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OF SURFACES IN TORIC THREEFOLDS

UGO BRUZZO§‡ AND ANTONELLA GRASSI¶
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¶ Department of Mathematics, University of Pennsylvania,

David Rittenhouse Laboratory, 209 S 33rd Street,

Philadelphia, PA 19104, USA

Abstract. The Noether-Lefschetz theorem asserts that any curve in a very general sur-

face X in P3 of degree d � 4 is a restriction of a surface in the ambient space, that is, the

Picard number of X is 1. We proved previously that under some conditions, which replace

the condition d � 4, a very general surface in a simplicial toric threefold P⌃ (with orbifold

singularities) has the same Picard number as P⌃. Here we define the Noether-Lefschetz

loci of quasi-smooth surfaces in P⌃ in a linear system of a Cartier ample divisor with

respect to a (-1)-regular, respectively 0-regular, ample Cartier divisor, and give bounds

on their codimensions. We also study the components of the Noether-Lefschetz loci which

contain a line, defined as a rational curve which is minimal in a suitable sense.

1. Introduction

The Noether-Lefschetz theorem states that any curve in a very general surface X in P3

of degree d � 4 is a restriction of a surface in the ambient space, namely the Picard number

of X is 1 (a point is very general if it lies outside a countable union of closed subschemes of

positive codimension). The Noether-Lefschetz locus is the locus where the Picard number
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is greater than 1. Green [10, 11] and Voisin [29] proved that if Sd is the locus of the degree

d surfaces in P3 whose Picard number is not 1, every component of Sd has codimension

� d � 3, with equality for the components of surfaces containing a line. This result has

been generalized by Otwinowska [24] to hypersurfaces in Pn; also Lopez-Maclean obtained

a bound on the codimension of the Noether-Lefschetz locus of surfaces associated with a

very ample line bundle in smooth threefolds, under some conditions [17].

We continue the analysis of [4], and consider a projective toric threefold P⌃ with orbifold

singularities; P⌃ is associated with a 3-dimensional complete simplicial fan ⌃ and is Q-

factorial (see Section 2.1). Let � be a nef (numerically e↵ective) class in the class group

Cl(P⌃) of Weil divisors modulo rational equivalence and consider a surface X in P⌃ whose

class (degree) in Cl(P⌃) is �. IfX is general, it is quasi-smooth, that is, its only singularities

are those inherited from P⌃ (Section 2.2).

Let M� be the moduli space of surfaces in P⌃ of degree � modulo automorphisms of P⌃.

In [4], see Theorem 4.2 in Section 4, we proved that for � ample and ��0 the canonical

class of P⌃, if the multiplication morphism

R(f)� ⌦R(f)���0 ! R(f)2���0 (1)

is surjective, very general points of M� correspond to surfaces whose Picard number equals

the Picard number of P⌃; here R(f) is the Jacobian ring, see Section 2.2. If P⌃ = P3 and

� = d � 4, or equivalently � � �0 is nef, the morphism in (1) is always surjective. Also,

the morphism is surjective whenever � � �0 is trivial, that is, X is a K3 surface in a Fano

threefold P⌃. If P⌃ is an Oda variety, that is, the sum of two polytopes associated with a

nef and an ample divisor is equal to their Minkowski sum, the multiplication map in (1) is

always surjective, see Section 3.2.

If we write � � �0 = n⌘ for an ample Cartier primitive class ⌘, the condition n � 0

generalizes the classical condition d � 4. We define the Noether-Lefschetz locus with

respect to � to be the closed subscheme U⌘(n) ofM� corresponding to quasi smooth surfaces

whose Picard number is strictly larger than that of P⌃ (Definition 4.5). In particular we

have an upper bound on the codimension of any irreducible component on the Noether-

Lefschetz locus:

Proposition 4.6.

codimU⌘(n)  h
2,0(S) = h

0(P⌃,OP⌃(n⌘)),

where S is a quasi-smooth surface in the linear system �.
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The classical proof of the codimension of the Noether-Lefschetz locus for P⌃ = P3 relies

implicitly on the fact that ⌘ = OP3(1) is (�1)-regular and any line bundle of degree d � 4

is 0-regular. However, in Theorem 3.8 we show that Pn is the only toric n-fold with an

ample (�1) regular line bundle. So we consider toric varieties with a 0-regular ample line

bundle. Our proof generalizes the arguments of Green in [10, 11] and relies on vanishing

theorems and dualities for toric varieties, as well as the Castelnuovo-Mumford regularity

of certain bundles.

In Section 4 we bound the codimension of the Noether-Leschetz locus. In Theorem 4.12

we prove

Theorem 4.12. Let P⌃ be a simplicial toric threefold, ⌘ an ample primitive Cartier class,

�0 = �KP⌃, � 2 Pic(P⌃) an ample Cartier class that satisfies ���0 = n⌘ for some n � 0.

Assume that � is 0-regular with respect to ⌘. If ⌘ is (-1)-regular, then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.

Corollary 4.13. Let P⌃ be a simplicial Fano toric threefold, ⌘ a primitive nef divisor,

�0 = �KP⌃, � 2 Pic(P⌃) an ample Cartier class that satisfies ���0 = n⌘ for some n � 3.

If ⌘ is (�1)-regular then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.

We prove a similar result for Oda varieties in Theorem 4.15.

We consider various examples in Section 4.3; in Section 5 we consider the components

of the loci U⌘(n) which contain a line, defined as a rational curve that is “minimal” in

a suitable sense (i.e., its intersection with the ample class ⌘ is 1). We show that the

codimension of these components is n + 1, as in the classical case. To do that, we prove

a Severi-type vanishing theorem, and, in a singular case, we study the Hilbert schemes of

lines.
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2. Preliminaries

2.1. Divisors in toric varieties and the Picard number. Let M be a free abelian

group of rank r, let N = Hom(M,Z), and NR = N ⌦Z R. Let ⌃ be a rational simplicial

complete r-dimensional fan in NR. It defines a complete toric variety P⌃ of dimension r

having only Abelian quotient singularities. P⌃ is said to be simplicial, and is an orbifold.

