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Abstract. Cross-domain sentiment classifiers aim to predict the polar-
ity (i.e. sentiment orientation) of target text documents, by reusing a
knowledge model learnt from a different source domain. Distinct domains
are typically heterogeneous in language, so that transfer learning tech-
niques are advisable to support knowledge transfer from source to tar-
get. Deep neural networks have recently reached the state-of-the-art
in many NLP tasks, including in-domain sentiment classification, but
few of them involve transfer learning and cross-domain sentiment solu-
tions. This paper moves forward the investigation started in a previ-
ous work [1], where an unsupervised deep approach for text mining,
called Paragraph Vector (PV), achieved cross-domain accuracy equiva-
lent to a method based on Markov Chain (MC), developed ad hoc for
cross-domain sentiment classification. In this work, Gated Recurrent Unit
(GRU) is included into the previous investigation, showing that mem-
ory units are beneficial for cross-domain when enough training data are
available. Moreover, the knowledge models learnt from the source domain
are tuned on small samples of target instances to foster transfer learn-
ing. PV is almost unaffected by fine-tuning, because it is already able
to capture word semantics without supervision. On the other hand, fine-
tuning boosts the cross-domain performance of GRU. The smaller is the
training set used, the greater is the improvement of accuracy.
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1 Introduction

Sentiment analysis deals with the computational treatment of opinion,
appraisals, attitudes, and emotions toward entities, individuals, issues, events,
topics and their attributes (a survey is in [2]). The task is technically challeng-
ing but very useful in practice. For instance, companies always want to know
customer opinions about their products and services.

When an understanding of plain text document polarity (e.g. positive, nega-
tive or neutral orientation) is required, sentiment classification is involved. This
supervised approach aims to learn a model from a labelled training set of docu-
ments, then to apply it to an unlabelled test set, whose sentiment orientation has
to be found. The typical approach to sentiment classification assumes that both
the training set and the test set deal with the same topic. For example, a model
is learnt on a set of board game reviews and applied to a distinct set of reviews,
but always about board games. This modus operandi, known as in-domain sen-
timent classification, guarantees optimal performance provided that documents
from the same domain are semantically similar. Unluckily, this approach is often
inapplicable in practice, given that most documents are normally unlabelled.
Tweets, blogs, fora, chats, emails, public repositories, social networks could bear
opinions, and have been proved to support complex tasks, such as stock market
prediction [3], job recommendation [4] and genomics [5]. However, no informa-
tion is available on whether such opinions are positive, negative or neutral. Text
categorisation by human experts is the only way to deal with such a problem in
order to learn an in-domain sentiment classifier. This method becomes infeasible
as soon as very large text sets are required to be labelled, like for instance in big
data scenarios.

Transfer learning addresses exactly these limitations, paving the way for
model reuse [6]. While these methods are used in image matching [7], genomic
prediction [8-10] and many other contexts, their most common application is per-
haps in text document categorisation. Basically, a knowledge model, once learnt
on a source domain, can be applied to classify document polarity in a distinct
target domain. For instance, a model built on a set of labelled documents about
board games (i.e. source domain) could be employed for the categorisation of a
set of unlabelled documents about electrical appliances (i.e. target domain). The
practical implications of model reuse made cross-domain learning a hot research
thread. The biggest obstacle to learning an effective cross-domain sentiment clas-
sifier is the language heterogeneity in documents of different domains. Just think
that a board game can be engaging or dull, whereas an electrical appliance can
be working or broken. In such cases, transfer learning (or knowledge transfer)
techniques may help solving the problem, so that the knowledge extracted from
the source is available to classify the target.
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To the best of our knowledge, transfer learning has rarely been applied to
sentiment classification with deep learning techniques, despite their success in
other research areas. Several works [11-14] motivate such an investigation, point-
ing out the ability of deep approaches to learn semantic-bearing word represen-
tation, typically without supervision, independently of domains.

Our previous work [1] has begun the study by comparing a well-known unsu-
pervised deep learning technique, namely Paragraph Vector [12], with a Markov
Chain approach [15,16], tailored to cross-domain sentiment classification. When
enough data are available for training, Paragraph Vector achieves accuracy com-
parable with Markov Chain, despite no explicit transfer learning mechanism. The
outcome suggested that cross-domain solutions could be dramatically improved
by combining deep learning with transfer learning techniques. The multi-source
approach, proposed to validate this intuition, boosted the cross-domain accuracy
from 2% to 3% depending on the configuration.

This paper carries on with the investigation on deep learning in cross-domain
sentiment classification, by including Gated Recurrent Unit (GRU) [17] in the
comparison. GRU is a deep architecture, evolution of LSTM, able to adaptively
capture dependencies of different time scales. Similarly to Paragraph Vector,
GRU does not provide any explicit transfer learning mechanism. Apart from
supporting the outcome of our previous work with the inclusion of another out-
standing deep learning technique, this paper also shows the impact of fine-tuning
on cross-domain sentiment classification. Fine-tuning is an explicit transfer learn-
ing mechanism, where a small sample of target instances is used to tune the
parameters of a model learnt from the source domain.

