the system exhibits non-linear dynamics 

when 𝑓𝑦𝑡−1,…,𝑦𝑡−𝑚, 𝑧𝑡,𝑒𝑡 is non-linear in (𝑦𝑡−1,…,𝑦𝑡−𝑚). Then, the root 𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡 

provides information about local system dynamics. If 𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡<1 for all 𝑤𝑡−1,𝑧𝑡,𝑒𝑡, the 

system would exhibit dynamic stability everywhere. Alternatively, if 𝜆1𝑤𝑡−1,𝑧𝑡,𝑒𝑡>1 for 

𝑤𝑡−1,𝑧𝑡,𝑒𝑡�𝑁, then the dynamic system would tend to escape the neighborhood 𝑁 over time. 

When the neighborhood 𝑁 is undesirable, the dynamic escape from this neighborhood may be 

good if the system moves toward more desirable states. This would correspond to a resilient 

system that recovers from adverse shocks (Chavas and Di Falco, 2017).  
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Let 𝐹𝑐| 𝑤𝑡−1,𝑧𝑡=𝑃𝑟𝑜𝑏{𝑓𝑦𝑡−1,…,𝑦𝑡−𝑚, 𝑧𝑡,𝑒𝑡≤𝑐} be the cumulative distribution 

function of 𝑦𝑡 conditional on 𝑤𝑡−1, 𝑧𝑡. We will be interested in the associated conditional 

quantile function 𝑄𝑞 𝑤𝑡−1,𝑧𝑡) defined as the inverse of the distribution function: 𝑄𝑞 

𝑤𝑡−1,𝑧𝑡)=𝑀𝑖𝑛𝑐{𝑐:𝐹𝑐𝑤𝑡−1,𝑧𝑡)≥𝑞}, 𝑞�(0, 1).2 We will focus our attention on the case where 

the quantile function takes the form  

𝑄𝑞𝑤𝑡−1,𝑧𝑡)=𝛼𝑞,𝑧𝑡+𝑖−1𝑚𝛽𝑖(𝑞, 𝑤𝑡−1,𝑧𝑡) 𝑦𝑡−𝑖 ,  (3) 

where 𝛼𝑞,𝑧𝑡 and (𝛽1𝑞, 𝑤𝑡−1,𝑧𝑡,…,𝛽𝑚𝑞,𝑤𝑡−1, 𝑧𝑡) involve parameters to be estimated using 

quantile regression (Koenker, 2005). Allowing 𝛼𝑞,𝑧𝑡 to vary with (𝑞,𝑧𝑡) permits the specification 

(3) to represent any conditional distribution function with arbitrary moments (i.e., mean, 

variance, skewness and kurtosis). When 𝛽𝑖𝑞, 𝑤𝑡−1,𝑧𝑡 does not dependent on (𝑞,𝑤𝑡−1,𝑧𝑡) for all 

𝑖=1,…,𝑚, the specification (3) reduces to a standard 𝑚-th order autoregression model, AR(m). 

When 𝛽𝑖𝑞,𝑤𝑡−1, 𝑧𝑡 can change with 𝑞 but not with (𝑤𝑡−1,𝑧𝑡) for all 𝑖=1,…,𝑚, (3) corresponds 

to the quantile autoregression model, QAR(m), proposed by Koenker and Xiao (2006). The 

QAR(m) model is more flexible than the AR(m) model in the sense that it allows the 

autoregression parameters 𝛽𝑖(𝑞) to vary across quantiles, thus permitting dynamic adjustments to 

differ with the type of shock (e.g., favorable shock versus adverse shock). More generally, the 

                                                
2 When �=0.5, the quantile �0.5 ��−1,��) is the median of �� conditional on (��−1,��). More generally, when 
��(0,1), the conditional quantile function  �� ��−1,��) provides all the information about the distribution of �� 
and its dynamics.  
 



7 
 

autoregression parameters 𝛽𝑖𝑞, 𝑤𝑡−1,𝑧𝑡 can vary with both 𝑞 and  (𝑤𝑡−1,𝑧𝑡), allowing for 

nonlinear dynamics.  

 

3. Empirical Analysis 

The QAR model presented in section 2 is now applied to two major crops (winter wheat 

and corn) in seven Italian provinces (Milan, Venice, Bologna, Florence, Rome, Naples and 

Palermo). The data involve annual yield for each crop in each province over the period 1900-

2014.The yields are measured in 100 kg per harvest ha. We also use weather data in each 

province, including annual temperature and annual rainfall over the period 1866-2014.3 The data 

were obtained from the Italian Istituto Nazionale di Economia Agraria (INEA). Summary 

statistics of the data are presented in Table 1. In addition, graphs of the data are presented in the 

Appendix for selected regions.  