Let Cl(P⌃) be the group of Weil divisors in P⌃ modulo rational equivalence, and Pic(P⌃)

the group of line bundles on P⌃ modulo isomorphism; both are finitely generated Abelian

groups, and Pic(P⌃) is free. Since ⌃ is simplicial, P⌃ is Q-factorial, i.e., the natural

inclusion Pic(P⌃) ,! Cl(P⌃) becomes an isomorphism after tensoring by Q. The rank of

the two groups is also the Picard number, the rank of the Néron-Severi group of P⌃. Recall

that the Néron-Severi group of a variety Y is the image of the Picard group in the second

cohomology group with integer coe�cients. One can define its rank as dimQ NS(Y )⌦ZQ =

dimQ(H2(Y,Q) \H
1,1(Y,C)).

Let S be the Cox ring, that is, the algebra over C generated by the homogeneous

coordinates associated with the rays of ⌃; so S = C[x⇢], where ⇢ runs over the rays of

the fan [6]. This is a generalization of the coordinate ring of P⌃ = Pn, in which case the

Cox ring is C[x0, · · · , xn]. Recall that each ray ⇢ determines a Weil divisor D⇢; a monomialQ
x
a⇢
⇢ determines a divisor D =

P
⇢ a⇢D⇢ and deg(D) = deg(

Q
x
a⇢
⇢ ) 2 Cl(P⌃) induces a

grading of S = ��2Cl(P⌃)S�.

2.2. Surfaces in P⌃. Let D be a nef divisor of class � in Cl(P⌃); then OP⌃(D) is generated

by its global sections [18, Th. 1.6]. Let X be a surface in P⌃ whose class in Cl(P⌃) is �; if

X is general, it is quasi-smooth, that is, its only singularities are those inherited from P⌃

[20, Lemma 6.6, 6.7]. In particular, X is an orbifold if P⌃ is simplicial.

Let f be a section of the line bundle OP⌃(D) such that X is the locus f = 0. The ideal

J(f) is the ideal in S generated by the derivatives of f , and the Jacobian ring R(f) is

defined as R(f) = S/J(f). It is naturally graded by the class group Cl(P⌃).
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2.3. The dualizing sheaf and vanishing theorems. Let P⌃,0 be the smooth locus of

P⌃, and let j : P⌃,0 ! P⌃ be the corresponding open immersion. The sheaf b⌦p
P⌃

of Zariski

p-forms on P⌃ is the sheaf j⇤⌦
p
P⌃,0

, where ⌦p
P⌃,0

is the sheaf of p-di↵erentials on P⌃,0. The

sheaf !P⌃ = b⌦r
P⌃

is the dualizing sheaf of P⌃. It is a reflexive coherent sheaf of rank 1, and

determines a class in Cl(P⌃) that we shall denote ��0. If � is the class of a Weil divisor,

we shall denote by OP⌃(� � �0) the sheaf OP⌃(�)⌦ !P⌃ .

If � is an ample class in Pic(P⌃), the Bott-Danilov-Steenbrink vanishing theorem [22,

Ch. 3] says:

H
q(P⌃,OP⌃(�)⌦ b⌦p

P⌃
) = 0 (2)

for 1  q  r and 0  p  r.

Toric Serre duality ([7], Theorem 9.2.10) then implies

H
q(P⌃,OP⌃(��)⌦ b⌦p

P⌃
) = 0 (3)

for 0  q  r � 1 and 0  p  r.

If � is Cartier and nef, Mavlyutov’s vanishing theorem [19] holds since P⌃ is complete

and simplicial, and one has

H
q(P⌃,OP⌃(�)⌦ b⌦p

P⌃
) = 0 (4)

for q > p or p > q + dimP�, where P� is the polytope associated with the line bundle

OP⌃(�) (see also [7], Theorem 9.3.3). For p = 0 this reduces to Demazure’s vanishing

theorem [7, Thm. 9.2.3], that is, Hq(P⌃,OP⌃(�)) = 0 for q > 0, under the only hypothesis

that � is nef.

3. Regularity and Oda varieties

The proofs, based on the infinitesimal variation of Hodge structure, of the Noether-

Lefschetz theorem, and of the lower bound for the codimension of the Noether-Lefschetz

locus in the moduli space of surfaces in P3, use three fundamental ingredients: the (-1)-

regularity of the hyperplane bundle OP3(1), the fact that for any n,m 2 N, the multiplica-

tion morphism Sn ⌦ Sm ! Sn+m is surjective, and various cohomology vanishings. While

these properties do not hold in general for a toric variety, we find that suitable gener-

alizations of the above hypotheses are satisfied by a large class of toric varieties. These

generalizations are the key for the proof of Theorem 4.11.
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3.1. Castelnuovo-Mumford regularity for toric varieties. Let X be a projective

variety and L an ample and globally generated line bundle on it.

Definition 3.1. A coherent OX-module F is m-regular with respect to L if

H
q(X,F ⌦ L

m�q) = 0

for all q > 0.

If L is an ample and globally generated line bundle which is m-regular with respect to

itself, we shall just say that it is m-regular. A line bundle on a complete toric variety is

nef if and only if it is globally generated [18, Th. 1.6], and we have the following:

Theorem 3.2 ([16], Thm 1.8.5). Let P⌃ be a projective toric variety. If a locally free

OP⌃-module F is m-regular with respect to an ample line bundle L, then for all k � 0,

(i) F ⌦ L
m+k

is generated by global sections;

(ii) the map

H
0(P⌃,F ⌦ L

m)⌦H
0(P⌃, L

k) ! H
0(P⌃,F ⌦ L

k+m) (5)

is surjective;

(iii) F is (m+ k)-regular.

Corollary 3.3. If L is 0-regular, for every m-regular locally free OP⌃-module F, there is a

projective resolution

· · · !
M

(L�m�1) !
M

(L�m) ! F ! 0 . (6)

Proof. The proof of [16, Prop. 1.8.8], together with Theorem 3.2, can be applied. ⇤

Remark 3.4. Note that L�m�j is (m+ j + 1)-regular if L is 0-regular, and (m+ j)-regular

if L is (�1)-regular.

