
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Relaxations and heuristics for the multiple non-linear separable knapsack problem / D'Ambrosio, Claudia;
Martello, Silvano*; Mencarelli, Luca. - In: COMPUTERS & OPERATIONS RESEARCH. - ISSN 0305-0548. -
STAMPA. - 93:(2018), pp. 79-89. [10.1016/j.cor.2017.12.017]

Published Version:

Relaxations and heuristics for the multiple non-linear separable knapsack problem

Published:
DOI: http://doi.org/10.1016/j.cor.2017.12.017

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/683155 since: 2019-03-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cor.2017.12.017
https://hdl.handle.net/11585/683155

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Claudia D’Ambrosio, Silvano Martello, Luca Mencarelli,

Relaxations and heuristics for the multiple non-linear separable knapsack problem,

Computers & Operations Research, Volume 93, 2018, Pages 79-89, ISSN 0305-0548.

The final published version is available online at:
https://doi.org/10.1016/j.cor.2017.12.017

© 2017 This manuscript version is made available under the Creative Commons Attribution-

NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://cris.unibo.it/
https://doi.org/10.1016/j.cor.2017.12.017
http://creativecommons.org/licenses/by-nc-nd/4.0/

Relaxations and Heuristics for the
Multiple Non-Linear Separable Knapsack Problem

Claudia D’Ambrosio1 Silvano Martello2 Luca Mencarelli1

November 20, 2017

Abstract

We consider the multiple non-linear knapsack problem with separable non-convex functions. The
problem, which can be modeled as a (mixed) integer non-linear program, is extremely difficult to
solve in practice. We present a fast heuristic algorithm, based on constructive techniques, surrogate
relaxations, and local search improvements. Computational comparisons with exact and heuristic
methods for general non-convex mixed integer non-linear programs show that the proposed approach
provides good-quality solutions within small computing times.

Keywords. Multiple non-linear knapsack problem, Heuristic algorithms, Surrogate relaxation.

1 Introduction

Let x be an m × n array of non-negative real variables x = [xij] (i = 1, . . . ,m, j = 1, . . . , n) and define
M = {1, . . . ,m} and N = {1, . . . , n}. We consider a multiple non-linear knapsack problem in which

• the objective function and the capacity constraints are expressed by separable, continuously differ-
entiable functions fj(xij) and gj(xij) (i ∈M , j ∈ N);

• the values of f and g do not depend on i, i.e., fj(xij) = fj(xkj) and gj(xij) = gj(xkj) when
xij = xkj for j ∈ N and i, k ∈M ;

• fj(xij) and gj(xij) are non-linear non-negative non-decreasing functions for j ∈ N and i ∈M ;

• for each j ∈ N , the total value of xij over all i ∈M cannot exceed a given upper bound uj ;

• integrality requirements may be imposed on part of the variables.

Note that there is no further assumption on fj(xij) and gj(xij) which, in general, can be non-convex
and non-concave.

1LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France.
Email: {dambrosio,mencarelli}@lix.polytechnique.fr

2DEI “Guglielmo Marconi”, University of Bologna, 40136 Bologna, Italy.
Email: silvano.martello@unibo.it

1

The Multiple Non-Linear Knapsack Problem (MNLKP) is:

max
∑
i∈M

∑
j∈N

fj(xij) (1)

s.t.
∑
j∈N

gj(xij) ≤ ci i ∈M (2)

∑
i∈M

xij ≤ uj j ∈ N (3)

xij ≥ 0 i ∈M, j ∈ N (4)

xij integer i ∈M, j ∈ N ⊆ N, (5)

which can be informally described as follows. We are given m knapsacks and n items. Each item j has a
profit function fj(xij) and a weight function gj(xij) (i ∈M), and each knapsack i has a capacity ci. For
each item j we want to assign xij quantities (some restricted to integer values) to the knapsacks so that

• the overall assigned profit is maximized, see (1);

• for each knapsack i the overall assigned weight does not exceed the corresponding capacity, see (2);

• for each item j the overall assigned quantity does not exceed the corresponding upper bound, see
(3).

When f and g are linear functions (i.e., (1) and (2) become max
∑
i∈M

∑
j∈N pjxij and

∑
j∈N wjxij ≤ ci,

respectively), uj = 1 for j ∈ N and xij is restricted to binary variables for i ∈M and j ∈ N , the MNLKP
becomes the classical 0-1 multiple knapsack problem, see, e.g., Martello and Toth [12] or Kellerer et al.
[10]. It follows that the MNLKP is, at least, strongly NP-hard. When m = 1 (i.e., (1) and (2) become
max

∑
j∈N fj(xj) and

∑
j∈N gj(xj) ≤ c1, respectively), the MNLKP becomes the classical (single) Non-

Linear Knapsack Problem (NLKP), see, e.g., D’Ambrosio and Martello [5].

Non-linear knapsack problems have a number of applications in different fields such as portfolio
selection, production planning, and resource allocation (see, e.g., Ibaraki and Katoh [8], Li and Sun [11],
and Bretthauer and Shetty [3]). Let us consider the case where one has to assign one or more (m)
economical resources i to advertise n different products and assume that ci is the advertising budget
for resource i. The optimization problem consists in maximizing the overall expected sales from all
categories. The sales may expect to sharply increase as the advertisements reach an increasing number of
potential buyers. However, at some point there is a saturation effect by which increasing advertisements
does not significantly increase the sales. In other words, the profit function fj(xij) has the non-convex
and non-concave shape depicted in Figure 1. The advertisement costs gj(xij) can either be linear (e.g.,
gj(xij) = xij , if a constant unit cost is assumed), or non-linear (if economies of scale are considered, i.e.,
unit costs decrease with size).

To the best of our knowledge no study of the MNLKP has been presented in the literature. Zhang
and Hua [16] proposed an exact method for the minimization version of the NLKP for the case where
objective and constraints functions are convex and all variables are continuous, i.e., N = ∅. Exact and
heuristic algorithms for the same problem with integer variables were presented by Zhang and Chen [15].
D’Ambrosio and Martello [5] provided heuristics for the NLKP. A survey chapter on NLKP with integer
variables can be found in the book by Li and Sun [11].

In the next section we discuss surrogate and Lagrangian relaxations for the MNLKP. In Section 3 we
describe a constructive heuristic algorithm, which extends the approach proposed by D’Ambrosio and
Martello [5] for the NLKP, and we introduce two heuristics which derive a feasible solution from the
usually infeasible solution provided by the surrogate relaxation. In Section 4 we describe a local search
procedure that improves a feasible solution through variations of variable values of item pairs. The overall
heuristic algorithm, summarized in Section 5, is experimentally evaluated through comparison with the
solutions provided by open-source non-linear programming solvers and with the upper bounds produced
by an exact global optimization solver. The computational results, reported in Section 6, show that

2

0 20 40 60 80 100
0

20

40

60

80

xij

f j
(x
ij

)

Figure 1: Example of profit function.

the proposed approach provides good-quality solutions within small CPU times. Conclusions follow in
Section 7.

