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An Empirical Bayes Approach for Distributed Estimation of Spatial Fields

Francesco Sasso, Angelo Coluccia, Senior Member, IEEE and Giuseppe Notarstefano, Member, IEEE

Abstract— In this paper we consider a network of spatially
distributed sensors which collect measurement samples of a
spatial field, and aim at estimating in a distributed way (without
any central coordinator) the entire field by suitably fusing all
network data. We propose a general probabilistic model that
can handle both partial knowledge of the physics generating
the spatial field as well as a purely data-driven inference.
Specifically, we adopt an Empirical Bayes approach in which
the spatial field is modeled as a Gaussian Process, whose mean
function is described by means of parametrized equations. We
characterize the Empirical Bayes estimator when nodes are het-
erogeneous, i.e., perform a different number of measurements.
Moreover, by exploiting the sparsity of both the covariance
and the (parametrized) mean function of the Gaussian Process,
we are able to design a distributed spatial field estimator.
We corroborate the theoretical results with two numerical
simulations: a stationary temperature field estimation in which
the field is described by a partial differential (heat) equation,
and a data driven inference in which the mean is parametrized
by a cubic spline.

I. INTRODUCTION

The presence of ubiquitous portable devices makes avail-
able a massive amount of spatially distributed measurements
of several quantities, which can be used to estimate spatial
fields of interest. While single measurements at each node
can be inaccurate, fusion of data from multiple nodes gives
the possibility to have a much more reliable estimate of the
field. In order to avoid collecting and processing all data
in a single computing unit, distributed estimation methods
play an important role. Indeed, through this new computation
paradigm, devices can improve their local measurement of
the field and predict nearby values.

There are two main batches of literature related to the
set-up investigated in this paper, namely Gaussian Process
Regression and Kriging. Gaussian Process Regression has
received significant attention in Artificial Intelligence and
Machine Learning [1]. In a distributed context, efficient
Gaussian Process Regression is discussed in [3], [4], while
[2] presents a Bayesian approach for (distributed) spatio-
temporal regression. Kriging interpolation techniques have
been widely investigated in geostatistics [5], [6]. In this
context, one of the first references on distributed estimation
of a spatial field is [7], which formulates the estimation
of a spatio-temporal field via Bayesian Universal Kriging.
Reference [8] presents adaptive interpolation schemes for
time-varying field estimation. In [9] distributed estimators are
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proposed for regression problems in sensor networks. In [10]
a receding horizon approach is considered for estimation of
spatially distributed systems modeled through an advection-
diffusion Partial Differential Equation (PDE). A similar PDE
is considered in [11] where the optimal sensor location
problem is investigated for pollution monitoring. In [12]
an environmental estimation method is developed. Finally,
distributed estimation of a spatial field has application in
cooperative control as highlighted in [13]–[15].

The contribution of the paper is twofold. First, we pro-
pose a probabilistic model for a network estimation set-
up in which sensors take (possibly multiple) measurements
of a spatial field and aim at cooperatively estimating the
overall field by optimally fusing all data. Specifically, we
propose an Empirical Bayesian framework in which the
spatial field is modeled as a Gaussian Process having known
covariance and, differently from existing works, non-zero
mean depending on some hyperparameters that are estimated
from the all measurements. In particular, the mean of the
process is a parametric function that might encode some
(deterministic) physical law modeling the expected behavior
of the spatial field. This probabilistic model extends the one
introduced in [16], [17] where the prior distribution did not
depend on the spatial displacement of the nodes. Second, we
design a distributed estimator of the spatial field relying on a
Maximum Likelihood (ML) estimator of the hyperparameters
and a local Maximum A Posteriori (MAP) estimator. We
show how the ML estimator can be obtained by solving
a structured optimization problem amenable to distributed
computation. In particular, the optimization problem has a
partitioned structure which calls for more efficient distributed
optimization algorithms.

The paper is organized as follows. In Section II we present
the spatial field estimation set-up. In Section III we introduce
the proposed probabilistic model and give two example
scenarios. In Section IV we derive the distributed estimator
and, finally, in Section V we provide numerical simulations
to show the performance of the distributed estimator applied
to the two examples in Section III. .