Table 1 shows that corn yields are much higher than wheat yields (60% higher on 

average). Also, compared to Southern Italy (e.g., the Palermo province in Sicily), Northern Italy 

(e.g., the Milan province in Lombardia) exhibits higher yields and faces lower temperature and 

higher rainfall. Contrasting the rainier and cooler North with the drier and hotter South makes it 

an interesting case study of the effects of weather on agricultural productivity. Of special interest 

will be to investigate how these effects vary between wheat and corn.  

                                                
3 Note that we tried to include temperature and rainfall information that is specific to different sub-periods during 
the growing season. Unfortunately, this information was not available over the sample period 1900-2014. As a 
result, our analysis focuses on the effects of annual temperature and rainfall. Studying the effects of weather shocks 
throughout the growing season remains an interesting topic worth further investigations.  
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Let 𝑦𝑘𝑗𝑡 be the yield of the 𝑘-th crop in the 𝑗-th province and the 𝑡-th year. From equation 

(3) applied to the 𝑘-th crop in the 𝑗-th province, we consider the following QAR(m) specification 

for the conditional quantiles of 𝑦𝑘𝑗𝑡  

𝑄𝑞𝑤𝑡−1,𝑧𝑘𝑗𝑡)=𝛼𝑘𝑗𝑞,𝑡+𝑖=1𝑚𝛽𝑘𝑖𝑞,𝑡𝑒𝑚𝑝𝑗𝑡,𝑟𝑎𝑖𝑛𝑗𝑡 𝑦𝑘𝑗,𝑡−𝑖  

+𝑖′=𝑖𝑚𝑖=1𝑚𝛽𝑘𝑖𝑖′𝑞 𝑦𝑘𝑗,𝑡−𝑖𝑦𝑘𝑗,𝑡−𝑖′ + 𝛼𝑝𝑘𝑞 𝑡𝑒𝑚𝑝𝑗𝑡+ 𝛼𝑝𝑝𝑘𝑞𝑡𝑒𝑚𝑝𝑗𝑡2+ 𝛼𝑟𝑘𝑞 𝑟𝑎𝑖𝑛𝑗𝑡 + 

𝛼𝑟𝑟𝑘(𝑞) 𝑟𝑎𝑖𝑛𝑗𝑡2,  (4a) 

where 𝑧𝑘𝑗𝑡=(𝑘,𝑗,𝑡, 𝑡𝑒𝑚𝑝𝑗𝑡, 𝑟𝑎𝑖𝑛𝑗𝑡), 𝑡 denotes the year, 𝑡𝑒𝑚𝑝𝑗𝑡 is temperature in province 𝑗 in 

year 𝑡, and 𝑟𝑎𝑖𝑛𝑗𝑡 is rainfall in province 𝑗 in year 𝑡. Note that the intercept 𝛼𝑘𝑗(𝑞,𝑡) varies across 

crops, provinces and quantiles. It also varies over time to reflect the role of technology. The 

effects of changes in productivity is captured by letting 

 𝛼𝑘𝑗𝑞,𝑡=𝛼𝑘𝑗0𝑞+𝛼𝑘𝑗1𝑞 𝑡1+𝑠=2𝜏𝛼𝑘𝑠𝑞𝑡𝑠,   (4b) 

where 𝑡1=(𝑡−1900), 𝑡𝑠=0𝑡−𝑇𝑠 when 𝑡 <𝑇𝑠≥𝑇𝑠, 𝑠=2,…,𝜏, 𝜏≥2, 𝑇𝑠 being a threshold year 

satisfying 1900<𝑇2<…<𝑇𝜏<2014. The variable 𝑡1 in (4b) is an overall time trend, and 𝑡𝑠 is 

a time trend starting in the year 𝑇𝑠, 𝑠=2,…, 𝜏. The intercept 𝛼𝑘𝑗(𝑞) in (4a)-(4b) can vary across 

crops 𝑘, across provinces 𝑗 and across quantiles 𝑞, providing a flexible representation of spatial 

heterogeneities in the distribution of agricultural productivity. Also, the trend parameter 𝛼𝑘𝑗1(𝑞) 

in (4b) allows the effects of productivity growth to vary across crops, across provinces as well as 

over time.  
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All parameters in (4a)-(4b) are allowed to vary both across quantiles and across crops. 