Experiments have been carried out to compare GRU with both PV and MC in
cross-domain sentiment classification. The same benchmark text sets have been
used to assess 2-classes (i.e. positive and negative) performance. GRU performs
worse than PV and MC with small and medium-scale data sets, whereas it
outperforms both when trained on large-scale data. The outcome suggests that
GRU memory units are beneficial for cross-domain, but require large-scale data
in order to learn accurate word relationships. When tuned with samples of target
data, GRU achieves accuracy comparable with the other methods with small and
medium-scale data as well, proving that fine-tuning helps transfer learning across
domains.

The rest of the paper is organized as follows. Section 2 reviews the literature
about transfer learning, cross-domain sentiment classification and deep learning.
The main features of the methods compared are outlined in Sect. 3. Section 4
describes, shows and discusses the experiments performed. Finally, Sect. 5 draws
conclusions and paves the way for future work.
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2 Related Work

Transfer learning techniques are usually advisable to effectively map knowledge
extracted from a source domain into a target domain. This is particularly useful
in cross-domain methods, also known as domain adaptation methods [18], where
labelled instances are only available in a source domain but a different target
domain is required to be classified. Basically, two knowledge transfer modes have
been identified in [19], namely instance transfer and feature representation trans-
fer. In order to bridge the inter-domain gap, the former adapts source instances
to the target domain, whereas the latter maps source and target features into a
different space.

Before the advent of Deep Learning, many approaches have already been
attempted to address transfer learning in cross-domain sentiment classification,
mostly supervised. Aue and Gamon tried several approaches to adapt a classifier
to a target domain: training on a mixture of labelled data from other domains
where such data is available, possibly considering just the features observed in
the target domain; using multiple classifiers trained on labelled data from dif-
ferent domains; a semi-supervised approach, where few labelled data from the
target are included [20]. Blitzer et al. discovered a measure of domain similar-
ity supporting domain adaptation [21]. Pan et al. advanced a spectral feature
alignment to map words from different domains into same clusters, by means of
domain-independent terms. These clusters form a latent space that can be used
to enhance accuracy on the target domain in a cross-domain sentiment classifi-
cation problem [22]. Furthermore, He et al. extended the joint sentiment-topic
model by adding prior words sentiment; then, feature and document enrichment
were performed by including polarity-bearing topics to align domains [23]. Bol-
legala et al. recommended the adoption of a thesaurus containing labelled data
from the source domain and unlabelled data from both the source and the target
domains [24]. Zhang et al. proposed an algorithm that transfers the polarity of
features from the source domain to the target domain with the independent fea-
tures as a bridge [25]. Their approach focuses not only on the feature divergence
issue, namely different features are used to express similar sentiment in different
domains, but also on the polarity divergence problem, where the same feature
is used to express different sentiment in different domains. Franco et al. used
the BabelNet multilingual semantic network to generate features derived from
word sense disambiguation and vocabulary expansion that can help both in-
domain and cross-domain tasks [26]. Bollegala et al. modelled cross-domain sen-
timent classification as embedding learning, using objective functions that cap-
ture domain-independent features, label constraints in the source documents and
some geometric properties derived from both domains without supervision [27].

On the other hand, the advent of Deep Learning, whose a review can be found
in [28], brought to a dramatic improvement in sentiment classification. Socher
et al. introduced the Recursive Neural Tensor Networks to foster single sentence
sentiment classification [11]. Apart from the high accuracy achieved in classifica-
tion, these networks are able to capture sentiment negations in sentences due to
their recursive structure. Dos Santos et al. proposed a Deep Convolutional Neural
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Network that jointly uses character-level, word-level and sentence-level represen-
tations to perform sentiment analysis of short texts [29]. Kumar et al. presented
the Dynamic Memory Network (DMN), a neural network architecture that pro-
cesses input sequences and questions, forms episodic memories, and generates
relevant answers [30]. The ability of DMN in naturally capturing position and
temporality allows this architecture achieving the state-of-the-art performance
in single sentence sentiment classification over the Stanford Sentiment Treebank
proposed in [11]. Tang et al. introduced Gated Recurrent Neural Networks to
learn vector-based document representation, showing that the underlying model
outperforms the standard Recurrent Neural Networks in document modeling for
sentiment classification [14]. Zhang and LeCun applied temporal convolutional
networks to large-scale data sets, showing that they can perform well without
the knowledge of words or any other syntactic or semantic structures [13]. Wang
et al. combined Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) for sentiment analysis of short texts, taking advantage of the
coarse-grained local features generated by CNN and long-distance dependencies
learnt via RNN [31]. Chen et al. proposed a three-steps approach to learn a
sentiment classifier for product reviews. First, they learnt a distributed repre-
sentation of each review by a one-dimensional CNN. Then, they employed a
RNN with gated recurrent units to learn distributed representations of users
and products. Finally, they learnt a sentiment classifier from user, product and
review representations [32].

Despite the recent success of Deep Learning in in-domain sentiment classi-
fication tasks, few attempts have been made in cross-domain problems. Glorot
et al. used the Stacked Denoising Autoencoder introduced in [33] to extract
domain-independent features in an unsupervised fashion, which can help trans-
ferring the knowledge extracted from a source domain to a target domain [34].
However, they relied only on the most frequent 5000 terms of the vocabulary for
computational reasons. Although this constraint is often acceptable with small
or medium data sets, it could be a strong limitation in big data scenarios, where
very large data sets are required to be analysed.