II. SPATIAL FIELD ESTIMATION SET-UP

We consider a network of N spatially distributed sen-
sors with local computation and communication capabilities.
Nodes communicate according to a communication graph
Gcmm = ({1, . . . , N}, Ecmm). Each sensor has the possibility
to perform multiple measurements of an external quantity at
the point where it is located as represented in Fig. 1. The goal
for the network is to suitably fuse the spatially distributed
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Fig. 1. Example of graph Gcmm and its related observations x.

measurements in order to estimate the spatial field. Formally,
each sensor i = 1, . . . , N :
• is at a measurement (or training) point si ∈ P ⊂ Rd;
• makes Li observations x`i ∈ X ⊂ R, ` = 1, . . . , Li.

Each observation x`i is obtained as:

x`i = θ(si) + ε`i , (1)

where all ε`i are i.i.d. (noise) random variables with Gaussian
distribution N (0, σ2), while θ : P 7→ X is an unknown
vector valued function.

The unknown function θ(·) represents a spatial field that
sensors sample through noisy observations at the measure-
ment points si, with ε`i being the measurement noise.

For notational purpose, we introduce the following short-
hands:

xi = (x1
i , . . . , x

Li
i )>,

θi = θ(si),

x = (x>1 , . . . ,x
>
N )>,

θ = (θ1, . . . , θN )>.

From the observation model (1) and the assumption that
noises are i.i.d. Gaussian variables, it follows that

p(x|θ) =

N∏
i=1

p(xi|θi) =

N∏
i=1

Li∏
`=1

p(x`i |θi), (2.1)

p(x`i |θi) ∼ N (θi, σ
2). (2.2)

Given the observations x and the graph Gcmm, our goal is
to design a distributed algorithm allowing nodes to estimate
the value of the spatial field θ(·) in a set of regression (or
testing) points sR1 , . . . , s

R
M ∈ P .

It is worth noticing that the regression points can either
coincide or not with the measurement points. In the first case,
a node i in the network is trying to improve its local estimate
of θ(si), while in the second one it wants to interpolate
the field in a neighboring point where measurements are
missing. In the following we will show how a single node
can take advantage of all other measurements in the network
by exchanging information only with neighboring nodes.

III. EMPIRICAL BAYES FRAMEWORK

In this section we introduce a probabilistic model allowing
nodes, especially the ones with few measurements, to have
a better estimate of the spatial field at their measurement
points or in neighboring areas.

A. Probabilistic Model

We adopt a Bayesian model in which the spatial field
θ(·) is a Gaussian Process with mean function µ(·) and
covariance function K(·, ·), denoted by

θ(·) ∼ GP(µ(·),K(·, ·)). (3)

For the covariance function K(·, ·), known kernel func-
tions can be used as customary. As for the mean function
µ(·), different from existing works where it is assumed to
be null, we consider a more general parametric model which
is meant to capture some prior knowledge. Since it is not
realistic to assume the model (hyper)parameters to be known
by nodes in the network, we propose an approach, based
on the Empirical Bayes paradigm, in which hyperparam-
eters will be estimated from the data through Maximum
Likelihood (ML). As we will show through two example
scenarios, this framework can model both a set-up in which
prior knowledge encodes some (deterministic) physical law
(but with unknown values of the physical parameters), and
a data-driven inference scenario in which an interpolating
function is used.

Formally, we introduce an interaction graph, Gint =
({1, . . . , N}, Eint), induced by the Gaussian Process. We
denote N int

i = {j : (i, j) ∈ Eint} the set of neighbors
of node i in the interaction graph. Consistently, we let
sN int

i
=
[
sj
]
j∈N int

i

be the vector of measurement points
which are neighbors of point si, and µN int

i
=
[
µ(sj)

]
j∈N int

i

the vector of values of µ(·) at those points.
We, thus, assume that

K(si, sj) 6= 0 ⇐⇒ (i, j) ∈ Eint, (4)

and that µ(·) is the (unique) solution of the following
parametrized system of equations, termed spatial dynamics:

Fi(sN int
i
,µN int

i
;γ) = 0, i = 1, . . . , N, (5)

where the functions Fi(·, ·;γ) are known, while γ ∈ Γ is the
unknown hyperparameter vector.

We point out that θ is the vector of parameters of x, and
γ is the parameter of θ, and thus the name hyperparameter.