2 Relaxations

Let us consider the surrogate relaxation, S(MNLKP,π), of the MNLKP, defined as follows. Given a
vector of m non-negative multipliers (π1, . . . , πm), we multiply the i-th constraint (2) by πi and replace
the resulting set of constraints (2) by their sum, i.e.,

max
∑
i∈M

∑
j∈N

fj(xij) (6)

s.t.
∑
i∈M

πi
∑
j∈N

gj(xij) ≤
∑
i∈M

πici (7)

∑
i∈M

xij ≤ uj j ∈ N (8)

xij ≥ 0 i ∈M, j ∈ N (9)

xij integer i ∈M, j ∈ N ⊆ N. (10)

Let z(S(MNLKP, π)) denote the optimal solution value of (6)-(10) under given multipliers π. The
surrogate dual problem

min
π≥0

{z(S(MNLKP, π))} (11)

consists in finding the optimal vector of multipliers, i.e., the one producing the minimum optimal value
for the surrogate relaxation, and hence the tighter upper bound for the MNLKP. The analogous surrogate
relaxation of the 0-1 multiple linear knapsack problem has a strong surrogate dual property: The optimal
vector of multipliers is πi = k for all i ∈ M , where k is any positive constant (see Martello and Toth
[12]). Unfortunately, such property does not hold for the MNLKP, as shown by the following example.
Let m = 2, n = 1, u1 = 100, c1 = 10, c2 = 2, and, for i ∈ {1, 2}, f1(xi1) = xi1, g1(xi1) = 80/(
1 + 50e−

1
10 (xi1−10)

)
. (This is actually the function used as an example of f(x) in Figure 1.) For

π1 = π2 = 1 the optimal solution to S(MNLKP,π) is x11 = x21 ' 24 (with g1(x11) = g1(x21) ' 6) and

3

has value ' 48. For π1 = 1 and π2 = 2 such solution violates (7) and the optimal solution is x11 ' 26 and
x21 ' 18 (with g1(x11) ' 7.2 and g1(x21) ' 3.4), of value ' 44. Intuitively, by increasing a multiplier,
the right-hand side of (7) increases linearly while its left-hand side can increase more than linearly (as it
locally happens for the shape of Figure 1).

Although the optimal surrogate dual solution cannot be immediately found, we will see in Section 3.2
that reasonably good multipliers can be heuristically obtained, and that the surrogate solution can be
used to produce feasible solutions which can be conveniently used in the heuristic process introduced in
the next sections.

Given a vector (λ1, . . . , λm) of non-negative multipliers, a possible Lagrangian relaxation, L(MNLKP,λ),
of the MNLKP can be obtained by relaxing (2):∑

i∈M
λici + max

∑
i∈M

∑
j∈N

(fj(xij)− λigj(xij)) (12)

s.t.
∑
i∈M

xij ≤ uj j ∈ N (13)

xij ≥ 0 i ∈M, j ∈ N (14)

xij integer i ∈M, j ∈ N ⊆ N. (15)

Generally speaking, relaxation (12)-(15) has the advantage of being decomposable into n subproblems (one
for each item j) with a non-linear objective function and a single linear knapsack constraint. Preliminary
computational experiments have shown, however, that these problems remain difficult to solve in practice.
In addition, the experiments have shown that the heuristic solutions that can be obtained from this
relaxation are considerably worse than those that can be obtained from the surrogate relaxation (see
Section 3.2). Similar considerations apply to the relaxations that can be obtained by relaxing in a
Lagrangian fashion constraints (3), or both constraints (3) and (2).

3 Heuristics

In this section we propose two heuristics for the MNLKP, one based on an iterated constructive procedure
and one obtained by deriving a feasible solution from the surrogate relaxation.

3.1 Constructive heuristic

We first show how the constructive heuristics presented by D’Ambrosio and Martello [5] for the single
knapsack case can be generalized to provide good quality feasible solutions to the MNLKP (see Mencarelli
et al. [13]). In the following we assume without loss of generality that the knapsacks have been preliminary
sorted so that c1 ≥ c2 ≥ · · · ≥ cm.

We start by defining a number s of samplings and a sampling step δj = uj/s for j ∈ N (or δj =
max(1, buj/sc) if j ∈ N). We use such values to discretize profit and weight functions. Define

rjk =
fj(kδj)

gj(kδj)
(j ∈ N, k = 1, . . . , s). (16)

For every item j let µj = arg maxk=1,...,s{rjk} and assume that the items are sorted according to their
maximum profit-to-weight ratio (16), i.e., so that r1µ1

≥ r2µ2
≥ · · · ≥ rnµn

.

The algorithm considers one knapsack at a time and fills it completely. Algorithm 1 details it by
referring to a generic knapsack i.

4

Initially the algorithm considers items 1 and 2, i.e., the two items with best largest profit-to-weight
ratio, and finds the highest sampling point µ̄1 where item 1 has a better ratio than the best ratio of item
2 (Step 4). It assigns µ̄1δ1 units of item 1 to knapsack i and updates the upper bound of item 1 and the
residual capacity (Steps 5 and 6). Assume by the moment that the sampling points corresponding to µ2

and µ3 remain feasible. The process is iterated by finding the highest feasible sampling point µ̄2 where
item 2 has a better ratio than the best ratio of item 3: the algorithm assigns µ̄2δ2 units of item 2 to the
knapsack (and so on with the next pairs of items). If instead (Step 7) for at least one of the next two
items, say 2 and 3, the sampling point corresponding to µ2 or µ3 is infeasible, an update of the µ values
is performed on items 2, 3, . . . (and, consequently, the item order might change).

Algorithm 1 Procedure Construct(i).
1: c̄i := ci;
2: j := 1;
3: while j < n and c̄i > 0 do
4: µ̄j := max{k : rjk ≥ r(j+1)µj+1

, µj ≤ k ≤ s};
5: xij := µ̄j δj ;
6: ūj := uj − xij , c̄i = c̄i − gj(xij);
7: if (gj+1(µj+1 δj+1) > c̄i or gj+2(µj+2 δj+2) > c̄i) then update µ for items j + 1, j + 2, . . .

(and possibly update their order);
8: j := j + 1;
9: end while

10: if c̄i > 0 then {comment: fill the residual capacity with item n}
11: xin := min(g−1

n (c̄i), un);
12: ūn = un − xin, c̄i = c̄i − gn(xin);
13: end if

Note that, in order to improve on the efficiency, whenever a new xij is defined, the ratios of the
unscanned items change, but it is not necessary to update and re-sort all of them: indeed, we can just
consider the two items providing the maximum and second maximum new ratios, which can be identified
in linear time, and proceed with a new search.

Moreover, in order to guarantee the existence of the inverse g−1
j (Step 11), we assume, for simplicity,

that, for j ∈ N , functions gj are strictly increasing and continuous. If it is not the case, we simply
consider the pseudo-inverse of gj with the largest value for the preimage. Note that, given a scalar c̄i, the
evaluation of the (pseudo)inverse function at that point, i.e., g−1

j (c̄i), does not imply the need to have its
explicit form. In fact, its evaluation at c̄i reduces to computing the zeros of gj(xij) − c̄i, and hence we
can assume that this operation can be performed in a CPU time bounded by a constant independent of
the instance size.

The algorithm can be improved through a refined search for µ̄j . Once it has been obtained (at Step
4), the interval [µ̄j , µ̄j+1] can be searched with a smaller sampling step and new, more precise, profit-
to-weight ratios for item j can be computed. In this way a more precise point µ̄j is obtained, and the
process can be iterated by further decreasing the sampling step.

Steps 4–8 are iterated at most n times. At each iteration, we find the maximum and second maximum
ratios, which takes O(n) time. As pointed out above, Step 7 as well can be implemented so as to take
O(n) time, by avoiding complete resorting of the unscanned items. If the number of refinements through
smaller sampling steps is bounded by a constant (as it reasonably occurs in practical implementations),
the time complexity of Construct(i) is O(n2).

A heuristic for the MNLKP can be obtained by executing procedure Construct(i) on knapsacks 1, 2,
... by considering, at each iteration, only those items for which the previous assignments did not reach the
corresponding upper bound. The overall Constructive procedure, shown in Algorithm 2, is terminated
by re-scanning knapsacks and items, and filling in a greedy fashion the residual capacities, if any.

5

Algorithm 2 Procedure Constructive.
1: for i := 1 to m do Construct(i) comment: optionally include the refined search;
2: for i := 1 to m do
3: if c̄i > 0 then
4: for j := 1 to n do {comment: increase xij as much as possible}
5: xij := xij + min(g−1

j (c̄i), ūj);
6: if j ∈ N then xij := bxijc;
7: ūj := uj −

∑
k∈M xkj , c̄i := ci −

∑
k∈N gj(xik);

8: end for
9: end if

10: end for

3.2 Surrogate heuristics

In this section we describe two simple heuristics based on the feasibility recovery of the surrogate relax-
ation (6)-(10). Let us first consider the problem of determining good surrogate multipliers π. A series
of preliminary experiments was performed on the benchmark instances adopted for the computational
experiments of Section 6, with

(i) πi uniformly random in [0.0, 3.0] for all i ∈M ;

(ii) πi uniformly random in [0.8, 1.2] for all i ∈M ;

(iii) πi uniformly random in [0.9, 1.1] for all i ∈M ,

and

(iv) πi = 1 for all i ∈M .