3 Methods Description

This Section firstly outlines the features of the methods used for the inves-
tigation. Then fine-tuning is described, along with the reason why it can be
beneficial for transfer learning and cross-domain sentiment classification. The
techniques compared in our previous work [1] were Paragraph Vector (referred
as PV hereinafter), proposed in [12], and a Markov Chain (referred as MC here-
inafter) based algorithm introduced in [15] and extended in [16], whereas Gated
Recurrent Unit (GRU) [17] is added to the investigation in this work.

Careful readers can find further details on the approaches described below
in [12,15-17].
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Fig. 1. The figure [12] shows a framework for learning the Distributed Memory Model
of Paragraph Vector (PV-DM). With respect to word vectors, an additional paragraph
token is mapped to a vector via matrix D. In this model, the concatenation or average
of this vector with a context of three words is used to predict the fourth word. The
paragraph vector represents the missing information from the current context and can
act as a memory of the topic of the paragraph.

3.1 Paragraph Vector

PV is an unsupervised Deep Learning technique that aims to solve the weak-
nesses of the bag-of-words model. Alike bag-of-words, PV learns fixed-length
feature representation from variable length chunks of text, such as sentences,
paragraphs, and documents. However, bag-of-words features lose the ordering of
the words and do not capture their semantics. For example, “good”, “robust”
and “town” are equally distant in the feature space, despite “good” should be
closer to “robust” than “town” from the semantic point of view. The same holds
for the bag-of-n-grams model, because it suffers from data sparsity and high
dimensionality, although it considers the word order in short context. On the
other hand, PV intrinsically handles the word order by representing each doc-
ument by a dense vector, which is trained to predict words in the document
itself. More precisely, the paragraph vector is concatenated with some word vec-
tors from the same document to predict the following word in a given context.
The paragraph token can be thought of as another word that acts as a mem-
ory that remembers what is missing from the current context. For this reason,
this model, represented in Fig.1, is called the Distributed Memory Model of
Paragraph Vector (PV-DM).

Another way to learn the paragraph vector is to ignore the context words
in the input, but force the model to predict words randomly sampled from the
paragraph in the output. Actually this means that at each iteration of stochastic
gradient descent, a text window is sampled, then a random word is sampled from
the text window and a classification task is formed given the paragraph vector.
This version of Paragraph Vector, shown in Fig. 2, is called the Distributed Bag
of Words version (PV-DBOW).
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Fig. 2. The figure [12] shows the Distributed Bag of Words version of Paragraph Vector
(PV-DBOW). The paragraph vector is trained to predict the words in a small window.

Both word vectors and paragraph vectors are trained by means of the stochas-
tic gradient descent and backpropagation [35].

Sentiment classification requires sequential data to be handled, because doc-
ument semantics is typically affected by word order. PV is shown to be able
to learn vector representation for such sequential data, becoming a candidate
technique for sentiment classification. We have already stated the PV learns
fixed-length feature representation from variable-length chunks of text, dealing
with any kind of plain text, from sentences to paragraphs, to whole documents.
Though, this aspect is just as relevant as exactly knowing how many of these
features are actually required to learn accurate models. The feature vectors have
dimensions in the order of hundreds, much less than bag-of-words based rep-
resentations, where there is one dimension for each word in a dictionary. The
consequence is that either the bag-of-words models cannot be used for represent-
ing very large data sets due to the huge number of features or a feature selection
is needed to reduce dimensionality. Feature selection entails information loss,
beyond requiring parameter tuning to choose the right number of features to be
selected. The fact that PV is not affected by the curse of dimensionality suggests
that the underlying method is not only scalable just like an algorithm should be
when dealing with large data sets, but it also entirely preserves information by
increasing the data set size.

Le and Mikolov [12] showed that Paragraph Vector achieves brilliant in-
domain sentiment classification results, but no cross-domain experiment has been
conducted. Nevertheless, some characteristics of PV make it appropriate for
cross-domain sentiment classification, where language is usually heterogeneous
across domains. PV is very powerful in modelling syntactic as well as hidden
relationships in plain text without any kind of supervision. Moreover, words are
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mapped to positions in a vector space wherein the distance between vectors is
closely related to their semantic similarity. The capability of extracting both
word semantics and word relationships in an unsupervised fashion makes PV
able to automatically manage transfer learning, once enough data are available
for training, as shown in [1].

As described in [12], in order to use the available labelled data, each sub-
phrase is treated as an independent sentence and the representations for all the
subphrases in the training set are learnt. After learning the vector represen-
tations for training sentences and their subphrases, they are fed to a logistic
regression to learn a predictor of the sentiment orientation. At test time, the
vector representation for each word is frozen, and the representations for the
sentences are learnt using the stochastic gradient descent. Once the vector rep-
resentations for the test sentences are learnt, they are fed through the logistic
regression to predict the final label.