The temperature and rainfall variables are measured as deviations from province means. In this 

context, the variables  and  capture weather effects in the neighborhood of their means. And the 

variables (𝑡𝑒𝑚𝑝𝑗𝑡)2 and (𝑟𝑎𝑖𝑛𝑗𝑡)2 capture nonlinear weather effects reflecting the adverse 

impact of extreme weather conditions on yield (e.g., Schlenker and Roberts. 2009; Lobell et al., 

2013, 2014). When 𝛽𝑘𝑖𝑞,𝑡𝑒𝑚𝑝𝑗𝑡,𝑟𝑎𝑖𝑛𝑗𝑡 depends on (𝑡𝑒𝑚𝑝𝑗𝑡,𝑟𝑎𝑖𝑛𝑗𝑡), equation (4a) allows 

temperature and rainfall to interact with lagged yields if they affect the dynamics of agricultural 

productivity. Finally, when 𝛽𝑘𝑖𝑖′𝑞≠0, equation (4a) allows for nonlinear dynamics. The 

relevance of these effects will be evaluated below.  

Note the quantile specification in (4a)-(4b) represents the distribution of agricultural 

productivity conditional on three key factors: past productivity (captured by the lagged variables 

𝑦𝑡−𝑖), technology (represented by the trend variables (𝑡1,…𝑡𝜏)), and weather conditions given 

by temperature and rainfall (𝑡𝑒𝑚𝑝,𝑟𝑎𝑖𝑛). As such, the specification (4) is appropriate to 

investigate the effects of technology and weather shocks (e.g., drought, excessive heat). 

Combining the assessment of weather shocks with dynamics is relevant to the extent that agro-

ecological systems respond slowly to such shocks. In this context, the dynamic response of 

agricultural productivity to weather shocks is of significant interest. 

What is the interpretation of the quantile function given in (4a)-(4b)? The specification 

(4a)-(4b) is conditional on technology and weather shocks. In this context, the distribution 

function associated with (4a)-(4b) represents unobservable factors affecting agricultural 

productivity beyond technology and weather shocks. These unobservable factors include 

unpredictable pest damages affecting farm production. More generally, they include all factors 
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not observed by the econometrician (e.g., managerial skills that are known to the farmer but not 

observed by the econometrician). There is interest in investigating the dynamics of these 

unobservable factors as they affect agricultural productivity. For example, we expect the 

dynamics of pest populations to have both short term and longer term effects on crop yield. Also, 

adaptive management can play a role as it allows farmers to react and adjust to unforeseen 

shocks. This seems particularly important in the presence of adverse shocks (e.g., due to drought 

or pest damages).  

The estimation of the parameters in equation (4a)-(4b) requires first choosing a model 

specification. In all cases, equation (4a) includes the variables (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) and (𝑡𝑒𝑚𝑝2, 𝑟𝑎𝑖𝑛2). 

But three sets of issues remain: 1/ choosing the number of lags 𝑚; 2/ choosing the number of 

time trends 𝜏; and 3/ deciding about the role of interactions effects related to (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) and 

lagged yields 𝑦𝑡−𝑖. We consider four possible values for 𝑚: 𝑚�{1,2,3,4}, and two possible 

values for 𝜏: 𝜏=3 with 𝑇2=1940 and 𝑇3=1980, and 𝜏=4 with 𝑇2=1930, 𝑇3=1960 and 

𝑇4=1990.  Finally, concerning interaction variables, we consider 4 models: “Model a” includes 

interactions between lagged yields 𝑦𝑡−𝑖 and (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛); “Model b” includes lagged yields 

interacting 𝑦𝑡−𝑖 with (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) and with lagged yields 𝑦𝑡−𝑖′; “Model c” includes only lagged 

yields interactions (𝑦𝑡−𝑖×𝑦𝑡−𝑖′); and “Model d” has no interaction effects involving lagged 

yields. In a preliminary analysis, these alternative AR(m) specifications were estimated and 

evaluated using the Bayesian Information Criterion (BIC) (Schwarz, 1978). The results are 

reported in Table 2.  For both wheat and corn, the BIC criterion was minimized for m = 3, 

reflecting the presence of significant dynamics in agricultural productivity. On that basis, the 
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analysis presented below relies on autoregressive models of order 3, AR(3). Also, for both wheat 

and corn, the BIC criterion selected 𝜏=3 (i.e., with 3 time trends) and “Model c” (with lagged 

yields interactions (𝑦𝑡−𝑖×𝑦𝑡−𝑖′)). The effects of lagged-yield interactions (𝑦𝑡−𝑖×𝑦𝑡−𝑖′) 

indicate the presence of nonlinear dynamics in agricultural productivity.  

