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Abstract — With the popularity of Electrical Vehicles (EVs), 

Lithium-ion battery industry is developing rapidly. To ensure the 

battery safe usage and to reduce its average lifecycle cost, an 

accurate State of Charge (SOC) tracking algorithms for real-time 

implementation are required for different applications. Many 

SOC estimation methods have been proposed in the literature. 

However, only a few of them consider the real-time applicability. 

This paper classifies the recently proposed online SOC estimation 

methods into five categories. Their principal features are 

illustrated, and the main pros and cons are provided. The SOC 

estimation methods are compared and discussed in terms of 

accuracy, robustness, and computation burden. Afterward, as the 

most popular type of model based SOC estimation algorithms, 

seven nonlinear filters existing in literature are compared in 

terms of their accuracy and execution time as a reference for 

online implementation. 

 

Index Terms -- SOC estimation; lithium-ion battery; online 

implementation; comparison; nonlinear filter. 

I. INTRODUCTION 

Environmental pollution is a severe problem all around the 

world in these years, especially, global warming has attracted 

a lot of attentions from both academic and industry sectors. 

Through the guidance of Paris Agreement, countries and 

governments have made their efforts to save energy and 

reduce emission. Consequently, electrification of 

transportation is becoming an inevitable trend in the future [1]. 

The Electrical Vehicle (EV) industry is developing fast to 

meet people’s urgent demand for transportation with low 

carbon emissions.  

High specific energy, long cycle life, and low self-discharge 

rate make lithium-ion battery one of the most promising 

energy storage components for EV applications [2]–[6]. Just 

as the fuel gauge in traditional vehicles, the amount of 

capacity left in the battery is undoubtedly an important index 

related to the driving experience. Accurate State of Charge 

(SOC) can help drivers to make wise decisions on when to 

charge the battery and also help the Battery Management 

System (BMS) to avoid overcharging and over discharging 

which may cause safety issues [7], [8]. SOC cannot be directly 

measured, and it has to be estimated from the estimation of 

other battery quantities.  
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In order to fulfill the energy requirement of EV, large 

numbers of batteries are connected in series or parallel. Due to 

the cost limitation, the platform where BMS is implemented 

has limited computational ability. An accurate online SOC 

estimation method in a real-time platform is not easy. Thus, it 

is necessary to analyze the features of the online 

implementable SOC estimation methods.  

Besides the accuracy, efficiency and robustness are the 

other two factors to be considered for SOC estimation in real- 

time applications [9]. Measuring battery current and voltage 

inevitably yields errors from sensors. Moreover, the 

established battery models are not perfect and do not take into 

account all factors affecting the modeling accuracy. The inner 

battery characteristics also vary with different operating 

conditions (e.g., temperature, load current) and battery aging. 

Hence, the estimation algorithm must be robust to both the 

measurement errors and the modeling errors. As previously 

described, the computation ability of BMS is limited. The 

SOC estimation algorithm should be less time-consuming in 

order to satisfy the computing power of the low-cost 

microcontrollers.  

Because of the good performance in SOC estimation, 

nonlinear filters (such as, Extended Kalman Filter (EKF) [10], 

[11], Unscented Kalman Filter (UKF) [6], [12], [13], Central 

Difference Kalman Filter (CDKF) [14]–[16], Square Root 

Unscented Kalman Filter (SR-UKF) [17], [18], Square Root 

Central Difference Kalman Filter (SR-CDKF) [19], Particle 

Filter (PF) [20], [21], H-infinity filter [22]–[24], etc) are 

widely investigated in the literature on the basis of a model 

based structure.  

Many approaches for an accurate prediction of the battery 

SOC have been presented in the literature, but a relatively 

limited number of them consider BMS limitations and the 

real-time requirement and validate proposed methods online in 

a test bench. Therefore, this paper aims to summarize the 

features of SOC estimation methods that are suitable for 

online implementation and compare their advantages and 

disadvantages. The goal is to contribute to bridging the 

academic achievements of SOC estimation research into 

industrial application. 