If P⌃ = Pn and F is locally free and 1-regular with respect to OPn(1), then F
⌦p is p-

regular a consequence of the fact that OPn(1) is (-1)-regular [16, Prop. 1.8.9]. The same

holds on (P⌃, ⌘) with ⌘ ample and (-1)-regular:

Proposition 3.5. Let P⌃ be a toric variety, and L a (q� 1)-regular ample line bundle on

it, q � 0. Il F is locally free and 1-regular with respect to L, then F
⌦p

is (p+ q)-regular.

Proof. It is enough to show the results when L is (-1) regular. Since F is locally free, by

tensoring p copies of the resolution (6) for m = 1 we obtain a resolution

· · ·
M

(L�p�1) !
M

(L�p) ! F
⌦p ! 0 .
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By splitting this into short exact sequences and taking cohomology one gets the result. ⇤

Proposition 3.6. Let P⌃ be an r-dimensional toric variety, and ⌘ an ample Cartier divi-

sor.

(i) ⌘ is 0-regular if and only if H
0(P⌃,OP⌃((r � 1)⌘ � �0)) = 0.

(ii) ⌘ is (�1)-regular if and only if H
0(P⌃,OP⌃(r⌘ � �0)) = 0.

Proof. Follows from Serre duality and the Bott-Danilov-Steenbrink vanishing. ⇤

Theorem 3.7. The only Gorenstein toric threefolds with Picard number 1 that carry a

0-regular ample line bundle are P[1, 1, 2, 2] and P3
.

Proof. Write �0 = `⌘, where ⌘ is an ample Cartier divisor; then 2⌘ � �0 = (2� `)⌘, and ⌘

is 0-regular if and only if ` � 3 (Proposition 3.6). Then P⌃ is Fano and ` is the index of P⌃

as in [23]. Ogata and Zhao prove that ` = 3 if P⌃ 6= P3 [23, Theorem 1]. The statement

then follows from Theorem 3 in [23]. ⇤

Theorem 3.8. The only r-dimensional toric variety (r � 2) with an ample line bundle

which is (-1)-regular is the projective space Pr
.

Proof. Let ⌘ be an ample Cartier divisor in the variety under consideration. By Proposition

3.6(ii) we have that the line bundle OP⌃(r⌘ � �0) has no sections. The claim then follows

from Theorem 1 in [23] (or, for the same statement in purely combinatorial terms, [1,

Prop. 1.4]). ⇤

3.2. Oda varieties.

Definition 3.9. A toric variety P⌃ is an Oda variety if the multiplication morphism S↵1 ⌦
S↵2 ! S↵1+↵2 is surjective when the classes ↵1 and ↵2 in Pic(P⌃) are ample and nef,

respectively.

The question of the surjectivity of this map was posed by Oda in [21] under more general

conditions. Note that the conjecture is still open even for smooth projective toric varieties.

This assumption can be stated in terms of the Minkowski sum of polytopes, because the

integral points of a polytope associated with a line bundle correspond to sections of the

line bundle. Definition 3.9 says that the sum P↵1 + P↵2 of the polytopes associated with

the line bundles OP⌃(↵1) and OP⌃(↵2) is equal to their Minkowski sum, that is P↵1+↵2 , the

polytope associated with the line bundle OP⌃(↵1+↵2). The Oda varieties are characterized

by Property 2.2 by Ikeda in [12], as ↵1 is nef if and only if it is globally generated. Ikeda

also shows the following:
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Theorem 3.10. [12, Corollary 4.2]

(i) A smooth toric variety with Picard number 2 is an Oda variety.

(ii) The total space of a toric projective bundle on an Oda variety is also an Oda

variety.

We have:

Proposition 3.11. Let P⌃ be an n-dimensional projective toric variety. If Pic(P⌃) = Z
and its ample generator ⌘ is 0-regular, then P⌃ is an Oda variety.

Proof. If ↵2 is a nef class in Pic(P⌃), then ↵2 = `⌘ with ` � 0. If ` = 0 the condition in

Definition 3.9 is empty, so we can assume ` � 1. If we set F = OP⌃(↵2) and L = OP⌃(⌘),

equation (5) in Theorem 3.2 becomes the wanted surjectivity condition, provided that ↵2

is 0-regular (with respect to ⌘). We will show that

H
i(P⌃,OP⌃((`� i)⌘)) = 0

for ` � 1 and i > 0. For 0 < i < n all vanishings are a consequence of the Bott-Danilov-

Steenbrink vanishing (2), possibly using Serre duality (3). For i = n and ` � n one uses

again the Bott-Danilov-Steenbrink vanishing. For i = n and ` = 1 one uses Serre duality

and Proposition 3.6; the cases i = n and 1 < ` < n follow a fortiori. ⇤

3.3. Other vanishings. Let P⌃ = P3. Then any ample divisor � of degree at least 4 is

0-regular; also, � � 2H is nef. The vanishings h1(P3
,OP3(� � ⌘)) = h

2(P3
,OP3(� � ⌘)) =

h
2(P3

,OP3(� � 2⌘)) = 0 follow from either fact. These vanishings are used in the proof

of the estimate of the codimensions of the Noether-Lefschetz locus for P3. In our more

general setting, the proof of Theorem 4.11 will require analogous vanishing conditions:

h
1(P⌃,OP⌃(� � ⌘)) = h

2(P⌃,OP⌃(� � ⌘)) = h
2(P⌃,OP⌃(� � 2⌘)) = 0. (7)

So our next step is to study these vanishing conditions.

Proposition 3.12. Let P⌃ be a complete simplicial toric variety, � and ⌘ nef divisors. If

� � 2⌘ is nef, then the vanishings in equation (7) are satisfied.