The estimates of the model selected by the BIC criterion (i.e., AR(3) applied to “Model 

c” with 𝜏=3, 𝑇2=1940 and 𝑇3=1980) are presented in Table 3 for wheat and corn. Although 

the AR(3) estimates should be seen as preliminary (given the QAR results presented below), 

Table 3 provides some insights on the determinants of crop yield. First, the lagged coefficients 

are highly significant, providing statistical evidence that productivity dynamics is important in 

agriculture. Second, the trend variables 𝑡2 are positive and significant for both wheat and corn, 

documenting the presence of much technological progress after 1940. Yet the effects of 𝑡3 are 

negative and significant, reflecting a decline in productivity growth after 1980. Third, Table 3 

reports how the weather variables (𝑡𝑒𝑚𝑝,𝑟𝑎𝑖𝑛) affect crop yields. It shows that the coefficient of 

𝑡𝑒𝑚𝑝 and 𝑟𝑎𝑖𝑛 are highly significant, 𝑡𝑒𝑚𝑝  being negative while 𝑟𝑎𝑖𝑛 being positive. It also 

shows that the coefficient of 𝑟𝑎𝑖𝑛2 is negative and highly significant for both wheat and corn, 

indicating that extreme rainfall patterns have adverse effects on crop productivity. Such effects 

are further discussed and evaluated below.  

 

4. Econometric results 

This section presents the estimation of a quantile autoregression (QAR) model given in 

(4a)-(4b). Following the preliminary analysis presented in section 3, we focus our attention on a 
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QAR(3) model where 𝑚 = 3, 𝜏=3 (with 𝑇2=1940 and 𝑇3=1980) and including lagged yields 

interactions (𝑦𝑡−𝑖×𝑦𝑡−𝑖′). Following Koenker (2005) and Koenker and Xiao (2006), under 

some regularity conditions, the quantile estimation of (4a)-(4b) generates consistent estimate of 

the parameters. Applied to Italian yield data, the estimated parameters are reported in Table 4 for 

wheat and in Table 5 for corn for selected quantiles 𝑞=(0.1, 0.3, 0.5, 0.7, 0.9). The 

standard errors of the parameters are evaluated using bootstrapping.  

Tables 4 and 5 show that the lagged yields (𝑦𝑡−1,𝑦𝑡−2,𝑦𝑡−3) have coefficients that are 

statistically significant for all quantiles. This indicates the presence of much dynamics in the 

distribution of agricultural productivity. Also, the terms (𝑦𝑡−𝑖×𝑦𝑡−𝑖′) have sometimes 

statistically significant effects, reflecting the presence of nonlinear dynamics (e.g., the case of  

(𝑦𝑡−1×𝑦𝑡−3) for wheat or of (𝑦𝑡−1×𝑦𝑡−2,𝑦𝑡−12, 𝑦𝑡−32) for corn). As further discussed 

below, productivity adjustments are slow, indicating that longer term productivity effects can be 

much larger than corresponding short term effects. The time trend variables (𝑡1,𝑡2,𝑡3) and the 

weather variables (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) often exhibit statistical significance, but their effects tend to vary 

across quantiles. The differences across quantiles presented in Tables 4 and 5 document how 

weather and technology affect the yield distributions for Italian wheat and corn. Such differences 

also highlight the usefulness of the quantile approach to yield analysis.    

For both wheat and corn, Tables 4 and 5 show that the impact of the overall time trend 𝑡1 

is negative and statistically significant in the lower quantiles but it is positive in the upper 

quantiles. This identifies an increase in the spread of yield distributions over time, implying a 
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rise in yield variability. The parameter estimates for the variable 𝑡2 (time trend after 1940) also 

vary across quantiles. For both wheat and corn, the estimates of 𝑡2 effects are positive and 

statistically significant in the lower quantiles. This means that technological progress in Italian 

agriculture has contributed to a decline in the probability of facing low yields over the last few 

decades. But the effects of 𝑡2 differ between wheat and corn in the upper quantiles. At the 0.9 

yield quantile, Tables 4 and 5 show that 𝑡2 has a positive and significant impact for corn but a 

negative and insignificant impact for wheat. It means that, over the period 1940-1980, the 

prospects of obtaining high yields have continued to improve for corn but less so for wheat. This 

provides evidence that the contributions of technological progress to higher yields are stronger 

for corn than for wheat.  Finally, the effects of 𝑡3 are negative across quantiles for both wheat 

and corn; and they are statistically significant for all but the 0.9 quantile. This indicates that the 

rate of productivity growth has declined after 1980. The effects of 𝑡3 being negative and 

statistically significant in the lower quantiles mean that, while controlling for weather shocks, the 

last few decades have seen increasing exposure to the risk of facing lower yields.    