B. Examples of application scenarios

Here, we present two scenarios that highlight the flexibility
of the proposed probabilistic framework. In the first one, we
consider a set-up in which physical knowledge of the spatial
field is available through a partial differential equation that
can be discretized at the measurement points. In the second
one, we show how interpolating curves can be used when
there is no physical knowledge of the phenomenon.

1) Temperature Dynamics: We consider a scenario in
which sensors want to estimate the temperature in a given
environment. In this case, the mean function µ(·) of the
spatial field θ(·) is expected to obey the following Heat
Equation parametrized by γ:

d∑
`=1

∂2
``µ(s, t)− ∂tµ(s, t) = w(s, t;γ),



where (s, t) ∈ P × [0, T ), ∂` is the partial derivative with
respect to the `-th component of s, and ∂t is the partial
derivative with respect to time t. The function w(·;γ) is
also known as the heat source.

If one considers a thermostatic (equilibrium) condition, the
Heat Equation turns out to be the so called Poisson Equation:

d∑
`=1

∂2
``µ(s) = w(s;γ), s ∈ P ⊂ Rd.

Now, in order to guarantee the uniqueness of µ(·), we specify
the boundary condition. For the sake of clarity, we consider
the 1-dimensional case in which we want to monitor the
temperature in a bar P = [s1, sN ]. As a consequence, µ(·)
is uniquely determined by the following Cauchy Problem

µ′′(s) = w(s;γ), s ∈ (s1, sN ),

µ(s1) = w1,

µ(sN ) = wN .

Then, the Poisson Equation can be discretized at the
measurement points s1, . . . , sN , by using a suitable approx-
imation rule as, e.g.,

µ(si)
′′ ≈ µ(si+1)− 2µ(si) + µ(si−1)

ε2
, i = 2, . . . , N − 1,

where we have assumed, for simplicity, that the measurement
points are uniformly spaced, i.e., ε = si+1 − si for all i =
1, . . . , N − 1. By plugging in the boundary conditions, the
discretized system turns out to be

1
1 −2 1

. . . . . . . . .
1 −2 1

1




µ(s1)
µ(s2)

...
µ(sN−1)
µ(sN )

 =


w1

ε2w(s2;γ)
...

ε2w(sN−1;γ)
wN

 ,
which has the sparsity of (5) once we set

N int
i =

{
{i}, for i ∈ {1, N},
{i− 1, i, i+ 1} otherwise,

and

Fi(sN int
i
,µN int

i
;γ) ={

µ(si)− ui, for i ∈ {1, N},
µ(si+1)−2µ(si)+µ(si−1)

ε2 − u(si;γ) otherwise.

We point out that, as depicted in Fig. 2, the discretization
process may induce a set of neighbors, call it N µ

i , while
the covariance function may correlate with a broader set of
agents, call it NK

i ⊃ N µ
i . Clearly, we can set N int

i = NK
i .

2) Interpolating Dynamics: Here we consider a data-
driven inference scenario in which the shape of the mean
µ(·) is described by

µ(s) = I(s;γ), s ∈ P,
where I(s;γ) is an interpolation function (e.g., a cubic
spline) of the points {(si, γi)}i, parametrized by γ =
(γ1, . . . , γN )> ∈ RN . This gives the possibility to fit the
observations even if there is no information about the physics
of the problem.

si−2 si−1 si si+1 si+2

N k
i

Nµ
i

Fig. 2. Neighborhoods of agent i induced by the covariance function
K(·, ·) and by the mean function µ(·), denoted byN ki andNµi respectively.

IV. DISTRIBUTED EMPIRICAL BAYES ESTIMATOR

In this section we develop our distributed estimation ap-
proach following the Empirical Bayes framework introduced
in the previous section. Specifically, we derive the Maximum
Likelihood (ML) estimator of the hyperparameter and the
Maximum A Posteriori (MAP) estimator of the spatial field.
Then, we show how to recast the ML problem into an
equivalent optimization problem with a partitioned structure
that is amenable to distributed computation. Finally, we
provide a local procedure allowing each node to compute
the MAP estimator of the field at its location or to perform
a regression at nearby points.

We start by introducing some useful notation:

µi = µ(si),

µRm = µ(sRm),

µ = (µ1, . . . , µN )>,

µR = (µR1 , . . . , µ
R
M )>.