It turned out that the surrogate solutions produced by (i) were dominated by the other generations, those
produced by (ii) and (iii) had about the same quality, and those produced by (iv) were, on average, clearly
the best ones. Additional tests were performed using (easier) convex and concave objective functions,
globally obtaining the same results. It was thus decided to always adopt option (iv). In Section 2 we
have shown that identical multipliers (optimal solution of the surrogate dual for the linear case) are not
optimal for the non-linear case. It is worth observing that they appear to be a good choice for such case
too, at least for the objective functions we considered.

Let x∗ij (i ∈M , j ∈ N) be the surrogate solution. We assume without loss of generality that: (i) the
knapsacks are sorted so that c1 ≥ c2 ≥ · · · ≥ cm; (ii) the items are sorted according to non-increasing
profit-to-weight ratios rj relative to the surrogate solution, but evaluated for the original functions, i.e.,

rj =

∑
i∈M fj(x

∗
ij)∑

i∈M gj(x∗ij)
(j ∈ N). (17)

The first heuristic based on feasibility recovery can be stated as shown in Algorithm 3.

6

Algorithm 3 Procedure Surrogate-feas-1(x∗).
1: for j := 1 to n do ūj := uj ;
2: for i := 1 to m do
3: c̄i := ci;
4: for j := 1 to n do xij := 0;
5: end for
6: for i := 1 to m do
7: for j := 1 to n do
8: if gj(x∗ij) ≤ c̄i then xij := x∗ij , c̄i := c̄i − gj(x∗ij), ūj := ūj − x∗ij ;
9: end for

10: end for
11: ı̄ = arg maxi∈M{c̄i}, c̄max := c̄ı̄, ūmax := maxj∈N{ūj};
12: while c̄max > 0 and ūmax > 0 do
13: for j := 1 to n do

14: r̄j :=

0 if ūj = 0
fj(min(xı̄j+ūj ,max(0,bg−1

j (c̄ı̄+gj(xı̄j))c)))
gj(min(xı̄j+ūj ,max(0,bg−1

j (c̄ı̄+gj(xı̄j))c))) if ūj > 0 and i ∈ N̄
fj(min(xı̄j+ūj ,max(0,g−1

j (c̄ı̄+gj(xı̄j)))))

gj(min(xı̄j+ūj ,max(0,g−1
j (c̄ı̄+gj(xı̄j)))))

if ūj > 0 and i /∈ N̄

;

15: end for
16: ̄ = arg maxj∈N{r̄j};
17: xı̄̄ := min(xı̄̄ + ū̄,max(0, g−1

̄ (c̄ı̄ + ḡ(xı̄̄))));
18: if ̄ ∈ N then xı̄̄ := bxı̄̄c;
19: ū̄ := ū −

∑
i∈M xī, c̄ı̄ := cı̄ −

∑
j∈N gj(xı̄j);

20: ı̄ = arg maxi∈M{c̄i}, c̄max := c̄ı̄, ūmax := maxj∈N{ūj};
21: end while

We start with an empty solution. In the first phase (Steps 6-10) the quantities x∗ij are iteratively
reassigned to knapsack i (i = 1, . . . ,m), as long as the resulting partial solution satisfies the capacity
constraints. Due to the preliminary sortings, we first consider the more promising items, i.e., the ones
with better profit-to-weight ratios. In the second phase we identify the knapsack ı̄ with the largest residual
capacity (Step 11), we update the profit-to-weight ratios (Steps 13-15), and we determine the item ̄ with
the best residual profit-to-weight ratio (Step 16). Knapsack ı̄ is then “filled” as much as possible with
item ̄ (Steps 17-18). We iteratively update the upper bound and the residual capacity (Step 19), and we
repeat the previous steps, as long as the the largest residual capacity or the largest residual upper bound
are strictly positive.

Loops 2-5 and 6-10 take O(mn) time. The while loop is executed at most max(m,n) times. By
assuming, as for procedure Constructive, that the computation of the inverse of a weight function takes
a CPU time bounded by a constant independent of the input size, each iteration takes O(n) time. The
overall time complexity of Algorithm 3 is thus O(mn+ n2).

While Algorithm 3 starts with an empty solution and tries to construct a feasible solution that
replicates as much as possible the (infeasible) surrogate solution, our second heuristic based on feasibility
recovery (shown in Algorithm 4) starts with the surrogate solution and reduces the quantity x∗ij of some
items currently assigned to knapsack i (i ∈ M), until the capacity constraints (2) are satisfied. We
consider the items in reverse order with respect to Algorithm 3, i.e., according to non-decreasing rj
values (see (17)) and we iteratively reduce the quantity of the item that has the worst profit-to-weight
ratio, so as to undermine as little as possible the quality of the surrogate solution.

7

Algorithm 4 Procedure Surrogate-feas-2(x∗).
1: for i := 1 to m do for j := 1 to n do xij := x∗ij ;
2: for i := 1 to m do
3: c̄i := max(0,

∑
j∈N gj(xij)− ci);

4: for j := n back to 1 do
5: xij := max(0, g−1

j (gj(xij)− c̄i));
6: if j ∈ N then xij := bxijc;
7: c̄i := max(0,

∑
j∈N gj(xij)− ci);

8: if c̄i ≤ 0 then break;
9: end for

10: end for

In this case c̄i represents the amount of weight that exceeds the capacity of knapsack i. Note that the
solution of the surrogate relaxation x∗ij already satisfies constraints (3). Thus, as we are only decreasing
the value of xij , such constraints remain satisfied.

The main steps 5-8 are executed mn times. With the usual assumption on the computation of the
inverse of a weight function, the time complexity of Algorithm 4 is thus O(mn).

4 Local search

The solutions produced by the heuristics of the previous sections can be improved through a local search
algorithm that implements pairwise exchanges of the amounts of items assigned to the same knapsack i.

Let i be the current knapsack. Consider two items j and k, define a “small” incremental step
ε < min(δj , δk) (see Section 3.1) and consider the effect of two potential variations, resulting from a
simultaneous increase (resp. decrease) of xij and decrease (resp. increase) of xik by ε units, namely:

1. ∆1 = (fj(xij + ε)− fj(xij)) + (fk(xik − ε)− fk(xik));

2. ∆2 = (fj(xij − ε)− fj(xij)) + (fk(xik + ε)− fk(xik)).

Further impose that a ∆` (` = 1, 2) takes the value 0 if the corresponding variation is infeasible, i.e., if
either a right-hand side (uj , uk, or ci) of inequalities (2)-(3) is exceeded or one of the two variables takes
a negative value. Let ∆ = max(∆1,∆2):

• if ∆ > 0 the procedure, shown in Algorithm 5,

(i) performs the corresponding variation, producing a new solution with objective function value
increased by ∆;

(ii) iterates the process, for the same item pair and ε, obviously by only computing the ∆` (` = 1
or 2) that produced ∆;

• if instead ∆ ≤ 0, i.e., both variations either worsen the solution value or are infeasible, the next
item pair is tested, or the next knapsack is considered (when j = n− 1 and k = n).

Variants of this procedure (obtained by randomizing the choice of the knapsacks and/or of the item
pairs) were also tested, but they did not provide satisfactory results.

8

Algorithm 5 Procedure Local Search.
1: for i := 1 to m do
2: for j := 1 to n− 1 do
3: for k := j + 1 to n do
4: define an appropriate value ε < min(δj , δk);
5: repeat
6: compute ∆1, ∆2, and ∆;
7: if ∆ > 0 then apply the variation corresponding to ∆;
8: until ∆ > 0
9: end for

10: end for
11: end for

The inner repeat-until loop is executed O(mn2) times. This loop can theoretically require a pseu-
dopolynomial time but, in practice, it is executed a limited number of times and in any case the number
of iterations can be limited by a constant. Over the 3,360 instances of the benchmark we tested (see
Section 6), the number of iterations was normally between 1 and 2, and it never attained 10. By assuming
again that the computation of the inverse of a function can be done in constant time, the procedure runs
in practice in O(mn2) time.