The impacts of the weather variables (𝑡𝑒𝑚𝑝,𝑟𝑎𝑖𝑛) are also reported in Tables 4 and 5. For 

both wheat and corn, the coefficients of temperature 𝑡𝑒𝑚𝑝 are not statistically significant in the 

upper quantiles. This indicates that the effects of temperature on Italian agriculture are located in 

the lower quantiles of the yield distributions. But such effects vary with the crop. For wheat in 

the 0.1 quantile 𝑡𝑒𝑚𝑝 has a negative effect while 𝑡𝑒𝑚𝑝2 has a positive effect (both statistically 

significant). As documented below, this reflects the adverse effects of heat waves on wheat yield.  
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For corn, the coefficients of 𝑡𝑒𝑚𝑝2 are not statistically significant. But 𝑡𝑒𝑚𝑝 has negative and 

statistically effects for the 0.1 and 0.3 quantiles. As discussed below, such effects reflect the 

strong adverse impacts of heat waves on corn yield.  

For both wheat and corn, the coefficients of 𝑟𝑎𝑖𝑛 are all positive and most are statistically 

significant. This reflects that, at least around sample means, rainfall contributes positively to 

agricultural productivity. However, from Tables 4 and 5, the coefficients of (𝑟𝑎𝑖𝑛2) are 

consistently negative for both wheat and corn, and most are statistically significant. This reflects 

the adverse impacts of extreme rainfall conditions on agricultural productivity. We document 

below that such adverse effects are associated with low rainfall (droughts).  

 

5. Discussion 

The quantile regression estimates reported in tables 4 and 5 provide useful information 

about the determinants of the distribution of agricultural yields in Italy. In this section, these 

estimates are used to gain additional insights on the role of weather shocks and the factors 

affecting farm productivity. Our analysis proceeds in three steps: 1/ we assess the evolving 

distribution of crop yields in Italy; 2/ we evaluate the effects of weather shocks on yield 

distribution; and 3/ we investigate the nature of yield dynamics.  

First, we use our quantile regression estimates to simulate the distribution of crop yields 

during our sample period. The simulation results are reported in Figures 1-2 for three selected 

provinces: Milan, Rome and Palermo. Figure 1 shows the simulated distribution of wheat yield 

for 5 quantiles 𝑞=(0.1, 0.3, 0.5, .0.7, 0.9), 𝑞=0.5 corresponding to the median yield. 

Figure 1a displays the evolving distribution of wheat yield in the Milan province. It reveals three 
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interesting results. First, the overall trend is positive, reelecting the impact of technological 

progress on wheat productivity over the last few decades.  Second, the dispersion of the wheat 

yield distribution around its median has increased over time, reflecting higher variability in 

agricultural productivity. Third, Figure 1a shows some decline in productivity trends during the 

2000’s.  As illustrated in Figures A3 and A4 in the Appendix, this was a period when Italian 

agriculture faced significant weather shocks, including heat waves and droughts. In a way 

consistent with Brisson et al. (2010) and Ray et al. (2012), it means that the recent declines in 

Italian crop yields are due in part to weather shocks. In other words, Figure 1a illustrates that 

weather conditions have had adverse impacts on farm productivity during the last 15 years.  

Figure 1b and 1c show similar patterns for wheat yields in different provinces: Rome in 

Figure 1b, and Palermo in Figure 1c. Compared to Milan (in Figure 1a), Figure 1b and 1c 

indicate that productivity is lower in the Central province (Rome) and even lower in the Southern 

province (Palermo). This reflects large differences in agro-ecosystem productivity across Italian 

provinces, with the Northern province having a much more productive agriculture than the 

Southern province.  

Figure 2 reports the simulated distribution of corn yield for three provinces: Milan, Rome 

and Palermo. The patterns are similar to the ones identified in Figure 1. First, there has been 

massive productivity gains over time. Second, Figure 2 shows that adverse weather conditions 

have contributed to some decline in corn yields during the last 15 years. Third, agricultural 

productivity is higher in the Northern province (Milan reported in Figure 2a) than in the Central 

province (Rome reported in Figure 2b), which is higher than in the Southern province (Palermo 

reported in Figure 2c).   
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Next, we re-estimated the quantile yield model under all quantiles and used the estimates 

to evaluate the yield distribution under alternative weather scenarios. The weather scenarios 

involve three temperatures (cold, medium and hot), and three rainfalls (dry, medium and wet). 

Evaluated for the Rome province in 2000, the results are presented in Figure 3 for both wheat 

and corn. In Figure 3, the temperature states (cool, medium and hot) are set to the 0.05, 0.5 and 

0.95 quantiles of the Rome temperatures; and the rainfall states (dry, medium, wet) are set to the 

0.05, 0.5 and 0.95 quantiles of the Rome rainfall. Figure 3 reports how changing weather 

conditions affect the yield distribution for wheat (Figure 3a) and corn (Figure 3b). Figures 3a and 