When needed, we highlight the dependence of µ and µR

on γ (from (5)) by writing µγ and µRγ respectively. More-
over, we define the matrices Kss ∈ RN×N with entries
[Kss]ij= K(si, sj), KsRs ∈ RM×N with entries [KsRs]mi=
K(sRm, si), and consistently KssR and KsRsR . We also
introduce

xi =
1

Li

Li∑
`=1

x`i , x = (x1, . . . , xN )>.

Finally,

[D]ij = δij
σ2

Li
∈ RN×N ,

where δij is the Kronecker delta (i.e., δij = 1 for i = j and
δij = 0 otherwise).

A. Distributed ML Estimator

The ML hyperparameter estimator is given by

γML = argmax
γ∈Γ

p(x;γ). (6)

We are now ready to state the first result characterizing
the structure of optimization problem (6).

Theorem 4.1: The ML hyperparameter estimator γML in
(6) can be equivalently obtained by solving the following
minimization problem

min
γ∈Γ

(µγ − x)>(Kss +D)−1(µγ − x). (7)

�
The proof will be provided in a forthcoming document.



Next, we introduce the distributed formulation of the
optimization problem (6). We start by observing that the
most important consequence of (4) is that matrix Kss has
the same sparsity as graph Gint and so does Kss + D.
However, looking at equation (7), we notice that (Kss+D)−1

is not necessarily a sparse matrix. In order to preserve the
sparsity for a distributed computation, we then introduce a
new optimization variable z, so that γML can be computed
by solving the following optimization problem:

min
γ∈Γ,z∈RN

z>(Kss +D)z,

subj. to (Kss +D)z = µγ − x.
(8)

At this point, making explicit the relationship between µ
and γ due to (5), we can write (8) as

min
γ∈Γ,z,µ∈RN

z>(Kss +D)z,

subj. to (Kss +D)z = µ− x,

Fi(sN int
i
,µN int

i
;γ) = 0, i = 1, . . . , N.

(9)

Defining the functions

fi(zN int
i

) =
σ2

Li
z2
i +

∑
j∈N int

i

ziK(si, sj)zj , i = 1, . . . , N,

gi(zN int
i

) =
σ2

Li
zi + xi +

∑
j∈N int

i

K(si, sj)zj , i = 1, . . . , N.

we can rewrite (9) as

min
γ∈Γ,z,µ∈RN

N∑
i=1

fi(zN int
i

),

subj. to gi(zN int
i

) = µi,

Fi(sN int
i
,µN int

i
;γ) = 0, i = 1, . . . , N.

(10)

which is a formulation of problem (7) amenable to distributed
solution.

Due to this formulation, the solution (γML, zγML ,µγML) of
(9) can be computed by solving an optimization problem
that has a separable cost (i.e., the sum of N local costs).
Available distributed optimization algorithms can be adopted
to this aim, e.g., [18], [19], [20]. The special sparsity of
cost function and constraints could be exploited by using
techniques as the one proposed in [21].

Remark 4.2: A special case is the one in which we have

Fi(sN int
i
,µN int

i
;γ) = Fi(sN int

i
, µi;γ), i = 1, . . . , N.

In this case, if we define the functions

Gi(zN int
i

;γ) = Fi(sN int
i
, gi(zN int

i
);γ), i = 1, . . . , N,

γML can be computed by solving the optimization problem:

min
γ∈Γ,z∈RN

N∑
i=1

fi(zN int
i

),

subj. to Gi(zN int
i

;γ) = 0, i = 1, . . . , N,

(11)

which has a simpler structure that can be exploited to
speed up the calculation. Moreover, when µ(·) is an explicit
function of γ, i.e., µ(·) = µ(·;γ), the constraints in (11)
simplify as Gi(zN int

i
;γ) = gi(zN int

i
)− µ(si;γ). �

The vector µγML gives the evaluation of the Gaussian
Process mean µ(·) in the measurement points. Once a
value of γML is available, computing nodes located at the
measurement points may interpolate µ(·) at regression points
sRm in their spatial proximity, i.e.,

[
µRγML

]m, as follows.

• If µ(·) satisfies a (discretized) partial differential equa-
tion parametrized by γ, then

[
µRγML

]m can be obtained
by integrating the differential equation with hyperpa-
rameter γML and suitable boundary conditions based on
neighboring points in the interaction graph.

• If µ(·) is an explicit function of γ, then
[
µRγML

]m can
be obtained by

[
µRγML

]m = µ(sRm;γML).
• Alternatively, an interpolation can be performed by

using the set of neighboring points.