Proof. It follows from Demazure’s vanishing theorems (the vanishings in (4) for p = 0). ⇤

Proposition 3.13. Let P⌃ be a simplicial toric variety, � and ⌘ Cartier divisors, with �

nef and ⌘ ample. Assume that � is 0-regular with respect to ⌘. Then:

(i) the vanishings in equation (7) are satisfied;

(ii) the multiplication morphism S� ⌦ Sk⌘ ! S�+k⌘ is surjective for all k � 0.
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Proof. In fact � is also 1-regular by (iii) in Theorem 3.2 and the vanishings follow from the

definition of regularity. Part (ii) in Theorem 3.2 implies the surjectivity of the multiplica-

tion map. ⇤

Corollary 3.14. Let P⌃ be a Fano toric simplicial threefold, ⌘ an ample Cartier class,

and � = �0+n ⌘. If n � 2, then �� 2⌘ is ample. If n � 3, then � is 0-regular with respect

to ⌘.

4. Noether-Lefschetz loci

In this section we continue the analysis of [4] for X a general surface in a complete

simplicial toric variety P⌃ corresponding to an ample Cartier divisor; X is quasi-smooth,

see Sections 2.1 and 2.2. Let M� be the moduli space of surfaces in P⌃ of degree � modulo

automorphisms of P⌃ (for a precise definition see [2]). We want to establish a lower bound

for the codimension of the closed subscheme of M� corresponding to surfaces whose Picard

number is strictly larger than that of P⌃. The codimension will depend on a fixed class

⌘ 2 Pic(P⌃), an ample primitive Cartier class (primitive means that it is not a multiple of

an ample class). If P⌃ = P3 the condition that D + KP⌃ is nef in the theorems below is

the classical condition deg(D) � 4.

Remark 4.1. Note that the condition � � �0 = n⌘ implies that the anti-canonical class �0

is Cartier, namely, P⌃ is necessarily Gorenstein. 4

In [4] we proved:

Theorem 4.2. [4] Let P⌃ be a 3-dimensional simplicial toric variety, D an ample Cartier

divisor on P⌃, X a very general (quasi-smooth) surface in the linear system |D|, � = degD

and �0 = � degKP⌃. If the morphism

R(f)� ⌦R(f)���0 ! R(f)2���0 (8)

is surjective, X and P⌃ have the same Picard number.

Actually when we wrote [4] we were unaware of [25] where a general result is proved

using di↵erent techniques.

Theorem 4.3. Let P⌃ be a 3-dimensional simplicial toric Oda variety, D an ample Cartier

divisor on P⌃ such that D + KP⌃ is nef, X a very general (quasi-smooth) surface in the

linear system |D|. Then X and P⌃ have the same Picard number.
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Proof. Let � = degD, �0 = � degKP⌃ and note that the multiplication morphism (8) is

surjective on an Oda variety. ⇤

Theorem 4.4. Let P⌃ be a 3-dimensional simplicial toric variety, and D an ample Cartier

divisor on P⌃. Let � = degD, and assume that � = �0 + n ⌘ with n � 0 for an ample

Cartier class ⌘. If � is 0-regular with respect to ⌘ and X is a very general (quasi-smooth)

surface in the linear system |D|, then X and P⌃ have the same Picard number.

Proof. The map (8) is surjective because S� ⌦ Sn⌘ ! S�+n⌘ is by Proposition 3.13. ⇤

Definition 4.5 (Noether-Lefschetz locus). Let P⌃ be a simplicial toric threefold, ⌘ a prim-

itive ample Cartier class, �0 = �KP⌃ and � 2 Pic(P⌃) an ample Cartier class that satisfies

� � �0 = n⌘ for some n � 0. Assume that very general surfaces in the linear system �

have the same Picard number of P⌃.

U⌘(n) is the closed subscheme of M�, the moduli space of surfaces in P⌃ of degree �

modulo automorphisms, corresponding to surfaces whose Picard number is strictly larger

than that of P⌃.

Proposition 4.6. The codimension of any irreducible component of U⌘(n) is bounded from

above by h
2,0(S) = h

0(P⌃,OP⌃(n⌘)), where S is a quasi-smooth surface in the linear system

�.

Proof. The classic inequality codimU⌘(n)  h
2,0(S) for surfaces in P3 [5, pp. 71-72] relies

on the fact that a 2-cycle in a smooth projective surface S is algebraic if and only if it is or-

thogonal to H
2,0(S). In our case, a general surface S in the linear system � is quasi-smooth

and is a projective orbifold. However the argument may be repeated in this case by taking

a resolution of singularities ⇢ : S 0 ! S. The induced morphism ⇢
⇤ : H2(S,C) ! H

2(S 0
,C)

is injective and the Hodge decomposition of H
2(S 0

,C) induces a Hodge decomposition

of H2(S,C) [28]. A class in H
1,1(S) \ H

2(S,Z) regarded in H
1,1(S 0) \ H

2(S 0
,Z) is al-

gebraic and so is algebraic in S as well (the other implication is obvious). To see that

h
2,0(S) = h

0(P⌃,OP⌃(n⌘)) one uses the fundamental sequence of the divisor S, with Serre

duality and the acyclicity of the sheaf OP⌃ . Note that the canonical class of S is Cartier

by the adjunction formula, since �0 and � are Cartier. ⇤

4.1. Some preliminary Lemmas. To give an estimate on the codimension of U⌘(n) we

need some preliminary Lemmas. Let P⌃ be a simplicial toric threefold.

In the following we assume that ⌘ is a primitive ample 0-regular Cartier class, and

� 2 Pic(P⌃) a nef Cartier class that satisfies ���0 = n⌘ for some n � 0, with �0 = �KP⌃ .
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We also assume that the multiplication morphism S� ⌦ Sk⌘ ! S�+k⌘ is surjective for all

k � 0, and that h1(P⌃,OP⌃(� � ⌘)) = h
2(P⌃,OP⌃(� � ⌘)) = h

2(P⌃,OP⌃(� � 2⌘)) = 0 (see

Section 3.3).

Recall that S� = H
0(P⌃,OP⌃(�)). Since � is nef, it is globally generated, and we have

an exact sequence

0 ! M0 ! S� ⌦ OP⌃ ! OP⌃(�) ! 0 (9)

where M0 is locally free. Then:

Lemma 4.7. H
q(P⌃,M0(k⌘)) = 0 for all q � 1 and k + q � 1. In particular, M0 is

1-regular.