In contrast to the previous overview works on SOC 

estimation methods, this paper is mainly focused on the recent 

publications of online implementable SOC estimation methods. 

In this paper, the online SOC estimation methods are divided 

into five categories based on their characteristics. A detailed 

discussion on their pros and cons is given in this paper. 

Moreover, the previously mentioned seven nonlinear filters 

are compared in terms of accuracy and execution time in this 

work, which is different from [25]. 

The structure of this paper is as follows: Section II details 
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the online feasible estimation methods and their characteristics 

presented in the literature. Section III discusses the suitability 

of those methods for online implementation and presents their 

pros and cons. The comparison of seven nonlinear filters in 

accuracy and execution time are shown in Section IV. 

Conclusions are drawn in Section V. 

II. BATTERY MODEL AND ERROR ANALYSIS 

A large number of SOC estimation methods have recently 

been proposed in the literature. Depending on their governing 

principles, the online SOC estimation algorithms are divided 

into five categories: Coulomb Counting Methods (CCMs); 

Open Circuit Voltage Methods (OCVMs); Impedance 

Spectroscopy Based Methods (ISBMs); Model-Based 

Methods (MBMs) and Artificial Neural Networks Based 

Methods (ANNBMs). This section details their features and 

reviews some recently published papers for each category. 

A. Coulomb Counting Method 

The definition of SOC is as follows:  
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Where Z(t) is the SOC at time t and Z(0) is the initial SOC; 

i is the Coulombic efficiency. Cn is the battery capacity, i(t) 

is the current and the discharging current is considered as 

positive in Eq.(1). 

From Eq. (1), it easy to note that SOC is defined as the 

integration of the current. Therefore, Coulomb counting is a 

direct and efficient method for calculating SOC. The self-

discharge, temperature and current rate (Fig.1) have an impact 

on the capacity of battery. Moreover, the inaccuracy of current 

sensor and the batteries’ discontinuous usage in reality also 

make an accurate initial SOC hardly to be known. Errors from 

current sensors also accumulate in the calculation process. To 

overcome these drawbacks, measures for enhancing the CCM 

are proposed in [26]–[31]. Since Coulombic efficiency effects 

the accuracy of CCM, updating the Coulombic efficiency 

online during the estimation process helps to improve the SOC 

accuracy [27], [28]. However, it is not easy to calculate the 

true value of Coulombic efficiency, and the battery must be 

tested under different current rates in advance. 

 
Fig.1. Voltage changes with discharging rate 

Combining with the OCV-SOC lookup table is also a good 

way to compensate the shortages of CCM. In [10], the authors 

reset the initial SOC of CCM by predicting OCV in very short 

interruption time, which automatically decreases the SOC 

estimating error. Compared with the conventional CCM, the 

proposed method increases the SOC estimation accuracy by 

2.07% when UDDS profile is used. Considering the OCV, 

resting time and temperature effect, battery’s initial SOC is 

predicted for CCM in [30] and the error of SOC estimation is 

further reduced by adding the energy efficiency. 

Removing errors (including measurement DC bias, self-

discharge current and leakage current) [8] from the current 

measurement also decreases the accumulated errors in CCM. 

If the initial SOC is known in advance and high precision 

current sensors are included in the BMS, CCM is very 

effective and suitable for real-time SOC estimation. 

B. Open Circuit Voltage 

In order to reach the internal equilibrium, the battery has to 

be disconnected from any load and rest for enough longer 

relaxation time. OCV is then measured under this condition. 

The OCV-SOC lookup table is the most efficient method if an 

accurate OCV is known. However, the relaxation time of Li-

ion battery can be generally as long as 10 hours or even more, 

which affects the practicality of the OCVM. Furthermore, the 

relationship between OCV and SOC has proven to change 

with temperature and age [32]–[35]. Hence, extensive works 

focusing on improving its accuracy by considering 

temperature and aging effects are proposed in [33]–[36]. 