B. Local MAP Estimator

In this subsection we show how a node can locally
compute the MAP estimator θRMAP. Defining θRi = θ(sRi ) and
θR = (θR1 , . . . , θ

R
M )>, the MAP estimator in the regression

points is given by

θRMAP = argmax
θR∈XM⊂RM

p(θR|x;γML). (12)

Notice that, once a value for γML is available, the esti-
mation proceeds similarly as in a purely Bayesian set-up,
where the prior distribution is fully specified and given by
N (µRγML

,KsRsR). Specifically, the case in which the prior
is known and each sensor i performs only one observation
(Li = 1) has been widely investigated in the literature [1].

In our work we generalize this classical framework in two
ways. First, we consider a heterogeneous network set-up in
which nodes perform a different number of observations,
so that even those with few observations take advantage of
nodes with more observations (especially neighboring ones).
Second, this MAP estimator exploits the ML estimation of
the hyperparameters, thus “optimally” adapting the prior to
all network data. In the next theorem we provide a closed
form expression of the posterior distribution, and, based
on that, we derive a formulation of the MAP estimator
which can be computed by each node in the network in a
decentralized way (i.e., by collecting data from neighboring
nodes in the interaction graph).

Theorem 4.3: The posterior distribution p(θR|x;γML) is
a multivariate Gaussian with mean µRγML

−KsRszγML , where
zγML is a solution of problem (10), and covariance matrix
KsRsR − KsRs(Kss + D)−1KssR . Moreover, by defining
NE
m := {j : K(sRm, sj) 6= 0}, the MAP estimator at sRm is

given by[
θRMAP

]
m

=
[
µRγML

]m −
∑
j∈NE

m

K(sRm, sj)
[
zγML

]
j
. �

The proof will be provided in a forthcoming document.



It is worth noting that if a regression point coincides with
a measurement point, i.e., sRm = sm, then NE

m = N int
i and[

θRMAP

]
i

=
[
µγML

]
i
−

∑
j∈N int

i

[
Kss

]
ij

[
zγML

]
j
.

For a regression point sRm that does not coincide with a
measurement point, a computing node located at sRm, or
equivalently one of the network nodes in the proximity,
can obtain

[
µRγML

]m through the interpolation procedure
described in the previous subsection, and collect

[
zγML

]
j

from j ∈ NE
m . Notice that the sparsity of the kernel with

respect to the entire space P implies that NE
m typically

contains a limited number of nodes.
Generally speaking, Theorem 4.3 provides an efficient way

to compute the MAP estimator at each point. In fact, if one
used the standard formula of the posterior (see [1]) the MAP
estimator would be µRγML

−KsRq(Kqq + σ2IL)−1(µL − x)

where L =
∑N
i=1 Li, q = (s1, . . . , s1︸ ︷︷ ︸

L1

, . . . , sN , . . . , sN︸ ︷︷ ︸
LN

)>

and µL = (µ(s1), . . . , µ(s1)︸ ︷︷ ︸
L1

, . . . , µ(sN ), . . . , µ(sN )︸ ︷︷ ︸
LN

)>, thus

involving matrices of much larger size.

V. NUMERICAL SIMULATIONS

In this section we analyze the numerical results related
to the two example scenarios introduced in Section III-B.
We have used, in both cases, a kernel function known as
Mahalanobis function (see [22]), which allows us to make
Kss sparse. Moreover, we took as regression points a fine
grained discretization of the (one dimensional) set P to better
visualize the regression in the entire spatial domain.

A. Temperature Dynamics

For this numerical simulation, we have considered N = 10
sensors uniformly spaced between s1 = 0 and sN = 2π/3.
The vector x of observations has been generated according
to the following Temperature dynamics,

µ′′(s) = −Aω2 sin(ωs+ φ), s ∈ (s1, sN ),

µ(s1) = w1,

µ(sN ) = wN .

where the right hand side of the first equation represents the
heat source with A = 6, ω = 3 and φ = 3, and the boundary
conditions are w1 = 3 and wN = 0.