Proof. We twist the exact sequence (9) by OP⌃(k⌘) and take a segment of the long exact

sequence of cohomology:

· · · ! S� ⌦H
q�1(P⌃,OP⌃(k⌘))

m��! H
q�1(P⌃,OP⌃(� + k⌘))

! H
q(P⌃,M0(k⌘)) ! S� ⌦H

q(P⌃,OP⌃(k⌘)) ! . . .

We consider separately the cases q = 1, 2, 3.

q = 1. The morphism m is the multiplication morphism S� ⌦ Sk⌘ ! S�+k⌘ which

is surjective by hypothesis. Moreover H
1(P⌃,OP⌃(k⌘)) = 0 by the Demazure vanishing

theorem for k � 0.

q = 2. If k � 0, H1(P⌃,OP⌃(� + k⌘)) = H
2(OP⌃(k⌘)) = 0 by the Demazure vanishing

theorem, since � + k⌘ and ⌘ are nef. For k = �1, H1(P⌃,OP⌃(� � ⌘)) = 0 by assumption,

and H
2(P⌃,OP⌃(�⌘) = 0 because ⌘ is 0-regular.

q = 3. For k � 0, �+ k⌘ is nef so H
2(P⌃,OP⌃(�+ k⌘)) = H

3(P⌃,OP⌃(k⌘)) = 0 again by

Demazure’s vanishing. For k = �2,�1 we have H
2(P⌃,OP⌃(� + k⌘)) = 0 by hypothesis

and H
3(P⌃,O(k⌘)) = 0 because ⌘ is 0-regular and by Theorem 3.2. ⇤

Lemma 4.8. Assume that M0 is 1-regular. If ⌘ is (-1)-regular, the vector bundle ⇤p
M0 is

p-regular with respect to ⌘ for all p � 1, that is Hq(P⌃,⇤p
M0((p� q)⌘)) = 0 for q > 0.

Similarly, if ⌘ is 0-regular, then ⇤p
M0 is (p + 1)-regular, that is H

q(P⌃,⇤p
M0((p + 1�

q)⌘)) = 0 for q > 0.

Proof. ⇤p
M0 is a direct summand of M⌦p

0 , so that the Lemma follows from Proposition

3.5. ⇤

Let W be a base point free subspace of S� = H
0(P⌃,OP⌃(�)), and let

W = Wc ⇢ .... ⇢ W0 = S�
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be a flag of subspaces of S� whose quotients Wi/Wi+1 are all of dimension 1 (thus, c =

dimS� � dimW ). All subspaces Wi are base point free (since they contain W ), so that

there are exact sequences

0 ! Mi ! Wi ⌦ OP⌃ ! OP⌃(�) ! 0 (10)

with Mi locally free. There are injective morphisms Mi+1 ! Mi, and Mi/Mi+1 ' OP⌃ .

The following Corollary is proved as Lemma 2 of [11].

Corollary 4.9. Assume Lemma 4.8 holds. If ⌘ is (-1)-regular, H
q(P⌃,⇤p

Mi(k⌘)) = 0 for

where 0  i  c = dimS� � dimW , q � 1, p � 1, k + q � p+ i. If ⌘ is 0-regular, one has

the same vanishing for q � 1, p � 1, k + q � p+ i+ 1.

Proposition 4.10. Under the assumption listed at the beginning of Section 4.1, let W be

a base point free subspace of S� = H
0(P⌃,OP⌃(�)). The map

W ⌦ S���0 ! S2���0 (11)

is surjective if ⌘ is (-1)-regular and codimW  n.

If ⌘ is 0-regular but not (-1)-regular, then the map (11) is surjective if codimW  n�1.

Proof. From equation (10) for i = c we obtain

W ⌦ S���0 ! S2���0 ! H
1(P⌃,Mc(� � �0)) .

Since �� �0 = n⌘ and ⌘ is (-1)-regular, the group on the right vanishes by Corollary 4.9 if

n + 1 � 1 + c, i.e., if codimW  n (note indeed that codimW = c). If ⌘ is 0-regular, we

obtain the condition codimW  n� 1. ⇤

4.2. Codimension of the Noether-Lefschetz loci. We can now prove the lower bounds

on the codimension of the Noether-Lefschetz loci.

Theorem 4.11. Let P⌃ be a simplicial toric threefold, ⌘ an ample primitive Cartier class,

�0 = �KP⌃ and � 2 Pic(P⌃) an ample Cartier class that satisfies � � �0 = n⌘ for some

n � 0. Assume that the multiplication morphism S� ⌦ Sk⌘ ! S�+k⌘ is surjective and also

that h
1(P3

,OP3(� � ⌘)) = h
2(P3

,OP3(� � ⌘)) = h
2(P3

,OP3(� � 2⌘)) = 0.

If ⌘ is (-1)-regular, then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.
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Proof. Let T� be the tangent space to U⌘(n) at [X]. Since T[X]M� may be identified with

the summand R� of the Jacobian ring of X [2], we may take the inverse image T̃� of T� in

the summand S� of the Cox ring of X. Now T̃� contains the summand J� of the Jacobian

ideal of X, which is a base point free linear system because X is quasi-smooth, hence T̃�

is base point free as well.

Let us suppose that ⌘ is (-1)-regular, assume that codim(U⌘(n))  n, and apply Propo-

sition 4.10 by taking W = T̃�. The multiplication morphism T̃� ⌦ S���0 ! S2���0 is

surjective. The proof of Lemma 3.7 in [4] gives that the Picard number of the surfaces

in U⌘(n) coincides with the Picard number of P⌃. But this contradicts the definition of

U⌘(n). The same happens with respect to the condition codim(U⌘(n))  n � 1 when ⌘ is

0-regular. ⇤

Theorem 4.12. Let P⌃ be a simplicial toric threefold, ⌘ an ample primitive Cartier class,

�0 = �KP⌃, � 2 Pic(P⌃) an ample Cartier class that satisfies ���0 = n⌘ for some n � 0.

Assume that � is 0-regular with respect to ⌘. If ⌘ is (-1)-regular, then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.