Additionally, the characteristics of OCV-SOC curve are 

closely related to the battery chemistry. For example, the 

OCV-SOC curve is quite flat for lithium iron phosphate 

batteries (Fig.2), which means that a small error in OCV 

measurement causes a large error in SOC estimation. In Fig.2, 

the difference of OCV is merely 72mV in the SOC range of 

30%~80%. Moreover, the voltage hysteresis problem also 

affects the accuracy of OCV measurement [37]. Thus, 

classical OCVM is not quite acceptable for most online 

conditions. In order to improve its utility, researchers are also 

working on fast OCV prediction in short relaxation time [38]–

[40].  

 
 

Fig.2. Flat OCV-SOC relationship of LiFePO4 battery 

A new OCV relaxation model is proposed in [41]. The 

OCV is able to be estimated in just a few minutes after the 

current interruption. After parameter identification and curve 

fitting, the proposed model is validated on a 16 bit Infineon 

microcontroller at the 66 Mhz clock frequency. Combining 

with the low-cost voltage sensor, Kalman filter is also applied 

to OCV prediction in short battery disconnected period in [42]. 

In this way, OCVM has higher computational efficiency and is 
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suitable for online estimation. Although OCVM confronts 

many drawbacks, it is still worth improving its applicability 

for online applications. 

C. Impedance Spectroscopy based Method 

An electrochemical impedance spectroscopy (EIS) is based 

on injecting small amplitude AC signals to a battery at 

different frequencies. The battery impedance at different 

frequencies are expressed as follows: 

  jAC
EIS

AC

U
Z w e

I

                                (2) 

Where UAC and IAC are the peak amplitudes of voltage and 

current, respectively; φ is the phase shift between current and 

voltage. The magnitudes of REIS are expressed by Bode plot 

and Nyquist diagram.  

Several parameters (ohmic resistance, charge transfer 

resistance, and double layer capacitance) are analyzed from 

the measured EIS data. Those parameters are functions of 

SOC, which can be further used as indicators of SOC [41]. It 

is proven in [42] that the battery impedance is SOC dependent 

at low frequency. 

However, EIS is not easy to measure online and also varies 

with battery types and experimental conditions [43]. The EIS 

measurement equipment is usually designed for laboratory use 

and is very expensive. But EIS is still a powerful tool for 

analyzing battery internal characteristics and estimating SOC. 

Many efforts have been made to implement the online EIS 

measurement [44]–[48], which greatly enhances the possibility 

of EIS for online applications. An onboard EIS measurement 

system is proposed in [45], which consists of class A power 

amplifier, low pass filter, and Digital-to-Analog Converter 

(DAC) for generating sinusoidal signals. The battery charger 

is applied to generate current for EIS measurement in [46]. In 

[47], the authors propose a low cost and practical solution for 

online measurement of AC impedance by controlling the DC-

DC converter. Although EIS is sensitive to SOC and is a non-

destructive method, the exact relationship of EIS and SOC, as 

well as the repeatability of EIS for online measurement, still 

need further research. 

D. Model-based Methods 

Among all the SOC estimation methods, the model based 

ones seem to be the most practical choice for online SOC 

estimation at present. Most recent works are related with 

MBM, and a classification is proposed in Fig.3.  

 
Fig.3. Model-based SOC estimation methods 

 
 

Fig.4 Structure of MBMs 

Deduced from Fig.4, the expression of MBMs is typically 

demonstrated as follows [49]: 
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where ut is the terminal voltage at time t measured by 

voltage sensors, ˆ
tu is the output from the established battery 

model, h(.) represents the battery model.  