This differential equation has a closed form solution
θ(s) = A sin(ωs+ φ) + C1s+ C0, with

C1 :=
wN +A sin(ωsN + φ)− w1 −A sin(ωs1 + φ)

sN − s1
,

C0 := w1 −A sin(ωs1 + φ)− C1s1,

so that the `-th observation at si is given by x`i = θ(si)+ εi.
In the estimation process we assume that the prior avail-

able information is the above family of Temperature dynam-
ics with parameters γ = (A,ω, φ)> being the hyperparam-
eters of our framework. Once γML has been obtained, µRγML

can be computed by integrating the Cauchy problem.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
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Temperature dynamics

Fig. 3. Temperature dynamics scenario: the measurement points si are
marked with a cross, while the observations x with circles. The red line is
the true mean function µ(·), the blue line is µRγML

and the green line is the
posterior mean θRMAP. In magenta we represent the 95% confidence bound
for the posterior mean.

The result of the simulation is depicted in Fig. 3, where
the estimated (process) prior mean in the regression points,
µRγML

, is depicted in blue, the posterior mean θRMAP is shown
in green and the true field θ(·) in red. Remarkably, both the
µRγML

and θRMAP provide an accurate estimate of the spatial
field θ(·). As one would expect, at measurement points with
a greater number of observations the local estimation is more
accurate with a tighter confidence bound.

B. Interpolating Dynamics

In this case we have considered N = 12 sensors spaced
non-uniformly between s1 = −15 and sN = 14. The vector
x of observations has been generated according to a spatial
field θ(·) being a quadratic polynomial, i.e.,

θ(s) = as2 + bs+ c, (13)

where we have chosen a = 0.1, b = 0.1 and c = 10.
Differently from the previous numerical example, during

the estimation process we have used as parametrized mean
function (prior) an interpolating curve that does not match
(13). In fact we have used the family of natural cubic splines.
Specifically, we have taken N = 12 measurement points
s1, . . . , s12 clustered in five subregions. Then we have chosen
as control points cj of the spline one point for each cluster,
namely c1 = s1, c2 = s3, c3 = s5, c4 = s7 and c5 = s12.

Specifically, the spline function is defined as

µ(s) =


p1(s), if s < c1,

pj(s), if s ∈ [cj , cj+1),

pN−1(s), if s ≥ c5,

where each cubic polynomial pj(·) satisfies the following
conditions:

pj(cj) = γj , pj(cj+1) = γj+1, j = 1, . . . , 4,

p′j−1(cj) = p′j(cj), j = 2, . . . , 4,

p′′j−1(cj) = p′′j (cj), j = 2, . . . , 4

p′′1(c1) = 0, p′′4(c5) = 0,
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Fig. 4. Interpolating dynamics scenario: the measurament points si are
labeled with a cross, while the observations x are marked with circles.
The red line is the true mean function µ(·), the blue line is µRγML

and the
green line is the posterior mean θRMAP. In magenta we represent the 95%
confidence interval relative to the posterior mean.

with γ = (γ1, . . . , γ5)T .
The result of the simulation is depicted in Fig. 4. As in

the previous example, the estimate is more accurate in those
points with an higher number of observations. Moreover, we
can appreciate the capability of the Interpolating dynamics
of fitting the spatial field θ(·) near the measurement points.

VI. CONCLUSIONS

In this paper we have proposed a novel probabilistic
framework for distributed estimation of a spatial field in
large-scale sensor networks, wherein each node performs
multiple, local measurements. The proposed set-up is based
on an Empirical Bayes approach in which the spatial field is
modeled as a Gaussian Process with known covariance and
unknown, but parametrized, mean. Specifically, we suppose
that the mean function at the measurement points satisfies a
set of equations (encoding some prior knowledge of the mean
shape) parametrized by the unknown hyperparameters. The
Empirical Bayes estimation procedure consists of two parts:
the computation of the ML estimate of the hyperparameters,
and the computation of the MAP estimate of the field
into regression points. In particular, we have shown that
multiple observations improve the estimation accuracy by
reducing the posterior variance, and we have also provided a
sparse formulation of the ML optimization problem, which is
amenable to distributed solution. Thus, each sensor optimally
fuses information from the network in a distributed way thus
improving its own MAP estimate of the field. Numerical
simulations for the proposed scheme have been presented
for two example scenarios. In the first one, the temperature
field in a thermostatic bar is estimated by using the Heat
Equation as a prior knowledge for the mean. In the second
one, interpolating curves have been used in a data-driven
inference scenario with no physical knowledge of the field.
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