3.2 Markov Chain

Alike PV, MC can handle sentences, paragraphs and documents, but it is much
more affected by the curse of dimensionality, because it is based on a dense bag-
of-words model. Feature selection is often advisable to mitigate this issue, or even
necessary with very large data sets, typically containing million or billion words.
Basically, only the k most significant terms according to a given scoring function
are kept. The basic idea of the MC based approach consists in modelling term
co-occurrences: the more terms co-occur in documents the more their connection
will be stronger. The same strategy could be followed to model the polarity of
a given term: the more terms are contained in positive (negative) documents
the more they will tend to be positive (negative). Following this idea, terms
and classes are represented as states of a Markov Chain, whereas term-term
and term-class relationships are modelled as transitions between these states.
Thanks to this representation, MC is able to perform both sentiment classifi-
cation and transfer learning. It is pretty easy to see that MC can be used as
a classifier, because classes are reachable from terms at each state transition in
the Markov Chain, since each edge models a term-class relationship. Instead,
it is less straightforward to understand why it is also able to perform trans-
fer learning. The assumption the method relies on is that there exists a subset
of common terms between the source and target domains that act as a bridge
between domain specific terms, allowing and supporting transfer learning. Deal-
ing with this assumption, at each state transition in the Markov Chain, sentiment
information can flow from the source-specific to the target-specific terms passing
through the layer of shared terms (Fig.3). The information flow is possible by
exploiting the edges in the Markov Chain that, as previously stated, represent
term-term relationships.
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negative

Fig. 3. The figure [15] shows transfer learning in Markov Chain from a book specific
term like boring to an electrical appliance specific term like noisy through a common
term like bad.

Actually, the classification process usually works in the opposite direction, i.e.
from the target-specific to the source-specific terms, and goes on while the class
states are eventually reached. For instance, say that a review from the target
domain only contains target-specific terms. None of these terms is connected to
the classes, but they are connected to some terms within the shared terms, which
in turn are connected to some source-specific terms. Finally, both the shared and
source-specific terms are connected to the classes. Therefore, starting from some
target-specific terms, Markov Chain before performs transfer learning and then
sentiment classification. It is important to remark that the transfer learning
mechanism is not an additional step to be added in cross-domain tasks; on the
contrary, it is intrinsic to the Markov Chain algorithm.

3.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU), proposed by Cho et al. [17], is an evolution of Long
Short-Term Memory (LSTM), presented by Hochreiter and Schmidhuber [36].
LSTM is a deep architecture that has been introduced to overcome the vanishing
(or blowing up) gradient problem [37] that affects recurrent nets when signals are
backpropagated through long time sequences. Indeed, LSTM can learn to bridge
time intervals in excess of 1000 discrete time steps without loss of short time lag
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capabilities, by enforcing constant error flow through internal states of special
units. LSTM units are memory cells composed of different gates, namely input
gate, output gate, and forget gate. The input gate of a unit u allows protecting
the memory contents stored in j from perturbation by irrelevant inputs. The
output gate of u allows protecting other units from perturbation by irrelevant
memory contents stored in j. The forget gate of u allows forgetting the memory
contents that are no longer relevant. An LSTM unit is able to decide whether
to keep the existing memory content via the gates. Basically, if the LSTM unit
detects a relevant feature from an input sequence, it is able to preserve this infor-
mation over a long distance. This property makes LSTM suitable for capturing
long-distance dependencies.

GRU extends LSTM by making each recurrent unit adaptively capture
dependencies of different time scales. A GRU is similar to the LSTM unit, but it
only presents two gates, as shown in Fig. 4. The activation of the GRU is ruled by
an update gate, which controls how much information from the previous hidden
state will carry over to the current hidden state. A reset gate allows the hidden
state to drop any information that is found to be irrelevant later in the future.
As each hidden unit has separate reset and update gates, it will learn to capture
dependencies over different time scales.

(h—y" —{h—x

Fig. 4. The figure [17] shows a GRU. The update gate z selects whether the hidden
state is to be updated with a new hidden state h. The reset gate r decides whether the
hidden state is ignored.

LSTM based schemes have already been proved to work well in sentiment
classification [14]. In this work, GRU is applied to cross-domain sentiment clas-
sification, to assess whether it is able to automatically bridge the semantic gap
between the source and the target domain. Alike PV, GRU is a deep architec-
ture and does not rely on a transfer learning mechanism. However, GRU gates,
which allow each unit working as a memory wherein relevant information can
be stored and preserved, make GRU suitable for cross-domain problems. Impor-
tant domain-independent information can be automatically extracted by GRU
if trained with an appropriate amount of data.
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3.4 Fine-Tuning in Cross-domain

Fine-tuning consists in using a labelled sample of target instances to refine a
model previously learnt on the source domain. The sample should be reason-
ably small for both theoretical and practical reasons. From a theoretical point
of view, the cross-domain task would be converted into an in-domain problem
if the sample used for fine-tuning was too large. Moreover, cross-domain would
be no longer needed if an appropriate amount of labelled target instances were
available. An in-domain model could be easily learnt in that case. On the other
hand, readers already know that cross-domain learning is essential from a prac-
tical point of view, since most real-world data are unlabelled. Finding a large
labelled sample is challenging in practice, and manually labelling it is even infea-
sible. Therefore, using a large sample would not be a viable alternative for tuning
a pre-trained model. On the other hand, if the sample was small, categorisation
by human experts would become a good option to increase cross-domain efficacy.