Note that the feedback for correcting the SOC is based on 

the difference between the terminal voltage measured by the 

sensor and the output of the battery model. Due to the closed-

loop structure, MBMs are able to deal with unknown initial 

SOC. In Eq. (3), L is the gain for compensating the SOC from 

CCM. The methods presented in Fig.4 use a different 

algorithm to calculate the gain L, such as PI [50], [51], H-

infinity filter [22]–[24], Kalman filter [10], [12], [13], [17], PF 

[20], [21], etc. Based on two RC equivalent circuit model, 

authors in [50] propose a simple structure and highly effective 

SOC estimation method using two independent PI observers. 

One PI observer improves the modeling accuracy, and the 

other one estimates the OCV for SOC estimation 

simultaneously. H-infinity filter is also used for decreasing the 

effect of noise and parameter uncertainty on the estimation 

accuracy. An adaptive H-infinity filter is proposed in [22] for 

improving the accuracy of SOC estimation results against the 

noise from sensors and the inaccuracy from battery model. 

With Recursive Least Square (RLS) updates parameters, the 

proposed method achieves accurate SOC in a hardware-in-the-

loop experiment. Kalman filter is definitely the most popular 

MBMs due to its robustness to noise in the stochastic process. 

EKF estimates battery internal temperature and SOC at the 

same time on the basis of a novel thermoelectric model 

presented in [52]. In [12], authors validate UKF implemented 

in a Freescale MC9S12XF512 for SOC estimation. In order to 

improve the accuracy of battery modeling, electrochemical 

model-based SOC estimation methods are also proposed in 

[11], [53], [54]. 

As previously described in this paper, MBMs rely on 

precise battery model for accurate SOC estimation. However, 

battery internal parameters are changed during charging and 

discharging process. It is difficult to build an accurate enough 

model to describe all the battery external characteristics. 

Especially, the computational complexity of the battery model 

should be restricted to a reasonable range for online 

applications. Being insensitive to initial SOC and robust to 

measurement noise, MBMs are very popular for different 
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kinds of online SOC estimation applications. 

E. Artificial Neural Network based Method 

Different kinds of artificial neural network (ANN) and 

some similar methods are very popular in mapping the 

nonlinear relationship between inputs and outputs of a system. 

ANN is capable of directly establishing the relationship 

between battery SOC and the related factors (such as current, 

voltage and temperature). Then, engineers are able to create 

the SOC estimator without any prior knowledge of the battery.  

Methods, like ANN [52], [55]–[57], Support Vector 

Machine (SVM) [58], Extreme Learning Machine (ELM) [59], 

Multivariate Adaptive Regression Splines (MARS) [9], [60], 

etc., have the ability to deal with the nonlinear mapping 

problem. Fuzzy logic has a similar characteristic as ANN, thus 

it is also used for SOC estimation [61]. ANNBMs must be 

trained offline in order to establish the nonlinear relationship. 

Afterwards, they can run efficiently in a real-time application. 

Two different structures of ANN are applied to estimate SOC 

in [52]. Considering the battery capacity fade, accurate SOC is 

obtained from ANN estimator during the entire battery 

lifespan. SVM and MARS are used in [58], [60] to 

immediately establish the nonlinear map of SOC and other 

measured input variables, respectively.  

If appropriate samples are selected and optimized 

parameters are chosen in the training process, the ANNBMs 

are able to present accurate SOC estimation. However, it can 

be easily found that the practicability of these methods is 

closely related to both the data samples and the training 

process. Since the practical conditions are various, the 

generalization of ANNBMs under different driving cycles 

should be considered for online application. Generally, 

ANNBMs are easily transplanted to hardware for online 

implementation after having been trained offline. 

III. DISCUSSION 

After introducing the features of the SOC estimation 

methods, their suitability for online usage is discussed in this 

section. According to the analysis in the previous section, their 

suitability for online implementation is listed in TABLE I. 

From TABLE I, it can be seen that all these methods have 

their own advantages and disadvantages. However, accuracy, 

robustness and computational cost are three most important 

factors to be taken into account in BMS. EV is considered as 

an example to analyze and compare different methods in this 

paper. 