3b show that hot and dry weather conditions have the most adverse impact on wheat yield as 

well as corn yield. And among all the scenarios evaluated, the most favorable weather conditions 

are cool and rainy. Figures 3 also reveals two important results. First, it shows that the effects of 

weather shocks are asymmetric: while they have small impacts on the upper tail of the yield 

distribution, they have much larger impacts on the lower tail of the distribution. This illustrates 

that adverse weather shocks affect crop yields mostly by increasing the prospects for yield 

reductions. In the face of recent climate change, this can help explain the recent reductions in 

crop yields observed over the last 15 years. Second, comparing Figures 3a and 3b, the effects of 

weather shocks are much larger for corn than wheat. Indeed, evaluated at the median quantile (q 

= 0.5), the largest simulated yield difference due to weather shocks is 400 kg for corn (in Figure 

3b) compared to 150 kg for wheat (in Figure 3a). This reflects that wheat is a much more 

weather-tolerant crop than corn. This illustrates that the effects of weather shocks can vary a lot 

across crops. To the extent that farmers choose the mix of crops they grow, this stresses the 

important role of farm management in dealing with weather shocks.  
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Finally, our estimated QAR(3) model captures dynamic adjustments in agricultural 

productivity. To evaluate the nature of these dynamic adjustments, we evaluated the dominant 

root associated with of the specification given in equation (2) across all quantiles. The results are 

presented in Figure 4 (Figure 4a for wheat and Figure 4b for corn.). Figure 4 shows that the 

dominant root is less than 1 for all quantiles. This means that, conditional on technology and 

weather conditions, productivity dynamics exhibits local stability everywhere. Figures 4a and 4b 

also reveals that the dominant root is in the range [0.8, 1] for all quantiles. These high values 

reflect very slow adjustments over time. They indicate that the dynamic adjustments from one 

period to the next would account for only 10-20 percent of the adjustments toward long run 

equilibrium. Thus, besides their short term effects, weather shocks also have significant long 

term effects on agricultural productivity.  

 

6. Conclusions 

 This paper has investigated the effects of weather shocks on the evolving distribution of 

crop yields.  The analysis involved wheat and corn yield data in seven Italian provinces over the 

last 150 years (from 1866 to 2014). The approach relied on a quantile autoregression (QAR) 

model which provides a flexible representation of how weather shocks affect yield distributions 

and its dynamics. The econometric analysis documents how weather conditions have had adverse 

impacts on farm productivity during the last 15 years (Brisson et al., 2010; Ray et al., 2012). It 

shows large differences in agro-ecosystem productivity across Italian provinces, with the 

Northern province having a much more productive agriculture than the Southern province. We 

find that hot and dry weather conditions have adverse impact on both wheat yield and corn yield. 

One important finding is that weather shocks are asymmetric: they have small impacts on the 
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upper tail of the yield distribution but with much larger impacts on the lower tail of the 

distribution. In other words, adverse weather shocks affect crop yields mostly by increasing the 

prospects for yield reductions. Such effects help explain the recent reductions in crop yields 

observed over the last 15 years. We document how the effects of weather shocks vary across 

crops and across provinces. For example, we find much larger effects for corn than wheat, 

reflecting that wheat is a more weather-tolerant crop than corn. Finally, our estimated QAR 

model captures dynamic adjustments in agricultural productivity. We find very slow adjustments 

over time, indicating that weather shocks also have significant longer term effects on agricultural 

productivity.  

At this point of the paper it is important to emphasize that our empirical findings are 

specific to wheat and corn in seven Italian provinces. The analysis could be extended in several 

directions. First, it would be useful to apply the analysis to different agro-ecosystems. This could 

involve different crops and different provinces. Second, finding that weather effects vary across 

crops indicates that farm management decisions can help farmers adapt to weather conditions. 

Further studies are needed to evaluate the role of management as an adaptive response to climate 

change issues.  
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Table 1: Summary statistics: means and standard deviations.  

 Provinces 

Variables Milan Venice Bologna Florence Rome Naples Palermo 

Wheat yield 
(100 kg/ha) 

27.80 
(15.54) 

27.58 
(15.33) 

27.12 
(14.74) 

21.09 
(10.64) 

 

19.47 
(11.07) 

15.48 
(8.28) 

14.01 
(7.43) 

Corn Yield   
(100 kg/ha) 

44.85 
(32.53) 

44.39 
(32.30) 

45.13 
(32.96) 

34.87 
(24.35) 

 

32.64 
(24.86) 

25.69 
(18.66) 

23.33 
(16.85) 

Temperature 
(degree Celsius) 

13.74 
(0.85) 

13.78 
(0.62) 

14.21 
(0.63) 

14.96 
(0.70) 

 

15.95 
(0.47) 

17.15 
(0.78) 

18.07 
(0.78) 

Rainfall  
(mm per year) 

937.24 
(274.10) 

737.07 
(216.50) 

653.03 
(174.77) 

811.99 
(194.61) 