Beyond being a good trade-off between its cost and the improvement of per-
formance that guarantees, fine-tuning could be even critical for techniques that
do not rely on explicit transfer learning mechanisms. In particular, this work
assesses whether fine-tuning of deep neural networks can bring to an improve-
ment of ad-hoc cross-domain solutions.

4 Experiments

This Section shows some experiments to assess whether GRU, alike PV, is
automatically able to handle language heterogeneity in cross-domain tasks, in
relation to the amount of training data available. The effect of fine-tuning on
deep architectures is also discussed, showing that it can help improving cross-
domain performance, especially with small-scale data sets. Markov Chain has
been implemented in a custom Java-based framework. Paragraph Vector relies
on 0.12.4 gensim release [38], a Python-based open sourced and freely avail-
able framework!. For Gated Recurrent Unit (GRU) we used the Python-based
implementation provided by Keras?, choosing TensorFlow as back-end.

4.1 Setup

A common benchmark text set has been used to compare results with our pre-
vious work [1], that is a collection of Amazon reviews® about Books (B), Movies
(M), Electronics (E) and Clothing-Shoes-Jewelry (J). Each domain contains
plain English reviews along with their labels, namely a score from 1 (i.e. very neg-
ative) to 5 (i.e. very positive). The reviews whose scores were 1 and 2 have been
mapped to the negative category, those whose scores were 4 and 5 to the positive
one, whereas we discarded those whose score was 3 because they were likely to

! http://nlp.fi.muni.cz/projekty/gensim/.
2 https://keras.io/layers/recurrent /.
3 http://jmcauley.ucsd.edu/data/amazon/.


http://nlp.fi.muni.cz/projekty/gensim/
https://keras.io/layers/recurrent/
http://jmcauley.ucsd.edu/data/amazon/

Author Proof

12 A. Pagliarani et al.

express a neutral sentiment orientation. To assess to what extent the amount
of training data affects performance, source-target partitions with three orders
of magnitude have been tested, preserving 80%—-20% as source-target ratio, and
balancing positive and negative examples. The small-scale data set has 1600
instances as the training set and 400 as the test set; the medium-scale 16000
and 4000 respectively; and the large-scale 80000 and 20000 respectively. Accu-
racy (i.e. the percentage of correctly classified instances) has been measured for
each source-target configuration, averaging results on 10 different training-test
partitions to reduce the variance, that is, the sensitivity to small fluctuations in
the training set.

The same configurations of our previous work [1] have been used for Para-
graph Vector and Markov Chain. The Distributed Bag of Words version (PV-
DBOW) [12] has been chosen for PV, selecting 100-dimensional feature vectors,
considering 10 words in the window size, ignoring words occurring in just one
document and applying negative sampling with 5 negative samples. The initial
learning rate has been set to 0.025, letting it linearly decade to 0.001 in 30 epochs.
Readers can refer to [12,39] for details on the parameters. A logistic classifier,
whose regression coefficients have been estimated through the Newton-Raphson
method, has been used to perform sentiment classification.

In conformity with the previous work [1], we relied on the Markov Chain
algorithm introduced in [15]. The relative frequency of terms in documents has
been chosen as the term weighting measure [40]. Feature selection by means of
x? scoring function has been carried out to mitigate the curse of dimensionality
that inherently affects dense bag-of-words models. 750, 10000 and 25000 terms
have been chosen for the small-scale, medium-scale, and large-scale data sets
respectively. Readers can refer to [15,16] for further details on the method.

For the GRU-based architecture, 3 main layers have been chosen: the first
two are GRU layers, and the last one is a dense layer, fully-connected to the
classes. Each GRU layer consists of 128 units as the output space dimensionality,
whereas Glorot uniform initialisation [41] has been performed for the kernel
weights matrix. 10% of the inputs to the second GRU layer have been discarded
via dropout, in order to improve network robustness to noise. Adam optimizer
[42] has been used to perform stochastic gradient descent, with binary cross-
entropy as the loss function to optimize. Default values have been kept for the
other parameters. Readers can refer to Keras documentation for further details.

The analysis below mainly focuses on cross-domain sentiment classification,
where transfer learning is typically required to bridge the semantic gap between
distinct domains. In-domain experiments have been shown just to have a base-
line for the cross-domain comparison between GRU and the techniques already
examined in the previous work [1]. The impact of fine-tuning on the deep archi-
tectures is finally addressed, assessing whether tuning allows increasing their
cross-domain performance, since PV and GRU do not provide explicit transfer
learning mechanisms.
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4.2 In-domain Experiments

In-domain results are presented for a matter of comparison with the previous
work [1]. They act as a baseline for cross-domain comparison. Table 1 shows the
results over the 4 domains of the Amazon reviews dataset, namely Books (B),
Movies (M), Electronics (E) and Clothing-Shoes-Jewelry (J).

Table 1. In-domain comparison among the three techniques used in this paper. Nk-
Mk means that the experiment has been performed by using N * 1000 instances as the
training set and M * 1000 instances as the test set. X — X means that the model has
been learnt on reviews from a domain X and then applied to different reviews from
the same domain. Values have been rounded to one decimal place for space reason.