From an accuracy point of view, each method is capable of 

achieving good results under specific situations. Since CCM is 

an open loop structure, initial SOC and current measurement 

are undoubtedly extremely important for its accuracy. 

Normally, accurate initial SOC and high precision current 

sensors are almost unrealistic because of the limited cost in 

EV. OCVM relies on a precise OCV value for estimating SOC. 
The OCV can be obtained after the car is parked for a long 

time without use. During the driving process, the current 

interruption may also happen when the car is stopped at the 

traffic light or meet traffic jams. However, the current 

interruption under these circumstances is usually too short for 

battery relaxation. Thus, fast OCV estimation is urgent for the 

application of OCVM in real time. OCV-SOC curve should be 

steep for guaranteeing the estimation accuracy. Small errors 

from voltage sensors may cause large SOC estimation errors 

because of the flat OCV curve and OCV hysteresis of the 

LiFePO4-based battery. ISBM is hardly measured online and 

varies with measurement conditions. Thus, it is important to 

establish the clear relationship between EIS and SOC. The 

accuracy of MBM relies on a precise battery model. Selecting 

the appropriate model structure for a specific battery enhances 

the estimation accuracy. However, it is difficult to simulate the 

complex electrochemical process of the battery. Equivalent 

circuit model is widely used in MBM. Moreover, the 

performance and convergence of the corrected algorithm are 

closely related to an accurate estimated SOC. The accuracy of 

MBMs is expected to be acceptable for EV applications if the 

right battery model and the suitable estimation algorithm are 

chosen. ANNBMs are extremely accurate if the current profile 

of the EV driving cycle is similar to the training samples. 
TABLE I  

ADVANTAGES AND DISADVANTAGES OF DIFFERENT SOC ESTIMATION 

METHODS FOR ONLINE IMPLEMENTATION 
Categories of 

Methods 
Advantages Disadvantages 

Coulomb 
counting 
method 

 Computational 
effectively;  

 Direct SOC 
calculation;  

 Easy to understand 

 Accurate initial SOC 
is needed; 

 Current sensor error 

accumulated.  

Open circuit 
voltage method 

 One to one 

relationship 

between OCV and 

SOC;  

  Small computation 
burden. 

 Long relaxation time 

for OCV 

measurement;  

 Temperature, age, 

and battery types 
affect the OCV. 

Impedance 
Spectroscopy 
based method 

 Sensitive to SOC 

variation;  

 Diverse parameters 

indicate SOC 

 Difficult for online 

measurement; 

 Different with 

battery type, 
experimental 

condition, etc. 
Model-based 

method 
 Insensitive to initial 

SOC;  

 Good robust; 

 High accuracy 

 Rely on modeling 
accuracy; 

 High computing cost 

ANN-based 
method 

 Do not need 
previous 

knowledge of 

battery;  

 Easy transplant to 

hardware after 

offline training 

 Large amount of 
training samples is 

needed;  

 Hard to generalize to 

different working 

conditions. 

The practical application always encounters a variety of 

operating conditions, which means robustness is an important 

factor. In EV applications, the battery pack should fulfill 

different power requirements. The battery current, temperature 

and age keep changing all the time. Including feedback 

process for correction, a closed-loop system is usually more 

robust than open loop system. Thus, MBMs have a superior 

robustness compared with the others. However, a better 

robustness can also be achieved by the other methods by 

taking some measures. The robustness of CCM under different 

driving cycles can be enhanced by considering the temperature 
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and aging effects. Similarly, adding those effects to OCV-

SOC lookup table helps to adjust the OCVM under various 

conditions. For ISBM, measuring EIS at different working 

conditions prior to usage also improves its robustness in real 

time applications. MBMs have a better robustness because of 

the feedback correction mechanism. Since the accuracy of 

battery model may be reduced during battery usage, online 

updating parameters are critical for ensuring its robustness. 