5 Overall algorithm

Our overall heuristic algorithm for the MNLKP can be outlined as follows:

Algorithm 6 Algorithm DMM.
1: solve the surrogate relaxation (6)-(10) and let U and x∗ be respectively the resulting upper bound

and the corresponding solution;
2: execute procedure Constructive of Section 3.1 and let Zh be the solution value;
3: if Zh = U then terminate;
4: execute procedures Surrogate-feas-1(x∗) and Surrogate-feas-2(x∗) of Section 3.2 and let Zs be the

best solution value;
5: if Zs = U then terminate else Z := max(Zh, Zs);
6: execute Local Search of Section 4 on the solution corresponding to Z and let Zl be the solution value;
7: return the solution corresponding to Zl.

6 Computational experiments

The algorithm of Section 5 was experimentally compared with open-source non-linear programming local
solvers (Ipopt [9] for real instances and Bonmin [2], with option bonmin.algorithm B-BB, for integer
instances) and with a global solver (Couenne [4], both for real and integer instances). Note that Ipopt and
Bonmin are exact solvers for convex non-linear programs and convex mixed-integer non-linear programs,
respectively, but they can be used as heuristics for non-convex problems like ours.

We produced a benchmark using the profit and weight functions adopted in D’Ambrosio and Martello
[5]. The profits were always obtained from

fj(xij) =
cj

1 + bje−aj(xij+dj)
(18)

9

by uniformly randomly generating aj in [0.1, 0.2], bj and cj in [0, 100], and dj in [−100, 0]. The upper
bounds on the xij values were all set to uj := 100. Observe that the random generation of the four
parameters produces, for every test instance, a different (possibly very different) shape of the objective
function. For example,

• a = 0.2, b = 50, c = 50, and d = −100 produce the convex function shown in Figure 2(a);

• a = 0.2, b = 1, c = 50, and d = 0 produce the concave function shown in Figure 2(b),

• a = 0.1, b = 50, c = 80, and d = −10 produce the non-concave, non-convex function shown in
Figure 1.

0 20 40 60 80 100
0

20

40

60

80

(a)

0 20 40 60 80 100
0

20

40

60

80

(b)

Figure 2: Different shapes produced by objective function (18).

Two test beds (Non-linear weights and Linear weights) were then obtained by generating the weights
either according to the concave increasing function

gj(xij) =
√
pjxij + qj −

√
qj , (19)

with pj and qj uniformly random in [1, 20], or according to the linear increasing function

gj(xij) = wjxij , (20)

with wj uniformly random in [1, 100].

For each test bed, two sets of instances were obtained by generating the capacities following the
method adopted in Chapter 6 of Martello and Toth [12] to produce difficult instances: Similar capacities

ci uniformly random in

[
0.4

n∑
j=1

gj(uj)

m
, 0.6

n∑
j=1

gj(uj)

m

]
(i = 1, . . . ,m− 1), (21)

and Dissimilar capacities

ci uniformly random in

[
0,

(
0.5

n∑
j=1

gj(uj)−
i−1∑
k=1

ck

)]
(i = 1, . . . ,m− 1). (22)

10

In both cases, the m-th capacity was set to:

cm = 0.5

n∑
j=1

gj(uj)−
m−1∑
i=1

ci. (23)

The experiments were performed for values of n in {10, 20, 50, 100, 200, 500, 1000} and ofm in {2, 5, 10}.
For each pair (n,m), 20 real instances and 20 integer instances were produced. The total number
of tested instances was thus 3 360. All instances, and the corresponding solutions are available at
http://or.dei.unibo.it/library/multiple-non-linear-knapsack-problem.

All the experiments were performed on an Intel Core 2, CPU 6600, 2.4 GHz, 1.94 GB ram, using only
one processor.

All algorithms (Ipopt, Bonmin, Couenne, and DMM) were run with a time limit of one CPU hour
per instance. Couenne was executed with its default values (with an exception mentioned at the end of
the present section) as the use of other options strongly increases its computing times. In addition, it
was only executed for instances with n ≤ 50, due to its poor performance for larger values. For DMM,
the solution of the surrogate relaxation (6)-(10) was obtained by running Couenne with a time limit of
n/10 seconds. If no feasible solution was found within the time limit, the surrogate heuristics were not
executed. Moreover, each local search (Step 6) had a time limit of 5 CPU seconds assigned. In a non-
convex environment, Ipopt and Bonmin produce different solutions depending on the starting point: we
executed them both with one and ten random starting points (taking the best solution). We also tested
Bonmin with ten random starting points at each branch-and-bound decision node, but this only resulted
in few improvements for the small instances, so we do not report the corresponding computational results.
Another not reported additional round of tests was executed with Scip [14], obtaining results significantly
worse than the ones obtained by Couenne.

Procedure Construct(i) (within Constructive) was executed with four values of s (1, 10, 50, 100), and
the best solution was selected. The refined search for µ̄j (see Section 3.1) was obtained: (i) by trying
up to 5 consecutive refinement rounds, each time dividing the current sampling step by 2; (ii) by trying
a single refinement round twice (dividing the initial sampling step by 5 and 10, respectively), and (iii)
taking the best solution. The value of ε was set to min(δj , δk)/2. All computations of the zero of a weight
function needed by DMM were performed through a binary search over the definition range. (The impact
on the overall CPU time was however negligible.)

Tables 1-4 report the results for non-linear weights, with real and integer variables xij . The entries
give: number of knapsacks, number of items, and:

• for real variables, average values produced by DMM, Ipopt with a single starting point (Ipopt_1),
Ipopt with 10 starting points (Ipopt_10), and Couenne;

• for integer variables, average values produced by DMM, Bonmin with a single starting point (Bon-
min_1), Bonmin with 10 starting points at the root node (Bonmin_10), and Couenne.

Additional lines give the total values for each number of knapsacks and the overall total values. The tables
with odd numbering provide the average solution values over the 20 generated instances, while those with
even numbering provide the corresponding average CPU times (in seconds). In a number of cases the
solvers were not able to produce a solution within the time limit: for such cases, the tables report the
number of non-solved instances. The average solution values and CPU times were only computed over
the instances for which a solution was produced.

Tables 5-8 report the same information for the case of linear weights.

Tables 1 and 3 clearly show that, on the non-linear instances, the proposed algorithm DMM almost
always outperforms both the exact and the heuristic solvers, with few exceptions only occurring for the

11

Table 1: Non-linear weights, similar capacities. Average solution values over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 350.49 313.50 351.70 362.63 350.47 327.21 313.87 364.45
2 20 641.73 569.20 635.35 593.43(12) 645.63 591.26 589.88 561.83
2 50 1,900.41 1,714.74 1,799.78 n/a(20) 1,902.65 1,769.76 1,800.63 1,481.36
2 100 3,741.92 3,341.04 3,548.40 – 3,742.14 3,413.98 3,454.54 –
2 200 7,167.80 6,302.04 6,683.39 – 7,168.07 6,429.80(5) 6,419.05 –
2 500 18,375.35 16,153.10 16,942.30 – 18,376.30 16,286.80(13) 16,404.90(5) –
2 1000 37,051.16 32,117.80 33,899.30 – 37,058.30 n/a(20) n/a(20) –
2 total 69,228.86 60,511.42 63,860.22 – 69,243.56 – – –
5 10 322.76 271.61 312.63 299.06(5) 321.18 288.19 281.05 299.35
5 20 729.46 687.95 733.25 n/a(20) 727.24 706.88 716.23 620.54(2)
5 50 1,822.58 1,705.86 1,782.99 n/a(20) 1,821.57 1,753.76(2) 1,765.72 1,245.52(1)
5 100 3,865.64 3,701.10 3,818.14 – 3,868.62 3,719.86(1) 3,825.23 –
5 200 7,846.03 7,372.56 7,681.43 – 7,850.18 n/a(20) 7,677.54(16) –
5 500 19,272.60 18,180.80 18,825.70 – 19,273.73 n/a(20) n/a(20) –
5 1000 38,540.16 36,391.00 37,485.80 – 38,541.14 n/a(20) n/a(20) –
5 total 72,399.23 68,310.88 70,639.94 – 72,403.66 – – –