Domain(s) | 1.6k-0.4k 16k-4k 80k-20k

PV |MC |GRU |PV |MC |GRU |PV |MC |GRU
In-domain experiments
B— B 67.3% | 79.3% |83.5% | 75.4% |81.9% | 73.8% | 84.7% |83.8% |89.6%
M—-M |79.8% 91.2% |76.8% | 74.9% |82.4% |78.9% |84.1% |80.2% | 79.5%
EF—FE 79.3% | 92.0% |80.8% |80.2% |80.7% |82.5% | 85.6% |84.4% | 85.2%
J—=J 75.5% | 72.0% |82.3% |80.1% |83.8% |85.0% |85.3% |87.0% | 84.4%
Average |75.4%  83.6% |80.8% 77.6% | 82.2% |80.0% | 84.9% | 83.9% | 84.7%

GRU achieves performance comparable with the other techniques. The out-
come is not surprising for many reasons. Firstly, GRU has a recurrent architec-
ture, suitable for modelling sequences of terms. Secondly, GRU is able to capture
dependencies of different time scales. Relationships among terms arise indepen-
dently of how much they are distant. Finally, GRU can store relevant information
through time, working as a memory. Readers can find further discussion on PV
and MC in the previous paper [1].

4.3 Cross-domain Experiments

The following experiment aims to compare the performance of GRU with PV
and MC in cross-domain sentiment classification. The goal is to assess whether
the memory mechanism of GRU, which allows preserving relevant information
through time, makes it suitable for cross-domain learning. This comparison also
strengthens our earlier investigation [1] on deep learning in cross-domain senti-
ment classification.

The analysis involves all source-target configurations of the four domains,
namely B—- FEF, B—- M, B—-J, F—-B, FE—-M,F—J M— B, M—FE,
M —J,J—B,J— E, J— M. The detailed results are shown in Table 2,
whereas the average trend across domains is represented in Fig. 5.
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Table 2. Comparison between GRU, PV and MC in cross-domain sentiment clas-
sification. Nk-Mk means that the experiment has been performed by using N * 1000
instances as the training set and M * 1000 instances as the test set. X — Y means that
the model has been learnt on reviews from the source domain X and then applied to
reviews from the target domain Y. Values have been rounded to one decimal place for
space reason.

Domain(s) | 1.6k-0.4k 16k-4k 80k-20k

PV |MC |GRU PV |MC |GRU PV |MC |GRU
Cross-domain experiments (source — target)
B—FE 70.8% |69.3% |64.0% | 67.3% |71.2% | 73.2% | 73.2% | 74.1% | 78.2%
B— M 66.8% | 70.9% |65.0% |80.3% |79.3% |77.8% |82.0% |79.0% |83.3%
B—J 73.3% | 79.7% |69.5% | 70.6% | 71.8% | 78.0% | 74.9% | 76.0% | 82.7%
E—B 74.0% | 54.0% |65.8% | 78.8% |80.1% | 69.5% | 76.9% | 79.2% | 77.0%
E—-M 71.5% |56.8% |64.7% | 76.2% |76.2% | 73.4% | 76.9% | 77.2% | 79.3%
E—J 82.8% | 74.3% 1 69.2% | 79.5% |80.5% |82.0% |80.8% | 81.9% |85.7%
M — B 74.8% |65.8% |59.0% | 85.6% |86.1% | 71.7% |85.2% | 83.8% | 81.2%
M—FE 71.8% | 68.2% |69.5% | 75.3% |77.1% | 74.7% | 74.8% | 72.9% | 79.5%
M—J 82.3% |82.0% | 68.0% |73.5% |74.9% |77.0% |77.0% | 78.6% |82.3%
J—B 66.3% | 75.3% | 60.5% |69.6% |80.6% |68.2% |76.5% | 78.6% |77.2%
J—=F 76.5% | 80.6% | 77.0% | 78.6% |79.8% |78.4% |80.1% |81.8% |82.2%
J—=M 74.3% |81.3% |63.5% | 70.8% |74.3% | 72.7% |76.1% | 77.9% | 77.6%
Average |73.7%  71.5% 66.3% |75.5% | 77.7% |74.7% | 77.9% | 78.4% | 80.5%

The average trend is pretty clear: the more data GRU relies on, the more
it performs well. Indeed, GRU underperforms the other techniques with small-
scale data. Increasing the number of training instances, GRU experienced a
dramatic growth in accuracy, becoming comparable with both PV and MC with
medium-scale data and even outperforming them with large-scale data. A rea-
sonable explanation for this behaviour is that the memory mechanism of GRU
needs an appropriate amount of data in order to learn what is actually relevant
within a review. Somebody might argue that, looking at in-domain results in
Table 1, GRU achieves good performance even with small data sets. This means
that GRU needs few data to capture intra-domain term relationships, whereas
few facts are not enough to capture inter-domain dependencies in absence of
some explicit transfer learning mechanism. This is rational. Just think that
in a single domain identifying the polarity-bearing terms could be enough to
understand the overall sentiment orientation of the review, whereas the same
does not hold between distinct domains, because of language heterogeneity. The
polarity-bearing terms of the source domain generally differ from those of the
target domain. In order to support the knowledge transfer from source to tar-
get, cross-domain makes it necessary to identify relevant hidden concepts rather
than important terms. Careful readers could argue that PV, similarly to GRU,



Author Proof

Transfer Learning in Sentiment Classification with Deep Neural Networks 15

does not provide for a transfer learning phase, achieving good performance with
small-scale data anyway. This is true, but it should not be forgotten that PV is
able to capture word semantics without supervision [12]. This feature makes PV
suitable for bridging the inter-domain semantic gap, as shown in [1].