Proof. Follows from Theorem 4.11, Proposition 3.13 and Theorem 4.4. ⇤

Corollary 4.13. Let P⌃ be a simplicial Fano toric threefold, ⌘ an ample primitive Cartier

class, �0 = �KP⌃, � 2 Pic(P⌃) a Cartier class that satisfies � � �0 = n⌘ for some n � 3.

If ⌘ is (�1)-regular, then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.

Proof. By Corollary 3.14 � is 0-regular, and then the claim follows from Theorem 4.12. ⇤

Remark 4.14. If n = 2, we need to assume that P⌃ is Oda.

Theorem 4.15. Let P⌃ be a simplicial toric Oda threefold ⌘ an ample primitive Cartier

class, �0 = �KP⌃, � 2 Pic(P⌃) an ample Cartier class that satisfies � � �0 = n⌘ for some



14 NOETHER-LEFSCHETZ LOCUS OF SURFACES IN TORIC 3-FOLDS

n � 0. If � � 2⌘ is nef and ⌘ is (-1)-regular, then

codimU⌘(n) � n+ 1.

If ⌘ is 0-regular, then

codimU⌘(n) � n.

Proof. Follows from Theorem 4.11 and Proposition 3.12, as the multiplication map is sur-

jective on Oda toric varieties. ⇤

For P⌃ = P3 and ⌘ the hyperplane class, the first inequality in the Theorems above

reproduces Green’s and Voisin’s result [10, 11, 29].

4.3. Examples. We discuss examples of toric threefolds for which the results in section

4.2 apply.

Example 4.16. Let P⌃ a toric simplicial Gorenstein threefold with nef anti-canonical bundle

and ⌘ an ample Cartier class. Then any class � = n⌘ + �0 is m-regular with respect to

⌘ if n � 3 �m. Here we have used the vanishing (3). Note that when � is 0-regular, by

Proposition 3.13 the multiplication morphism S� ⌦ Sk⌘ ! S�+k⌘ is surjective for k � 0.

Example 4.17. Let bP3 be the projective 3-space blown-up along a line and E the exceptional

divisor. Denote by $ : bP3 ! P3 the blow-down morphism. By Ikeda’s Theorem 3.10 bP3

is an Oda simplicial toric variety. The nef cone of bP3 is generated by the class ⌘1, the

pullback of a hyperplane in P3, and the class ⌘2 = ⌘1 � E.

The anti-canonical class is �0 = 3⌘1 + ⌘2. The class ⌘ = ⌘1 + s⌘2 is ample and 0-regular

for all s � 1. The class � � 2⌘ is nef for n � 2� 1
s . A very general surface X in the linear

system of the class �, with n � 2� 1
s , has Picard number 2 by Theorem 4.3.

Example 4.18. P1⇥P2 is an Oda variety by Ikeda’s Theorem 3.10. The nef cone is generated

by the pullback of the hyperplane bundles by the natural projections, namely by the nef

classes H1 = ⇡
⇤
1(OP2(1)) and H2 = ⇡

⇤
2(OP1(1)); the nef cone is also the cone of e↵ective

divisors.

The ample classes ⌘ = H1 + sH2, s � 1, are 0-regular. Moreover, � � 2⌘ is nef if

� = �0 + n⌘, with n � 2(s � 1)/s. A very general surface X in the linear system � has

Picard number 2 by Theorem 4.3.
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`2

`1

D2 ' P2

D1

D2

Figure 1. Example 4.19. The picture on the left is the cone over a quadric in

P3, the picture on the right is its small resolution, obtained by adding the line `2.

D1, D2 are divisors representing the classes ⌘1, ⌘2.

Example 4.19. Let P̄⌃ be the cone over a quadric surface in P3. It is a non-simplicial

projective toric threefold [23, §2]. We make a small resolution by adding a face which

splits the cone having four edges, getting a smooth simplicial toric threefold P⌃. It is

easy to see that P⌃ is quasi-Fano. Explicit toric computations show that the nef cone is

generated by ⌘1, the pullback of the ample generator of the class group of the quadric

surface, and ⌘2, the divisor giving the fibration over P1 (see Figure 1). Moreover, every

ample divisor of the form ⌘ = ⌘1+ ⌘2 is 0-regular. The anti-canonical class is �0 = 3⌘1. By

Theorem 3.10, P⌃ is an Oda variety. With � = �0 + n ⌘, the class � � 2⌘ is nef for n � 2.

Then a very general surface X in the linear system of the class � has Picard number 2 by

Theorem 4.3, and codimU⌘(n) � n by Theorem 4.15.

Example 4.20. Let P⌃ = P[1, 1, 2, 2] and ⌘0 be the e↵ective generator of the class group of

P⌃, and let ⌘ be the (very) ample generator of the Picard group. Note that ⌘ = 2⌘0 and

�0 = 6⌘0 = 3⌘. The variety P⌃ = P[1, 1, 2, 2] can be realized as a quotient P3
/Z2, and is

singular along a toric curve C whose class is ⌘0 · ⌘0; this is a line of singularities of type A1.

By Theorem 3.7, P⌃ is and Oda variety and ⌘ is 0-regular, but not (-1)-regular. Let

� = �0 + n⌘ = (3 + n)⌘ with n � 0; then � � 2⌘ is nef. A very general surface X in the

linear system of the class � has Picard number 1 by Theorem 4.3, and codimU⌘(n) � n

by Theorem 4.15.
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5. Components of small codimension

5.1. Lines and surfaces containing a line. In the previous Section we have shown that

if P⌃ is an Oda variety and ⌘ is (-1)-regular, the inequalities

n+ 1  codimU⌘(n)  h
0(P⌃,OP⌃(n⌘))

hold, while if ⌘ is only 0-regular,

n  codimU⌘(n)  h
0(P⌃,O⌃(n⌘)).

In the case of P3 it was conjectured in [10] and proved in [11, 10, 30], that the components

of M� of codimension n + 1 are those whose points correspond to surfaces containing a

line. In this section we define a notion of “line” with respect to an ample Cartier class in

a toric variety, and study the families of surfaces which contain a line in the Examples of

the previous section. We show that such components have also codimension n+ 1.

Definition 5.1. Let P⌃ be a simplicial toric threefold, equipped with a 0-regular ample

Cartier class ⌘. A line L in P⌃ is a smooth rational curve such that ⌘ · L = 1.