767.78 
(198.84) 

875.04 
(233.76) 

618.98 
(245.90) 

Note: Based data over the period 1900-2014.  Standard deviations are in parenthesis.  
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Table 2: Model Evaluations using the Bayesian Information Criterion (BIC)  

Number of lags m=1 m=2 m=3 m=4 

Wheat     

Model a 
 

 

 
3425 
3413 

 
3347 
3360 

 
3311 
3334 

 
3342 
3364 

Model b 
 
 

 
3420 
3407 

 
3362 
3369 

 
3325 
3345 

 
3340 
3363 

Model c 
 
 

 
3439 
3419 

 
3350 
3358 

 
3301 
3318 

 
3320 
3337 

Model d 
 

 
 

 
3436 
3469 

 
3363 
3397 

 
3315 
3327 

 
3319 
3333 

Corn     

Model a 
 
 

 
4276 
4228 

 
4151 
4155 

 
4087 
4105 

 
4124 
4138 

Model b 
 
 

 
4269 
4222 

 
4199 
4189 

 
4123 
4138 

 
4143 
4156 

Model c 
 
 

 
4282 
4229 

 
4155 
4155 

 
4082 
4095 

 
4105 
4114 

Model d 
 
 

 
4275 
4297 

 
4200 
4231 

 
4115 
4125 

 
4122 
4130 

Note: The Bayesian Information Criterion (BIC) is evaluated based on data over the period 1900-
2014. In the model specifications, 𝜏 is the number of time trends: 𝜏�{3,4} and 𝑚 is the number of 

lags: 𝑚�{1,2,3,4}. All models include the variables (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) and (𝑡𝑒𝑚𝑝2, 𝑟𝑎𝑖𝑛2). In 
addition, “Model a” includes interactions between lagged yields 𝑦𝑡−𝑖 and (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛); “Model 

b” includes lagged yields 𝑦𝑡−𝑖 interacting with (𝑡𝑒𝑚𝑝, 𝑟𝑎𝑖𝑛) and with lagged yields 𝑦𝑡−𝑖′; 

“Model c” includes only lagged yields interactions (𝑦𝑡−𝑖×𝑦𝑡−𝑖′); and “Model d” has no 
interaction effects involving lagged yields.  
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Table 3: Autoregressive Model for Crop Yield, AR(3).  

Variable Wheat yield, 𝑦𝑡 Corn yield, 𝑦𝑡 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  2.436***  2.908*** 

𝑦𝑡−1  0.292***  0.251*** 

𝑦𝑡−2   0.525***  0.515*** 

𝑦𝑡−3 -0.092  0.104 

𝑦𝑡−12  0.027***  0.025*** 

𝑦𝑡−22  0.016*  0.012** 

𝑦𝑡−32  0.025***  0.014*** 

𝑦𝑡−1×𝑦𝑡−2 -0.030** -0.027*** 

𝑦𝑡−1×𝑦𝑡−3 -0.022 -0.021*** 

𝑦𝑡−2×𝑦𝑡−3 -0.014 -0.002 

𝑡1  0.006 -0.019 

𝑡2  0.107***  0.195*** 

𝑡3 -0.119*** -0.224*** 

𝑡𝑒𝑚𝑝 -0.275** -0.520*** 

𝑡𝑒𝑚𝑝2  0.008 -0.017 

𝑟𝑎𝑖𝑛  2.226***  3.262*** 

𝑟𝑎𝑖𝑛2 -1.859*** -3.156*** 

R-square 0.981 0.988 

Note: Based on data over the period 1900-2014. The estimated model also includes province 

dummies (not reported in the Table). Asterisks represent the significance level: *** at the 1% 

level, ** at the 10% level, and * at the 10% level. The statistical significance was evaluated 

based on bootstrapped standard errors.  
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Table 4: Quantile Autoregressive Model for Wheat Yield, QAR(3).  
  Quantile 𝑞    

Variables 0.1 0.3 0.5 0.7 0.9 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  1.752***  2.558***  2.308***  1.604***  1.176* 