—A— PV -5 MC —— GRU \
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72
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66
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Dataset size

Fig. 5. Average accuracy achieved by the compared methods in cross-domain sentiment
classification. The number of instances respectively used for small-scale, medium-scale
and large-scale are reported in Sect. 4.1.

The outcome of cross-domain experiments suggests that gated recurrent units
are automatically able to decide which information is better to preserve even
across heterogeneous domains. However, GRU needs a large-scale training set in
order to perform well in cross-domain tasks. Since GRU does not rely on explicit
transfer learning mechanisms, it requires more data in order to extract hidden
relevant concepts to bridge the semantic gap between distinct domains.

4.4 Experiments with Fine-Tuning

The experiments illustrated below assess the effectiveness of fine-tuning in sup-
porting deep learning techniques in cross-domain sentiment classification. As
explained in Sect. 3.4, fine-tuning of a pre-trained model can be useful in prac-
tice only if the labelled sample of the target domain is reasonably small. If it was
too large, cross-domain would lose its benefits and, at the same time, in-domain
approaches would be both feasible and preferable. For this purpose, 250 and
500 target examples have been used to assess the potentiality of fine-tuning as
transfer learning mechanism. The detailed cross-domain results with fine-tuning
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are shown in Table 3, whereas the average trend is plotted in Fig.6 and com-
pared with the accuracy that PV and GRU obtained without tuning on target
instances.

Table 3. Comparison between GRU, PV and MC in cross-domain sentiment classi-
fication with fine-tuning on a small set of target instances. Nk-Mk means that the
experiment has been performed by using N * 1000 instances as the training set and
M *1000 instances as the test set. X — Y means that the model has been learnt on
reviews from the source domain X and then applied to reviews from the target domain
Y. 250 and 500 target instances have been used for tuning.

Domain(s) | 1.6k-0.4k 16k-4k 80k-20k

PV |GRU |PV |GRU |PV  |GRU
Fine-tuning with 250 instances (source — target)

B—FE 70.56% |69.00% |73.86% |74.85% |72.40% |79.05%
B— M 67.78% |68.50% |76.33% |79.45% |83.83% |84.51%
B—J 76.67% |71.50% |71.03% |79.80% |75.16% | 82.03%
F— B 63.89% | 68.50% |78.61% |70.20% |74.73% | 77.83%
E—-M 73.78% |67.00% |65.28% |73.85% |79.18% |80.17%
E—J 82.22% | 71.00% |79.14% |84.60% |81.14% | 86.44%
M — B 79.17% |67.50% |80.08% | 72.95% | 81.22% |81.22%
M — E 73.89% |72.50% |77.33% |77.10% |74.38% | 79.70%
M—J 82.50% | 75.50% |75.58% |78.85% |77.92% | 82.83%
J—B 64.17% | 67.50% |74.81% |70.30% |75.22% | 78.78%
J—FE 73.89% | 77.50% |83.11% |78.50% |80.70% | 82.51%
J—-M 70.83% |68.00% |62.53% |75.25% |78.25% | 79.19%
Average |73.28% |70.33% | 74.81% | 76.31% | 77.84%  81.19%
Fine-tuning with 500 instances (source — target)
B—FE 70.72% | 70.50% | 73.54% |73.95% |72.24% | 78.56%
B—-M 67.56% |68.00% |76.28% |79.55% |83.66% | 84.07%
B—J 76.17% | 78.00% | 70.53% |80.50% |74.89% | 82.30%
EF—B 66.83% |69.00% |78.21% |71.85% |74.97% | 77.39%
E— M 73.03% |72.50% | 64.99% | 76.65% | 79.23% |80.82%
E—J 81.33% |76.50% |79.02% |82.15% |81.15% | 85.19%
M — B 79.33% |69.00% |80.94% |76.55% |81.35% |81.78%
M—FE 74.61% |72.50% |77.55% |77.25% |74.34% | 79.91%
M—J 84.17% | 77.50% |74.65% |79.25% |77.70% | 82.33%
J— B 66.06% |70.00% |74.42% |71.85% |75.62% |78.52%
J—F 74.83% | 78.00% |82.84% |79.55% | 80.28% |83.66%
J—=M 71.66% |68.50% |62.33% |76.60% |78.04% | 79.59%
Average |73.86% |72.50% | 74.61% 77.14% 77.79% | 81.18%
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Fig. 6. Average accuracy achieved by the compared methods when fine-tuning on small
samples of target instances is performed to foster cross-domain sentiment classification.
The number of instances respectively used for small-scale, medium-scale and large-scale
are reported in Sect.4.1. The subscripts 250 and 500 are referred to the number of
instances sampled from the target domain in order to perform fine-tuning.