The estimation algorithms should also be insensitive to 

modeling and sensor errors. A large amount of training data 

should be collected in advance for the robustness of ANNBMs. 

Moreover, the parameters in the training process must be 

optimized, and various validation processes should be 

performed in order to avoid the local optimization. 

The computational overload must be considered for 

hardware implementation. CCM and OCVM are 

computationally efficient, as they involve a simple calculation 

process. ISBM needs a powerful processor, since the necessity 

of measuring EIS online and dealing with a large amount of 

data. MBMs are time-consuming, especially Kalman filter 

containing matrix operation in the estimation process. Low-

cost applications can choose PI observer or sliding mode 

observer because of their lower computation burden. ANNBM 

is less time consuming if ANN is trained offline before 

transplanting to an embedded system.  

Measures can be taken to guarantee the accuracy, 

robustness and computational efficiency of online SOC 

estimation methods. For a real-time application, the most 

suitable method is application dependent and should be a good 

trade off of all influencing factors (eg. the requirement of 

accuracy, robustness, and computational effort, etc.). This is 

also the reason why we choose to compare seven nonlinear 

filters in Section IV. 

IV. THE PERFORMANCE OF THE DIFFERENT NONLINEAR 

FILTERS ON ONLINE SOC ESTIMATION 

As described in part D of Section II, nonlinear filters are 

very popular for online SOC estimation. Therefore, the most 

common nonlinear filters proposed in the literature are 

compared in terms of accuracy and execution time in this 

Section including: EKF [10], [11], UKF [6], [12], [13], CDKF 

[14]–[16], SR-UKF [17], [18], SR-CDKF [19], PF [20], [21], 

H-infinity filter [22]–[24]. 

For the purpose of comparing different nonlinear filters in 

an identical condition, we take the following measures: 

1) The same two RC battery model is applied to each 

method; 

2) The code of each method is written by the same person to 

avoid differences in coding effectiveness; 

3) The same battery and driving cycle are used to validate 

the nonlinear filters. 

A LiFePO4/c battery cell is tested in the MACCOR 4000 

series, and the measurement data is collected for validating the 

seven nonlinear filters. The accuracy of MACCOR is  0.01% 

+ 1 digit for voltage measurement and  0.02% + 1 digit for 

current measurement. The nominal capacity of the battery is 

10Ah, and the nominal voltage is 3.2 V. The temperature in 

the chamber is set to 25 ºC and the sample time is 1 second. 

The OCV-SOC relationship is measured every 5% SOC 

interval from the test bench as shown in Fig.5. 

Multi-NEDC driving cycles are applied to test the battery, 

and the following measurement in Fig.6 are collected. On the 

basis of the two RC battery model (in Fig.7) and the 

measurement data from MACCOR, seven different kinds of 

nonlinear filters are used to estimate SOC. The reference SOC 

is also obtained from MACCOR. In order to eliminate the 

parameter uncertainty, RLS is applied to update the 

parameters of the battery model online. The comparison of the 

nonlinear filters is shown in Fig.8. The initial SOC is 

arbitrarily set to 0.7, and the number of the particulars in PF is 

100. 

 
 

Fig.5 OCV-SOC measurement 

 

 

(a) Current 

 

(b) Terminal voltage 

Fig.6 Current and voltage measurement during the NEDC driving cycles 
 

The OCV-SOC relationship is established by the curve 

fitting of the average OCV (Fig.5) as shown in Eq.(4). 
8 7 6

5 4 3

2

330.2741 1507.8350 2869.7023

2949.8632 1773.9467 632.0383

128.9882 13.8940 2.6371
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Fig.7. Structure of two RC battery model 

 

 
 

(a) SOC estimation results 

 

 
 

(b) SOC value at the beginning of the estimation (0~50s) 
 

 
 