A line L is therefore a point in the Hilbert schemes of curves Hilb
P⌃ in P⌃ with Hilbert

polynomial p(k) = k + 1 (with respect to the polarization ⌘); this Hilbert scheme is in

general reducible.

Let � = �0 + n⌘, with n � 0. Assume that � is ample, and let S1,⌘(n) be the family of

surfaces in P⌃ of class � that contain a line. For a line L in P⌃, denote IL its ideal sheaf.

Proposition 5.2. Assume that all lines L in P⌃ verify the condition H
1(P⌃, IL(�)) = 0.

Then

codim S1,⌘(n) = n+ 1 + �0 · L� dim[L] Hilb
P⌃ .

Proof. Let SL ⇢ H
0(P⌃,OP⌃(�)) be the family of surfaces in P⌃ of degree � that contain a

fixed line L. From the exact sequence

0 ! IL(�) ! OP⌃(�) ! OL(�) ! 0,

sinceH1(P⌃, IL(�)) = 0, we see that the codimension of SL is the dimension ofH0(L,OL(�)).

This is

dimH
0(L,OL(�)) = dimH

0(P1
,OP1(�0 · L+ n)) = �0 · L+ n+ 1.

Now we have to vary the line L; the e↵ect of this is to subtract from the result the dimension

of the Hilbert scheme of curves with Hilbert polynomial p(k) = k + 1. ⇤
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(One can note that the general surface in S1,⌘(n) does not contain two lines.)

Lemma 5.3. Assume that L ⇢ P⌃ is either in the smooth locus of P⌃ or a locally complete

intersection and that h
1(NL/P⌃

) = 0. Then

(i) dim[L] Hilb
P⌃ = h

0(NL/P⌃
).

(ii) If L is in the smooth locus of P⌃, then dim[L] Hilb
P⌃ = h

0(NL/P⌃
) = �0 · L.

Proof. (i) The statement follows from [26, Thm. 4.3.5] and [14, Ch. 1, Thm. 2.8, Lemma

2.12, Prop. 2.14].

(ii) Note that from the exact sequence

0 ! N
⇤
L/P⌃

! ⌦1
P⌃|L ! ⌦1

L ! 0

one has degNL/P⌃
= �0 · L � 2, so that from Riemann-Roch one obtains h

0(NL/P⌃
) =

�0 · L. ⇤

Corollary 5.4. If dim[L]Hilb
P⌃ = �0 · L, then

codim S1,⌘(n) = n+ 1.

In our examples, the required vanishingH1(P⌃, IL(�)) = 0 in Proposition 5.2 will be pro-

vided by the following theorem, which generalizes to the case of simplicial toric threefolds

a result by Severi [27] and Bertram, Ein and Lazarsfeld [3].

Theorem 5.5. Let P⌃ be a simplicial projective toric threefold, and let L be a toric irre-

ducible curve in P⌃, which is not contained in the singular locus of P⌃, and is the intersec-

tion of two e↵ective divisors D1 and D2, with D1 Cartier. Let µ : X ! P⌃ be the blowup

of P⌃ along L, denote by Y the strict transform of D1, and let D be a divisor in P⌃ such

that

(i) D �D1 is nef;

(ii) the line bundle

µ
⇤(OX(D �D1))|Y +NY/X (12)

is nef.

Then H
i(P⌃, IL(D)) = 0 for i > 0.

Proof. One has µ⇤(OX(�F )) ' IL, where F ⇢ X is the exceptional divisor. We see that

one has indeed µ⇤OX ' OP⌃ , and R
i
µ⇤OX = 0 for i > 0 as µ is a toric morphism [7,

Thm. 9.2.5]. By applying the functor µ⇤ to the fundamental exact sequence of the divisor
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F , we obtain that µ⇤(OX(�F )) is a rank 1 subsheaf of OP⌃ , i.e., it is the ideal sheaf of a

closed subscheme L
0 of L. Actually, L0 = L; indeed, if L0 were properly contained in L,

it would consist of a finite number of points, and its structure sheaf would be a torsion

subsheaf of µ⇤OF |L. However, the latter is locally free, as follows from the fact that all

fibres of F ! L are integral rational curves, so that F ! L is a flat morphism, and one

can apply cohomology and base change. So L
0 = L, and µ⇤(OX(�F )) ' IL.

Then we have the exact sequence

0 ! IL ! OP⌃ ! µ⇤OF ! R
1
µ⇤(OX(�F )) ! R

1
µ⇤OX = 0.

Since the first three terms form an exact sequence, we obtain R
1
µ⇤(OX(�F )) = 0, and

similarly R
i
µ⇤(OX(�F )) = 0 for i > 1. Now the projection formula and the Leray spectral

sequence give

H
i(X,µ

⇤
OP⌃(D)⌦ OX(�F )) ' H

i(P⌃, IL(D)).

If the divisor G = µ
⇤(D) � F is nef the conclusion of the Theorem will follow from

Demazure’s vanishing theorem ([7, Thm. 9.2.3]). Let � be an irreducible curve in X. If �

is not contained in Y , then the [G] · � � 0 as D �D1 is nef. If � is in Y , then [G] · � � 0

as the line bundle (12) is nef. ⇤

We revisit now the Examples in Section 4 and compute the codimension of the loci of

surfaces containing a line. In all cases, the vanishing in Theorem 5.5 holds. Moreover, we

can apply it also to lines L that are not toric, as a suitable automorphism can always take

them to toric lines.

5.2. Examples: P⌃ smooth.

Example 5.6. We consider the Example 4.17 again. The Mori cone of bP3 is generated by the

curves `1 and `2, where `1 determines the extremal contraction bP3 ! P3, and `2 determines

the natural morphism bP3 ! P1. One has `i · ⌘j = 0 if i = j, and `i · ⌘j = 1 if i 6= j.

The class ⌘ = ⌘1 + ⌘2 is very ample, and the curves `1 and `2 are lines with respect to it.

Note that the Hilbert scheme of curves in bP3 with Hilbert polynomial p(k) = k+1 has two

connected components, corresponding to the homology classes of the lines `1 and `2.