The first outcome that catches the eye is that PV is almost unaffected by fine-
tuning, regardless of the data set size. This behaviour is explained by the ability
of PV to capture word semantics without supervision. PV automatically handles
language heterogeneity by discovering hidden relationships between semantically
similar words [12]. On the other hand, the benefits of fine-tuning dramatically
affect GRU, which is not inherently able to align domains without supervision.
The improvement is particularly evident with small-scale data, and decreases by
growing the amount of source data employed to pre-train the model. The reason
is pretty obvious. When few training data are available, GRU cannot capture
inter-domain dependencies, and even a small sample of target data leads to a
significant boost of performance. The impact is a bit reduced with medium-scale
data, mainly for two factors. The first factor is the increased capability of GRU
in bridging the inter-domain semantic gap without fine-tuning, as already shown
in Sect.4.3. The second factor is that 250 and 500 instances are two orders of
magnitude less than the dataset size considered, whereas the small-scale data
were just one order of magnitude more than the amount used for tuning. It is
obviously challenging to increase the performance of a model pre-trained on a
set of medium-scale data, by using only such a small sample for tuning. The
same two factors also affect performance improvement when large-scale data are
taken into account.
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Despite the few instances used, fine-tuning is beneficial to GRU on average in
all the considered configurations. With small-scale data, the sample of 250 target
instances improves accuracy by approximately 4%, whereas doubling the tuning
instances, accuracy increases by about 2% more. With medium-scale data, the
smaller sample boosts accuracy by about 1.6%, whereas the bigger one by less
than 1% with respect to the smaller. Finally, accuracy increases by less than
1% with respect to the configuration without tuning when large-scale data are
considered, independently of the size of the tuning sample.

The outcome of the analysis proves that fine-tuning on a small sample of
labelled target data is beneficial to deep architectures that do not have nei-
ther explicit transfer learning mechanisms nor the capability of automatically
detecting semantically similar terms without supervision.

5 Conclusions

In this work, the investigation on deep learning in cross-domain sentiment clas-
sification, started in [1], has been carried on.

A Gated Recurrent Unit based architecture has been added to the previous
comparison, which already took into account Paragraph Vector, an unsupervised
deep learning technique not designed for cross-domain purposes, and a Markov
Chain based method tailored to transfer learning and cross-domain sentiment
classification. Moreover, fine-tuning of a pre-trained model has been attempted
to assess its impact on cross-domain as explicit transfer learning mechanism.
The model pre-trained on the source domain was tuned on a small sample of
labelled target instances. The sample should be small in order for human experts
to manually label data without too much effort. Moreover, if a large amount of
labelled data was available, in-domain approaches would be preferable, as they
are generally more effective than cross-domain ones.

The cross-domain experiments without fine-tuning show that GRU needs
many instances in order to learn bridging the semantic gap between the source
and the target domain. Indeed, GRU performs poorly with small-scale data
(e.g. 2000 examples), achieves accuracy comparable with the other techniques
with medium-scale data (e.g. 20000 examples), and even outperforms both with
large-scale data (e.g. 100000). The outcome also means that, once enough data
are available for training, GRU is able to bridge the inter-domain semantic gap
without explicit transfer learning mechanisms. This ability is supposedly due
to GRU gates, which allow each unit working as a memory wherein relevant
information can be stored and preserved.

The deep architectures analysed manifest different behaviours in the exper-
iments with fine-tuning. PV does not take advantage of fine-tuning, since it is
able to capture word semantics as well as word relationships without supervi-
sion. On the other hand, fine-tuning is beneficial to GRU, because it acts as a
transfer learning mechanism. The less training examples have been used to pre-
train the model on the source domain, the higher impact fine-tuning has had
on performance. As expected, a greater amount of tuning data (e.g. 500 reviews
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rather than 250) brings to better performance with small-scale data. The impact
of this factor decreases by augmenting the dataset cardinality, and completely
vanishes with large-scale data.

The analysis carried out in this work confirms that deep architectures are
promising for cross-domain sentiment classification, although the techniques used
in this investigation do not explicitly incorporate transfer learning mechanisms.
Some features make deep nets suitable for bridging the inter-domain semantic
gap, like the capability of PV to learn word semantics and relationships without
supervision, and the memory mechanism of GRU that allows preserving relevant
information through time. When combined with explicit transfer learning mech-
anisms as fine-tuning, deep learning techniques achieve accuracy comparable
with or better than ad-hoc cross-domain solutions. Moreover, the fact that deep
learning algorithms are able to take advantage of large-scale data is extremely
important in nowadays big data scenarios, where scalability always is a require-
ment.

Future work will focus on combining different deep learning approaches, in
order to take advantage of the respective benefits. We argue that this study is a
start point to overcome ad-hoc solutions for cross-domain sentiment classifica-
tion. A possibility is to combine deep approaches to learn semantic-bearing word
representation - like Paragraph Vector, Glove [43], ELMo [44], etc. - with deep
architectures with some memory mechanism, such as Gated Recurrent Unit, Dif-
ferentiable Neural Computer [45], Dynamic Memory Network, etc. (see in [46]
for an extensive treatment in transfer learning). Moreover this study can be
extended to cope with other emerging text classification problems where large
data sets are unlabelled, such as in thread of conversational messages of social
networks and discussion forums [47,48].
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