𝑦𝑡−1  0.444***  0.300***  0.343***  0.291**  0.411** 

𝑦𝑡−2   0.631***  0.560***  0.454***  0.560***  0.597*** 

𝑦𝑡−3 -0.280* -0.193 -0.125 -0.053 -0.059 

𝑦𝑡−12 -0.037  0.031  0.018  0.023*  0.011 

𝑦𝑡−22  0.017  0.010  0.011 -0.021  0.004 

𝑦𝑡−32 -0.035  0.027*  0.025*  0.028**  0.016 

𝑦𝑡−1×𝑦𝑡−2 -0.025 -0.027 -0.016  0.012 -0.014 

𝑦𝑡−1×𝑦𝑡−3  0.106** -0.034 -0.020 -0.056** -0.009 

𝑦𝑡−2×𝑦𝑡−3 -0.025 -0.006 -0.016  0.015 -0.009 

𝑡1 -0.033** -0.007  0.014  0.045***  0.041*** 

𝑡2  0.119***  0.137***  0.103***  0.029 -0.006 

𝑡3 -0.106*** -0.136*** -0.129*** -0.092*** -0.046 

𝑡𝑒𝑚𝑝    -0.372** -0.243** -0.070 -0.115 -0.096 

𝑡𝑒𝑚𝑝2  0.068*  0.004 -0.041 -0.042  0.008 

𝑟𝑎𝑖𝑛  1.970***  2.065***  1.845***  1.946***  1.053* 
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𝑟𝑎𝑖𝑛2 -2.104 -2.882*** -1.676* -1.910** -0.618 

Note: Based on data over the period 1900-2014.  The estimated model (4) also includes province 

dummies (not reported in the Table). Asterisks represent the significance level: *** at the 1% 

level, ** at the 10% level, and * at the 10% level. The statistical significance was evaluated 

based on bootstrapped standard errors.  
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Table 5: Quantile Autoregressive Model for Corn Yield, QAR(3).  
  Quantile 𝑞    

Variables 0.1 0.3 0.5 0.7 0.9 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  2.882***  2.457***  2.408***  1.593**  1.795** 

𝑦𝑡−1  0.358**  0.255***  0.245***  0.242*  0.308** 

𝑦𝑡−2   0.396***  0.480***  0.488***  0.625***  0.495*** 

𝑦𝑡−3  0.010  0.121  0.134  0.046  0.158 

𝑦𝑡−12  0.011  0.032***  0.028***  0.017***  0.017 

𝑦𝑡−22  0.013  0.015  0.015  0.023  0.000 

𝑦𝑡−32  0.008  0.012*  0.018***  0.017**  0.013 

𝑦𝑡−1×𝑦𝑡−2 -0.018 -0.037** -0.029** -0.030** -0.009 

𝑦𝑡−1×𝑦𝑡−3 -0.001 -0.023 -0.024 -0.003 -0.025 

𝑦𝑡−2×𝑦𝑡−3 -0.012  0.001 -0.008 -0.025  0.002 

𝑡1 -0.052** -0.043*** -0.019  0.011  0.031 

𝑡2  0.230***  0.217***  0.197***  0.128**  0.084* 

𝑡3 -0.214*** -0.248*** -0.223*** -0.230*** -0.050 

𝑡𝑒𝑚𝑝 -0.885*** -0.431** -0.231  0.069  0.106 

𝑡𝑒𝑚𝑝2  0.068  0.001 -0.072 -0.070 -0.076 

𝑟𝑎𝑖𝑛  2.177**  2.810***  3.004***  3.085***  0.802 
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𝑟𝑎𝑖𝑛2 -1.112 -3.730*** -3.641*** -3.129** -0.614 

Note: Based on data over the period 1900-2014. The estimated pooled model also includes 

province dummies (not reported in the Table). Asterisks represent the significance level: *** 

at the 1% level, ** at the 10% level, and * at the 10% level. The statistical significance was 

evaluated based on bootstrapped standard errors.  
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Figure 1: Estimated Evolution of Quantile Yields for Wheat in Selected Provinces.   
 

1a. Milan Province 

 
 

1b. Rome Province 

 
 

1c. Palermo Province 
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Figure 2: Estimated Evolution of Quantile Yields for Corn in Selected Provinces.  
 

2a. Milan Province 

 
 

2b. Rome Province 

 
 

2c. Palermo Province 
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Figure 3: Simulated Distributions of Yield under Alternative Weather Scenarios.  

3a. Wheat 

 
 

3b: Corn 

 
Note: The simulated yield distributions are evaluated for the Rome province in 2000. Weather 
scenario [𝑡(𝑞), 𝑟(𝑞’)] stands for the 𝑞-th quantile for 𝑡𝑒𝑚𝑝 and the 𝑞′-th quantile for 𝑟𝑎𝑖𝑛, with 
𝑞,𝑞′�(0.05, 0.5, 0.95). 
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Figure 4: Dominant Eigenvalue for the Dynamics of Crop Yield across Quantiles under 

Alternative Weather Scenarios  

4a. Wheat 

 
 

4b: Corn 

 
Note: The Eigenvalues are evaluated for the Rome province in 2000. 
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Appendix 

Figure A1: Historical wheat yields in selected regions 

 

Figure A2: Historical corn yields in selected regions 
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Figure A3: Historical temperatures in selected regions 

 

Figure A4: Historical rainfalls in selected regions 
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