10 10 216.19 187.40 218.59 212.07(2) 232.58 183.37(2) 201.60(1) 222.29
10 20 734.75 664.58 702.21 n/a(20) 727.85 719.17(3) 681.76(2) 489.35(5)
10 50 1,983.10 1,864.39 1,927.13 n/a(20) 1,983.72 1,834.39(16) 1,937.89 1,275.43(16)
10 100 3,952.78 3,732.51 3,843.88 – 3,957.84 n/a(20) 3,852.28(19) –
10 200 7,652.05 7,311.37 7,431.36 – 7,655.04 n/a(20) n/a(20) –
10 500 19,640.75 18,788.40 19,097.90 – 19,645.34 n/a(20) n/a(20) –
10 1000 39,717.69 36,316.50 38,266.70 – 39,721.93 n/a(20) n/a(20) –
10 total 73,897.31 68,865.15 71,487.77 – 73,924.30 – – –

total total 215,525.40 197,687.45 205,987.93 – 215,571.52 – – –

Table 2: Non-linear weights, similar capacities. Average CPU times over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 1.08 0.05 0.51 1,113.88 1.09 3.71 1.47 847.17
2 20 2.02 0.10 1.18 3,601.81(12) 2.03 15.58 4.53 3,601.20
2 50 5.08 0.34 3.45 n/a(20) 5.11 637.51 78.25 3,603.19
2 100 10.23 0.93 10.24 – 10.26 2,363.94 978.34 –
2 200 20.88 2.44 28.34 – 20.72 3,089.98(5) 2,693.71 –
2 500 57.45 10.60 112.08 – 54.14 3,600.48(13) 3,496.83(5) –
2 1000 113.54 32.84 327.93 – 116.11 n/a(20) n/a(20) –
2 total 210.28 47.30 483.73 – 209.46 – – –
5 10 1.20 0.16 1.72 3,600.61(5) 1.24 60.58 8.34 3,600.88
5 20 2.03 0.32 3.57 n/a(20) 2.05 601.01 185.12 3,602.25(2)
5 50 5.15 1.17 11.76 n/a(20) 5.18 2,765.24(2) 996.16 3,602.47(1)
5 100 10.25 3.53 31.76 – 10.41 3,071.08(3) 3,419.49 –
5 200 20.79 9.72 87.03 – 21.35 n/a(20) 3,600.40(16) –
5 500 54.26 51.12 403.15 – 57.29 n/a(20) n/a(20) –
5 1000 125.86 151.13 1,207.48 – 126.70 n/a(20) n/a(20) –
5 total 219.54 217.15 1,746.47 – 224.22 – – –
10 10 1.49 0.39 3.78 3,600.54(2) 1.54 827.80(2) 181.15(1) 3,600.17
10 20 2.14 0.93 8.57 n/a(20) 2.17 2,570.88(3) 1059.40(2) 3,602.81(5)
10 50 5.14 3.35 30.70 n/a(20) 5.31 3,601.42(16) 3,464.19 3,665.76(16)
10 100 10.37 10.38 86.37 – 10.94 n/a(20) 3,600.19(19) –
10 200 23.51 32.98 278.67 – 23.43 n/a(20) n/a(20) –
10 500 87.11 147.12 1,197.91 – 86.49 n/a(20) n/a(20) –
10 1000 375.57 348.52 3,108.31 – 371.94 n/a(20) n/a(20) –
10 total 505.33 543.67 4,714.31 – 501.82 – – –

total total 935.15 808.12 6,944.51 – 935.50 – – –

12

Table 3: Non-linear weights, dissimilar capacities. Average solution values over 20 instances (# no
solution).

Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 340.62 298.24 339.50 355.19 339.89 299.21 308.60 354.62
2 20 634.68 547.68 610.20 564.65(9) 636.54 569.67 573.25 555.90
2 50 1,870.83 1,619.80 1,737.00 n/a(20) 1,871.45 1,688.48 1,653.26 1,362.62
2 100 3,722.84 3,236.18 3,437.91 – 3,722.43 3,340.35(1) 3,294.41 –
2 200 7,074.48 5,908.90 6,313.01 – 7,072.53 6,188.82(3) 5,905.41 –
2 500 18,280.25 15,286.70 16,081.20 – 18,287.28 15,883.50(14) 15,862.40(5) –
2 1000 37,089.65 31,168.30 32,825.20 – 37,086.84 n/a(20) n/a(20) –
2 total 69,013.35 58,065.80 61,344.02 – 69,016.96 – – –
5 10 321.28 285.28 318.68 329.51(1) 313.70 305.05(1) 299.28(1) 319.22(1)
5 20 728.42 670.57 717.91 659.84(17) 720.97 692.01(2) 664.84 598.87(5)
5 50 1,792.76 1,614.39 1,723.24 n/a(20) 1,772.33 1,600.30(4) 1,627.85 1,228.18(4)
5 100 3,810.80 3,392.78 3,625.14 – 3,805.91 3,406.69(2) 3,400.23 –
5 200 7,647.44 6,778.96 7,180.81 – 7,595.80 n/a(20) n/a(20) –
5 500 19,108.46 17,131.00 17,967.30 – 19,100.00 n/a(20) n/a(20) –
5 1000 38,447.52 34,559.20 36,099.60 – 38,472.11 n/a(20) n/a(20) –
5 total 71,856.68 64,432.18 67,632.68 – 71,780.82 – – –

10 10 343.95 314.88 345.18 354.52 321.47 315.20(1) 307.11 340.21(1)
10 20 757.28 678.59 741.04 699.31(11) 737.34 703.57(3) 681.37(1) 633.95(8)
10 50 1,972.11 1,807.00 1,909.65 n/a(20) 1,883.62 1,817.64(9) 1,810.51(1) 1,499.67(7)
10 100 3,873.07 3,441.87 3,684.99 – 3,615.12 n/a(20) 3,804.82(19) –
10 200 7,543.03 6,708.00 7,094.40 – 7,395.62 n/a(20) n/a(20) –
10 500 19,271.73 17,027.60 17,950.80 – 19,242.96 n/a(20) n/a(20) –
10 1000 39,486.36 35,248.30 37,237.50 – 39,403.01 n/a(20) n/a(20) –
10 total 73,247.53 65,226.24 68,963.56 – 72,599.14 – – –

total total 214,117.56 187,724.22 197,940.26 – 213,396.92 – – –

Table 4: Non-linear weights, dissimilar capacities. Average CPU times over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 1.08 0.05 0.53 794.39 1.09 2.91 1.11 364.44
2 20 2.02 0.11 1.14 3,307.95(9) 2.03 20.41 8.18 3,430.29
2 50 5.08 0.34 3.36 n/a(20) 5.30 277.57 69.66 3,602.78
2 100 10.23 0.89 9.96 – 10.26 1,731.33(1) 813.99 –
2 200 20.87 2.40 26.51 – 20.71 3,254.23(3) 3,099.98 –
2 500 57.34 10.64 105.76 – 54.07 3,265.7(14) 3,456.18(5) –
2 1000 113.39 33.71 318.10 – 115.93 n/a(20) n/a(20) –
2 total 210.01 48.14 465.36 – 209.39 – – –
5 10 1.20 0.14 1.53 2,790.28(1) 1.23 29.11(1) 196.66(1) 2,013.34(1)
5 20 2.03 0.34 3.23 3,600.18(17) 2.05 250.53(2) 588.38 3,600.92(5)
5 50 5.16 1.16 10.25 n/a(20) 5.17 2,716.96(4) 773.89 3,604.77(4)
5 100 10.25 3.04 26.45 – 10.41 3,373.18(2) 2,341.63 –
5 200 20.77 8.70 74.45 – 21.25 n/a(20) n/a(20) –
5 500 54.14 45.04 356.04 – 57.02 n/a(20) n/a(20) –
5 1000 124.84 130.89 1,044.09 – 126.05 n/a(20) n/a(20) –
5 total 218.39 189.31 1,516.04 – 223.18 – – –
10 10 1.49 0.31 2.62 2,266.36 1.53 33.25(1) 53.09 1,753.20(1)
10 20 2.16 0.79 6.10 3,599.61(11) 2.16 650.11(3) 631.44(1) 3,600.00(8)
10 50 5.14 2.89 23.01 n/a(20) 5.28 3,177.66(9) 2,326.35(1) 3,597.48(7)
10 100 10.35 7.98 58.18 – 10.84 n/a(20) 3,600.9(19) –
10 200 23.44 25.93 184.13 – 23.22 n/a(20) n/a(20) –
10 500 86.92 113.32 704.57 – 86.07 n/a(20) n/a(20) –
10 1000 374.20 328.10 2,268.40 – 370.22 n/a(20) n/a(20) –
10 total 503.70 479.32 3,247.01 – 499.32 – – –