The general line numerically equivalent to `2 is cut by divisors in the classes ⌘1 and ⌘2.

It is easy to see that h1(N`2/P⌃
) = 0.

We consider the family S1,⌘(n)`2 of surfaces of class � = �0 + n ⌘ (with n � 0) in bP3

that contain a line homologically equivalent to `2. By Proposition 5.2, Lemma 5.3 and



NOETHER-LEFSCHETZ LOCUS OF SURFACES IN TORIC 3-FOLDS 19

Corollary 5.4

codim S1,⌘(n)`2 = n+ 1.

Example 5.7. (P1 ⇥P2, Example 4.18) The dual cone of e↵ective curves (the Mori cone) is

generated by the rational curves `1 = H1 · H2 and `2 = H1 · H1. The curves with classes

`1 and `2 are lines with respect to the ample class ⌘ = H1 + H2. It is easy to see that

h
1(N`1/P⌃

) = h
1(N`2/P⌃

) = 0. The families of surfaces S1,⌘(n)`1 and S1,⌘(n)`2 containing

a line numerically equivalent to `1 and `2, respectively, have both codimension n + 1 by

Proposition 5.2, Lemma 5.3 and Corollary 5.4.

One can note that if we take ⌘ = H1+ sH2, then S1,⌘(n)`1 has codimension ns+1, while

S1,⌘(n)`2 still has codimension n+ 1 (note indeed that `1 is not a line).

Example 5.8. (The small resolution of the cone over a quadric, see Example 4.19.) The

Mori cone is generated by the lines `1 and `2 (see Figure 1). `2 is the exceptional curve of

the small resolution, while `1 determines the natural morphism to P1. Both are lines with

respect to the ample class ⌘ = ⌘1 + ⌘2. The general line numerically equivalent to `1 is cut

by divisors in the classes ⌘ and ⌘2. It is easy to see that h1(N`1/P⌃
) = 0. If � = �0 + n ⌘

with n � 2, we consider the family S1,⌘(n)`1 of surfaces in P⌃ of class � which contain a

line homologically equivalent to `1. Proposition 5.2, Lemma 5.3 and Corollary 5.4 yield

codim S1,⌘(n)`1 = n+ 1.

5.3. P⌃ = P[1, 1, 2, 2]P⌃ = P[1, 1, 2, 2]P⌃ = P[1, 1, 2, 2].
We revisit also Example 4.20. The numerical class of a line L is given by ⌘ · ⌘0. We set

as usual � = �0 + n⌘, with n � 0. We prove that dimHilb
P⌃ = �0 · L = 3, so that the

family S1 of surfaces in P⌃ that contain a line has codimension n+1. Note that since L is

a complete intersection, Lemma 5.3 applies if h1(NL/P⌃
) = 0. In fact we have:

Lemma 5.9. degNL/P⌃
= 1 and h

1(NL/P⌃
) = 0.

Proof. We consider the exact sequence

0 ! K ! IL/IL
2 d�! ⌦1

P⌃|L ! ⌦1
L ! 0 (13)

where ⌦1
P⌃

is the sheaf of Kähler di↵erentials on P⌃. K is a torsion sheaf concentrated at

the intersection point P of L with the curve C of singularities of P⌃. Moreover, K is the

torsion of IL/IL
2. Since L is a smooth curve, IL/IL

2 splits as

IL/IL
2 = N

⇤
L/P⌃

�K,
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indeed (see e.g. [26]), by dualizing (13) we obtain

0 ! TL ! (⌦1
P⌃|L)

⇤ ! NL/P⌃
! 0 .

Hence we have

degNL/P⌃
= 3� 2 = 1.

⇤

Lemma 5.10. H0(L,⌦1
P⌃|L) = 0.

Proof. Let ⇡ : P3 ! P3
/Z2 = P⌃. From [8, 13] we have

⇡
Z2
⇤ ⌦1

P3 ' b⌦1
P⌃

where b⌦1
P⌃

is the sheaf of Zariski di↵erentials (see section 2.3). Let L̃ = ⇡
�1(L). Note that

H
0(L̃,⌦1

P3|L̃) = 0, as follows from the Euler sequence of P3 restricted to L̃. Also, we have

H
0(L, b⌦1

P⌃|L) = H
0(L, ⇡Z2

⇤ ⌦1
P3|L̃) = H

0(L̃,⌦1
P3)Z2 .

Since H
0(L̃,⌦1

P3)Z2 = 0, we have

H
0(L, b⌦1

P⌃|L) = 0. (14)

Let i : U ! P⌃ be the embedding of the smooth locus of P⌃. By definition, b⌦1
P⌃

=

i⇤i
⇤⌦1

P⌃
, so that we have an exact sequence

0 ! J ! ⌦1
P⌃

! b⌦1
P⌃

! Q ! 0.

However, since J is supported on the singular locus of P⌃, and ⌦1
P⌃

is torsion-free one has

J = 0 [15, Prop. 9.7 and Cor. 9.8], [13, Th. 3] (see also [28, Lemma 1.8] and [9]). The sheaf

Q is supported on the singular locus as well. By restricting to L we obtain

Tor1(Q,OL) ! ⌦1
P⌃|L ! b⌦1

P⌃|L

Now Tor1(Q,OL) is concentrated on P , and since ⌦1
P⌃|L is an extension of the locally free

sheaves N⇤
L/P⌃

and ⌦1
L, it is locally free as well, hence Tor1(Q,OL) maps to zero, and ⌦1

P⌃|L

injects into b⌦1
P⌃|L. From (14) we get

H
0(L,⌦1

P⌃|L) = 0 .

⇤
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Now we consider the exact sequence

0 ! N
⇤
L/P⌃

(�2) ! ⌦1
P⌃|L(�2) ! OL(�4) ! 0

whence we get h0(N⇤
L/P⌃

(�2)) = 0. By Serre duality, h1(NL/P⌃
) = 0, so that

h
0(NL/P⌃

) = �(NL/P⌃
) = 3.

So also in this case we have shown that the family S1,⌘(n)L has codimension n+ 1.
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