(c) SOC estimation in lower SOC area 

Fig.8 Estimation results of different nonlinear filters 

 

 
 

Fig.9 Absolute Error of different nonlinear filters 

 

All methods are able to converge to the reference SOC 

within a limited time as shown in Fig.8(a). In Fig. 8(b), a 

zoom of the SOC estimation results is shown. It is possible to 

note that SR-CDKF, SR-UKF, PF, and H-infinity filter 

achieve better results than the other nonlinear filters. That is 

because the square root filter is developed to increase the 

numerical accuracy of Kalman filter. PF is proposed for the 

severe nonlinear system, and it is able to work with arbitrary 

nonlinear noise distribution [62]. Due to the high nonlinearity 

of battery model in the lower SOC area, these four filters are 

able to obtain better results also in the lower SOC area in 

Fig.8(c).  

The absolute error in Fig.9 indicates that EKF, UKF, and 

CDKF have a larger SOC estimation error. This is particularly 

true in the higher and lower SOC ranges, where the nonlinear 

characteristic of the battery is more evident. The absolute error 

in Fig.9 also proves that SR-UKF, SR-CDKF, PF and H-

infinity filter are more suitable for strongly nonlinear system 

compared with the other three nonlinear filters. The Mean 

Absolute Error (MAE) and the execution time of each 

nonlinear filter are listed in TABLE II. 

 
TABLE II 

 COMPARISON OF MAE AND EXECUTION TIME 

Method MAE Execution time(ms) 

EKF 0.0121 0.023177 

UKF 0.0105 0.093621 

CDKF 0.0096 0.093438 

SR-UKF 0.0022 0.132310 

SR-CDKF 0.0039 0.142347 

PF 0.0020 1.454133 

H infinity Filter 0.0065 0.034674 

 

The execution time is measured through a Processor-in-the-

Loop way. The nonlinear filters are downloaded to a 

MicroZed development board (Xilinx Zynq XC7Z020) by the 

model-based design approach in Simulink. In TABLE II, PF 

obtains the best results in terms of MAE (0.0020), while the 

execution time is much longer than the others methods. The 

MAE of H-infinity filter is 0.0065 which is 50% of EKF. But 

its execution time is 0. 034674ms, which is 150% of EKF. 

Therefore, H-infinity filter is a better trade-off between 

accuracy and execution time for online SOC estimation. 
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V. CONCLUSION 

SOC estimation is crucial for many applications of Li-ion 

batteries. This paper reviews the SOC estimation methods that 

are suitable for online usage and classify them into five 

categories: CCMs, OCVMs, ISBMs, MBMs and ANNBMs. 

The principles and features of each method are recalled in this 

work. The CCM directly estimates SOC from the integration 

of current, which is computationally effective. The initial SOC 

and the accumulation of sensor errors decrease the practicality 

of the CCM. The OCVM makes full use of the monotonous 

relationship of OCV and SOC. However, the long relaxation 

time of the batteries affects its use in real-time applications. 

ISBM can directly reflect the internal parameters changes 

inside the battery. The ISBMs are sensitive to SOC variations, 

but the difficulty in online EIS measurement limits its online 

usage.  

Different types of MBMs have been proposed in the 

literature, however, the Kalman filter is the most popular one. 

MBMs are more accurate and robust than other methods, but 

they are also more computationally demanding. Moreover, 

their performance is closely related to the established battery 

model. ANNBMs are easy to implement online after offline 

data training. However, the complicated data collecting 

process and the applicability of the method on the new coming 

data not having been trained limits its online usage.  

The suitable online SOC estimation method in real 

applications should be a good trade off of the accuracy, 

robustness and computational effort on the foundation of the 

specific condition. The comparison of seven different 

nonlinear filters for SOC estimation proves the accuracy of the 

MBMs. The experimental results have shown that the H-

infinity filter gives a good compromise in terms of accuracy 

and execution time. Then, it is a good choice for online SOC 

estimation.  
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