total total 932.10 716.77 5,228.41 – 931.89 – – –

13

Table 5: Linear weights, similar capacities. Average solution values over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 343.63 318.66 350.62 343.65(6) 343.95 332.91 351.35 335.53
2 20 780.54 739.70 786.05 n/a(20) 780.03 752.42 784.46 676.70
2 50 1,943.44 1,841.93 1,921.17 n/a(20) 1,941.38 1,896.66 1,939.18 1,494.77(10)
2 100 3,873.34 3,585.02 3,727.55 – 3,872.29 3,681.92 3,740.08 –
2 200 7,966.74 7,401.99 7,645.14 – 7,966.32 7,510.38(4) 7,574.34(1) –
2 500 20,111.10 18,685.00 19,222.20 – 20,107.13 18,438.10(18) 18,438.10(18) –
2 1000 39,562.06 36,752.90 37,448.70 – 39,563.97 n/a(20) n/a(20) –
2 total 74,580.85 69,325.20 71,101.43 – 74,575.07 – – –
5 10 374.58 364.54 392.81 243.95(1) 375.28 366.75 386.39 286.99(2)
5 20 762.51 739.22 782.22 n/a(20) 761.99 750.92 768.77 485.02(4)
5 50 2,010.44 1,990.01 2,038.93 n/a(20) 2,013.13 1,991.96 1,997.33 1,366.98(11)
5 100 3,942.02 3,808.03 3,955.77 – 3,942.90 3,978.83(15) 3,900.36(14) –
5 200 8,135.86 7,927.23 8,125.15 – 8,141.77 n/a(20) n/a(20) –
5 500 20,883.19 20,123.60 20,424.60 – 20,900.04 n/a(20) n/a(20) –
5 1000 41,748.25 39,406.90 40,231.00 – 41,755.37 n/a(20) n/a(20) –
5 total 77,856.85 74,359.53 75,950.48 – 77,890.48 – – –

10 10 240.61 224.04 243.62 211.05(15) 235.48 229.52 238.99 170.29(4)
10 20 790.00 778.73 816.61 n/a(20) 787.61 804.24(1) 807.22 329.71(4)
10 50 2,095.67 2,042.56 2,122.72 1,572.96(18) 2,097.90 2,249.09(19) 2,249.09(19) 486.79(6)
10 100 4,040.29 3,860.72 4,008.91 – 4,043.65 n/a(20) n/a(20) –
10 200 8,376.55 8,063.39 8,224.59 – 8,382.21 n/a(20) n/a(20) –
10 500 21,309.28 20,091.20 20,535.40 – 21,321.39 n/a(20) n/a(20) –
10 1000 42,766.36 36,853.00 39,276.10 – 42,782.19 n/a(20) n/a(20) –
10 total 79,618.76 71,913.64 75,227.95 – 79,650.43 – – –

total total 232,056.46 215,598.37 222,279.86 – 232,115.98 – – –

Table 6: Linear weights, similar capacities. Average CPU times over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 1.06 0.04 0.56 2,250.10(6) 1.07 3.67 2.91 3,592.36
2 20 2.02 0.13 1.40 n/a(20) 2.02 16.76 12.94 3,602.05
2 50 5.06 0.50 6.02 n/a(20) 5.08 145.37 195.66 3,602.23(10)
2 100 10.21 1.69 17.64 – 10.22 1,499.39 1,312.30 –
2 200 20.71 5.90 58.31 – 20.81 2,978.50(4) 2,666.15(1) –
2 500 56.59 26.18 273.87 – 58.50 1,4671.80(18) 11,718.9(18) –
2 1000 115.69 82.53 857.74 – 118.58 n/a(20) n/a(20) –
2 total 211.34 116.97 1,215.54 – 216.28 – – –
5 10 1.11 0.13 1.46 3,600.77(1) 1.13 350.92 330.21 3,601.28(2)
5 20 2.03 0.36 3.78 n/a(20) 2.04 550.75 675.76 3,601.41(4)
5 50 5.10 1.41 14.74 n/a(20) 5.14 3,110.13 3,182.53 3,608.20(11)
5 100 10.34 5.72 47.38 – 10.32 3,585.95(15) 3,292.52(14) –
5 200 20.85 15.15 145.10 – 21.18 n/a(20) n/a(20) –
5 500 55.02 82.17 834.01 – 57.23 n/a(20) n/a(20) –
5 1000 119.42 229.58 2,357.48 – 128.10 n/a(20) n/a(20) –
5 total 213.87 334.52 3,403.95 – 225.14 – – –
10 10 1.21 0.34 3.36 3,602.44(15) 1.27 1,088.11 934.47 3,601.56(4)
10 20 2.04 0.81 8.00 n/a(20) 2.06 3,130.17(1) 3,097.31 3,602.08(4)
10 50 5.11 3.46 35.50 3,596.06(18) 5.18 3,583.36(19) 3,417.98(19) 3,610.75(6)
10 100 10.31 13.30 148.41 – 10.57 n/a(20) n/a(20) –
10 200 21.09 46.59 497.50 – 22.18 n/a(20) n/a(20) –
10 500 56.17 195.58 1,999.56 – 63.64 n/a(20) n/a(20) –
10 1000 170.69 398.56 4,219.18 – 163.09 n/a(20) n/a(20) –
10 total 266.62 658.64 6,911.51 – 267.99 – – –

total total 691.83 1,110.13 11,531.00 – 709.41 – – –

14

Table 7: Linear weights, dissimilar capacities. Average solution values over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 333.39 296.56 342.03 342.20(3) 331.75 312.05 339.32 336.78
2 20 760.08 696.13 758.70 674.85(16) 757.24 705.37 763.36 652.22(1)
2 50 1,916.44 1,789.24 1,854.16 n/a(20) 1,920.41 1,866.97 1,887.10 1,407.08(5)
2 100 3,859.95 3,451.60 3,625.93 – 3,864.18 3,614.56 3,696.08 –
2 200 7,856.57 7,044.65 7,263.35 – 7,854.79 7,209.46(2) 7,348.76(1) –
2 500 19,806.13 17,817.50 18,240.70 – 19,870.13 19,164.10(18) 18,296.70(14) –
2 1000 39,193.30 35,220.40 35,900.90 – 39,183.30 31,516.00(19) n/a(20) –
2 total 73,725.86 66,316.08 67,985.77 – 73,781.80 – – –
5 10 394.60 371.40 404.20 434.82(10) 394.12 379.34 401.04 378.30(3)
5 20 749.42 699.44 757.70 600.46(18) 746.29 708.66 739.91 481.27(6)
5 50 1,985.20 1,907.99 1,965.24 n/a(20) 1,986.83 1,953.95 1,978.85 1,030.52(8)
5 100 3,906.82 3,657.64 3,776.51 – 3,899.92 3,657.99(8) 3,733.00(9) –
5 200 7,991.03 7,535.88 7,739.56 – 8,000.10 6,768.74(19) 7,021.51(18) –
5 500 20,598.05 19,076.70 19,540.10 – 20,597.93 n/a(20) n/a(20) –
5 1000 41,112.47 37,430.50 38,623.60 – 41,144.61 n/a(20) n/a(20) –
5 total 76,737.59 70,679.55 72,806.91 – 76,769.80 – – –

10 10 308.99 279.20 310.72 313.65(11) 307.06 283.12 304.86 273.38(1)
10 20 816.72 814.43 854.19 n/a(20) 817.87 824.66(1) 844.13 647.17(8)
10 50 2,060.70 1,951.85 2,040.01 n/a(20) 2,064.86 1,865.52(6) 1,921.84(6) 1,117.49(6)
10 100 3,957.53 3,640.15 3,793.31 – 3,956.12 3,426.41(13) 3,711.03(16) –
10 200 8,287.68 7,549.40 7,859.10 – 8,299.41 n/a(20) n/a(20) –
10 500 20,984.56 18,858.90 19,445.60 – 20,898.03 n/a(20) n/a(20) –
10 1000 41,989.27 37,114.20 38,332.10 – 41,963.22 n/a(20) n/a(20) –
10 total 78,405.45 70,208.13 72,635.03 – 78,306.57 – – –

total total 228,868.90 207,203.76 213,427.71 – 228,858.17 – – –

Table 8: Linear weights, dissimilar capacities. Average CPU times over 20 instances (# no solution).
Real Variables Integer Variables

m n DMM Ipopt_1 Ipopt_10 Couenne DMM Bonmin_1 Bonmin_10 Couenne

2 10 1.06 0.04 0.58 1613.09(3) 1.07 2.24 1.85 2,017.11
2 20 2.02 0.12 1.46 3,602.01(16) 2.02 9.99 10.64 3,601.04(1)
2 50 5.06 0.48 5.78 n/a(20) 5.08 530.30 137.54 3,602.40(5)
2 100 10.21 1.55 16.23 – 10.21 1,699.74 1,571.01 –
2 200 20.69 5.13 52.37 – 20.77 2,655.79(2) 2,601.08(1) –
2 500 56.61 22.90 237.33 – 58.30 1,493.78(18) 4,318.67(14) –
2 1000 115.26 70.27 741.25 – 118.16 50,892.30(19) n/a(20) –
2 total 210.91 100.49 1,055.00 – 215.61 – – –
5 10 1.10 0.14 1.41 3,269.85(10) 1.13 316.61 475.27 3,600.87(3)
5 20 2.02 0.34 3.59 3,601.70(18) 2.04 477.62 793.09 3,601.03(6)
5 50 5.10 1.40 14.21 n/a(20) 5.13 2,356.92 2,872.45 3,602.52(8)
5 100 10.41 4.03 40.96 – 10.30 3,240.82(8) 2,624.47(9) –
5 200 20.80 11.91 112.03 – 21.12 3,589.85(19) 3,411.551(18) –
5 500 54.68 58.92 554.51 – 56.87 n/a(20) n/a(20) –
5 1000 118.28 192.46 1,736.15 – 126.88 n/a(20) n/a(20) –
5 total 212.39 269.20 2,462.86 – 223.47 – – –
10 10 1.24 0.28 2.90 2,546.81(11) 1.27 768.94 763.07 3,085.93(1)
10 20 2.04 0.71 7.21 n/a(20) 2.06 1,693.68(1) 2,091.58 3,601.56(8)
10 50 5.10 2.55 28.40 n/a(20) 5.17 2,634.70(6) 2,361.36(6) 3,601.53(6)
10 100 10.27 8.98 92.64 – 10.53 3,211.55(13) 2,752.26(16) –
10 200 20.94 26.05 295.69 – 22.04 n/a(20) n/a(20) –
10 500 55.14 139.96 1,351.50 – 62.25 n/a(20) n/a(20) –
10 1000 172.99 350.02 3,629.18 – 159.23 n/a(20) n/a(20) –
10 total 267.72 528.55 5,407.52 – 262.55 – – –

total total 691.02 898.24 8,925.38 – 701.63 – – –

15

smaller instances with n = 10 (and a single case for n = 20). Coming to the CPU times, Tables 2 and 4
show that on the integer instances DMM is always the fastest method. For the real instances Ipopt_1 is
generally faster, but on the other hand the solution values it provides are definitely worse (by over 10%
on average). Overall, DMM appears to be an excellent trade-off between effectiveness and quality of the
provided solution.

Similar considerations apply to the results on the linear instances. Ipopt_10 and Bonmin_10 often
provide better solutions for smaller instances (see Tables 5 and 7), while DMM always performs better
for n ≥ 200. Concerning the average CPU times (Tables 6 and 8), DMM is again the clear winner on
the integer instances. For the real instances, Ipopt_1 is faster for m = 2 (but at the expenses of worse
solution values), while it is always outperformed by DMM for m ≥ 5 (especially on the larger instances).

It turns out that the instances with linear weights are more difficult to solve to optimality than those
with non-linear weights. Although this can appear surprising, there is no theoretical result implying
that one case must be easier than the other. Couenne, for example, transforms the objective function
so as it becomes linear, while its non-linear terms become additional constraints. It follows that, in any
case, the feasible region is defined by non-linear constraints, and the evolution of the branching search is
unpredictable.

Coming to the relative merits of the two approaches we presented, separate executions showed that
the constructive heuristic has in general a better performance than the surrogate heuristic. However, the
addition of the latter produces a number of benefits to the overall DMM algorithm:

• in a number of cases, especially for small-size instances, it finds a solution better than that of the
constructive heuristic. For example **** citare casi favorevoli ****;

• *** se ricordo bene, in passato abbiamo fatto esperimenti SENZA il surrogate heuristic. Si possono
recuperare? Sarebbero utili per poter dire (se vero):

– di quanto aumenta il valore medio delle soluzioni trovate;

– di quanto aumenta il numero di soluzioni ottime trovate;

– altro?

• the CPU time it takes is comparatively limited (*** Ë vero?), amounting, on average, at *** % of
the total CPU time;

• it produces an upper bound that can allow DMM to prematurely terminate with an optimal solution;

• *** altro?

Worth is also noting that all heuristic methods (DMM, Ipopt_1, and Ipopt_10) can produce a feasible
solution for all the real instances (both for the case of linear and non-linear weights). Instead, for the
integer instances DMM is the only method capable of finding a feasible solution for the larger instances.

We have seen that objective function (18) takes, according to the values of the four parameters, very
different shapes. In order to further evaluate the robustness of the behavior of DMM, we computed the
average ratio R = (upper bound produced by Couenne)/(solution value provide by DMM) on (18) and
on totally different objective functions, obtaining (****tutto da controllare e specificare *****):

• for (18): R = ∗ ∗ ∗∗ (computed over all *** generated instances ??? vero?);

• for the sinusoidal function 10 a xij sin
xij
50

: R = ∗∗∗?? (computed over ??? with a uniformly random
in ???);

• for the convex quadratic function 10 a2 x2
ij + b xij/5: R = ∗ ∗ ∗?? (computed over ??? with a

uniformly random in ??? and b uniformly random in ???),

16

which confirms the good behavior of the proposed algorithm.

We conclude our experimental analysis by evaluating the quality of the solutions provided by DMM
(for profit functions (18)) with respect to the global optimum. To this end, we only considered those
instances for which Couenne could produce the optimal solution within the time limit. Table 9 refers
to non-linear weights, Table 10 to linear weights. For each instance of a specific type (similar/dissimilar
and real/integer) the tables give the best solution value provided by DMM and the value of the global
optimum provided by Couenne. The very satisfactory performance of DMM is shown by the average
error of 3.65%, with a minimum of 0 and a maximum of 18%. We observe that Couenne optimally solved
more instances with non-linear weights (5.6%) than with linear weights (1.8%).

Table 9: Non-linear weights. Solution values for instances globally solved by Couenne.
Similar Capacities Dissimilar Capacities

Real Variables Integer Variables Real Variables Integer Variables

m n instance DMM Couenne DMM Couenne DMM Couenne DMM Couenne

2 10 0 223.20 230.69 205.37 228.65 211.03 230.62 211.98 228.33
1 462.02 470.98 457.49 471.87 – – 457.04 471.50
2 338.81 349.23 – – 340.36 349.29 339.04 349.21
3 373.14 381.21 368.56 379.98 367.99 382.72 367.83 382.82
4 309.95 317.61 – – 309.04 316.53 312.20 316.17
5 553.69 584.99 553.92 583.28 553.66 587.48 554.02 585.63
6 – – 286.42 303.57 250.55 264.43 250.55 263.71
7 286.71 304.76 285.50 305.06 217.68 221.78 217.83 221.64
8 – – 443.08 455.53 – – 438.36 455.49
9 – – 440.18 454.90 – – 407.35 455.29
10 314.74 330.25 314.74 326.33 327.94 330.40 322.26 326.86
11 355.74 396.79 353.70 395.00 374.36 395.14 369.83 393.58
12 291.93 305.05 294.18 302.82 298.81 299.82 292.96 299.39
13 328.83 353.59 328.73 352.30 329.20 349.62 329.08 349.50
14 374.85 390.88 375.30 389.56 361.39 390.92 362.07 389.32
15 – – 440.29 440.79 409.60 428.26 411.79 422.74
16 244.25 244.25 244.25 244.25 244.25 244.25 244.25 244.25
17 388.22 401.22 391.21 401.16 350.11 352.39 351.32 352.11
18 358.20 362.85 357.65 362.05 332.11 359.07 330.58 357.38
19 218.75 227.50 217.83 227.50 227.50 227.50 227.50 227.50

2 20 17 – – – – 525.58 530.82 524.70 530.70
5 10 0 – – – – – – 221.56 227.47

6 – – – – 293.89 306.33 294.76 305.67
7 – – – – – – 293.04 303.33
8 – – – – 383.54 392.58 367.80 390.95
10 – – – – – – 226.83 232.73
14 – – – – 302.48 309.32 302.99 308.46
16 – – – – 238.84 255.36 239.23 254.70
18 – – – – 259.90 264.89 259.17 264.10
19 – – – – 476.79 486.37 464.06 483.98

10 10 1 – – – – 449.44 453.39 448.38 452.76
3 – – – – 261.67 267.20 260.86 266.68
4 – – – – – – 327.73 399.69
6 – – – – 469.96 486.00 476.02 483.23
7 – – – – 263.76 266.95 263.76 265.78
9 – – – – 232.63 234.31 233.57 233.59
12 – – – – 176.41 178.04 146.23 162.55
13 – – – – 288.57 288.79 287.89 288.67
15 – – – – 267.69 274.38 259.68 274.01
16 – – – – 431.69 437.85 432.11 437.98

We finally mention that, for 10 of the instances globally solved by Couenne, it turned out that the
software behaved incorrectly, as our heuristics found a better solution than the one it had obtained.
We therefore contacted the developer of Couenne, who suggested to disable some of the default options,
namely: aggressive_fbbt, optimality_bt, and redcost_bt. We ran the modified version for the 10 in-
stances, and the results were finally correct. For example, the solution value of the instance 6 with m = 5,
n = 10, dissimilar capacities, integer variables and non-linear weights, produced by Couenne with the
default options was 286.86, while our heuristic found a feasible solution of value 294.76. When re-run
with the suggested options, the solution value was 305.67.

17

Table 10: Linear weights. Solution values for instances globally solved by Couenne.
Similar Capacities Dissimilar Capacities

Real Variables Integer Variables Real Variables Integer Variables

m n instance DMM Couenne DMM Couenne DMM Couenne DMM Couenne

2 10 1 – – – – 213.78 217.12 213.41 217.03
2 286.74 291.88 286.94 292.11 281.86 291.32 281.86 290.34
3 269.21 271.67 – – 262.49 271.61 250.59 271.29
4 – – – – – – 287.51 296.59
7 – – – – 246.83 250.45 247.66 250.22
10 279.41 296.13 – – 282.88 297.53 278.65 297.07
12 – – – – 462.93 484.80 463.05 484.84
13 – – – – 452.91 484.65 454.44 485.26
15 351.95 354.69 – – 332.08 349.80 332.26 349.28
17 597.89 626.07 – – 451.64 488.11 451.23 492.90
18 – – – – 481.08 494.04 – –
19 250.94 252.75 – – – – – –

5 10 17 – – – – 481.44 496.10 – –
10 10 1 – – – – 477.93 516.43 479.13 517.08

11 – – – – – – 363.21 365.08
13 – – – – 288.66 295.05 288.69 294.78
19 – – – – 195.25 206.44 – –

7 Conclusions

We have considered a very difficult multiple non-linear knapsack problem, that non-linear solvers are
unable to handle for instances of realistic size. We have studied a surrogate relaxation and we have
investigated the quality of the lower bounds possibly achieved. We have presented a solution approach
based on a fast constructive heuristic algorithm, two heuristics based on the feasibility recovery of the
surrogate solution, and a local search post-optimization procedure. We have compared our approach
with exact and heuristic solvers for general non-convex mixed integer non-linear programs. Extensive
computational comparisons have shown that the proposed approach provides, especially for large-size
instances, quick solutions of unexpected quality (i.e., within a few percent from the global optimum)
with CPU times that are orders of magnitude smaller. The simplicity of the proposed algorithms makes
them promising candidates for an extension to other nonlinear problems. We thank the three referees of
this paper for useful comments.

Acknowledgements

This research was supported by MIUR-Italy (Grant PRIN 2015) and by Air Force Office of Scientific
Research (under award number FA9550-17-1-0067). We thank Master student Angelo Di Zio for the
implementation of the constructive heuristics [6, 7] and Pietro Belotti for the technical support on the
use of Couenne [1, 4]. The last author acknowledges the financial support provided by MINO Initial
Training Network (ITN) under the Marie Curie 7th European Framework Programme.

References
[1] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and Bounds Tightening

Techniques for Non–convex MINLP. Optimization Methods & Software, 24(4–5):567–634, 2009.

[2] Bonmin. URL https://projects.coin-or.org/Bonmin.

[3] K.M. Bretthauer and B. Shetty. The Nonlinear Knapsack Problem – Algorithms and Applications.
European Journal of Operational Research, 138(3):459–472, 2002.

[4] Couenne. URL https://projects.coin-or.org/Couenne.

18

[5] C. D’Ambrosio and S. Martello. Heuristic Algorithms for the General Nonlinear Separable Knapsack
Problem. Computers & Operations Research, 38(2):505–513, 2011.

[6] C. D’Ambrosio, A. Di Zio, S. Martello, and L. Mencarelli. A Heuristic Algorithm for the General
Multiple Nonlinear Knapsack Problem. Technical report, DEI, University of Bologna, Italy and LIX,
École Polytechnique, Palaiseau, France, 2015.

[7] A. Di Zio. Design and Development of Heuristic Algorithms for Multiple Nonlinear Knapsack Prob-
lems. Master’s thesis, Department of Electronics, Computer Sciences and Systems (DEIS), University
of Bologna, 2012.

[8] T. Ibaraki and N. Katoh. Resource Allocation Problems. Cambridge, MA: MIT Press, 1998.

[9] Ipopt. URL https://projects.coin-or.org/Ipopt.

[10] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Berlin, Germany: Springer, 2004.

[11] D. Li and X. Sun. Nonlinear Integer Programming, volume 84 of International Series in Operations
Research & Management Science. Berlin, Germany: Springer, 2006.

[12] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Chich-
ester, New York: John Wiley & Sons, 1990.

[13] L. Mencarelli, C. D’Ambrosio, A. Di Zio, and S. Martello. Heuristics for the General Multiple
Non-linear Knapsack Problem. Electronic Notes in Discrete Mathematics, 55:59–62, 2016.

[14] Scip. URL http://scip.zib.de.

[15] B. Zhang and B. Chen. Heuristic and Exact Solution Method for Convex Nonlinear Knap-
sack Problem. Asia-Pacific Journal of Operational Research, 29(5):1250031, 2012. doi: 10.1142/
S0217595912500315.

[16] B. Zhang and Z. Hua. A Unified Method for a Class of Convex Separable Nonlinear Knapsack
Problems. European Journal of Operational Research, 191(1):1–6, 2008.

19

