
26 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

FPGA-Based Implementation of Dual Kalman Filter for PV MPPT Applications / Ricco, Mattia; Manganiello,
Patrizio; Monmasson, Eric; Petrone, Giovanni; Spagnuolo, Giovanni. - In: IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS. - ISSN 1551-3203. - ELETTRONICO. - 13:1(2017), pp. 7173425.176-
7173425.185. [10.1109/TII.2015.2462313]

Published Version:

FPGA-Based Implementation of Dual Kalman Filter for PV MPPT Applications

Published:
DOI: http://doi.org/10.1109/TII.2015.2462313

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/676422 since: 2019-12-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TII.2015.2462313
https://hdl.handle.net/11585/676422


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

M. Ricco, P. Manganiello, E. Monmasson, G. Petrone and G. Spagnuolo, "FPGA-Based 
Implementation of Dual Kalman Filter for PV MPPT Applications" in IEEE 
Transactions on Industrial Informatics, vol. 13, no. 1, pp. 176-185, Feb. 2017 

The final published version is available online at: 
https://doi.org/10.1109/TII.2015.2462313  

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.1109/TII.2015.2462313


1551-3203 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2015.2462313, IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

FPGA-Based Implementation of Dual Kalman Filter
for PV MPPT Applications

Mattia Ricco, Patrizio Manganiello, Eric Monmasson, Senior Member, IEEE, Giovanni Petrone, Member, IEEE
and Giovanni Spagnuolo, Senior Member, IEEE

Abstract—The way of implementing an adaptive maximum
power point tracking algorithm for photovoltaic applications in
a Field Programmable Gate Array is described in this paper.
A dual Kalman filter allows estimating the settling time of the
whole system, including the PV source and the dc/dc converter
controlling the operating point thereof, so that the tracking algo-
rithm self adapts its parameters to the actual weather conditions.
The real-time identification need of this application requires
a FPGA platform, so that the intrinsic algorithm parallelism
is exploited and the execution time is reduced. The tradeoff
solutions proposed in this paper, accounting for the algorithm
complexity and the limited FPGA hardware, as well as some
solutions for optimizing the implementation are described. The
proposed adaptive algorithm is implemented in a low-cost Xilinx
Spartan-6 FPGA and it is validated through experimental tests.

Index Terms—Field Programmable Gate Array, adaptive
MPPT controller, Dual Kalman Filter, Photovoltaic system

I. INTRODUCTION

The Perturbe & Observe (P&O) algorithm is one of the most
common Maximum Power Point Tracking (MPPT) methods
applied in PhotoVoltaic (PV) systems to track the Maximum
Power Point (MPP) in any environmental condition. Such a
technique consists in perturbing the PV voltage by applying a
step change to the converter duty-cycle d and in measuring the
corresponding PV output power P . Then, the next perturbation
is evaluated by means of the following control law [1]:

d(k+1)Tp = dkTp + ∆d · sign
(
PkTp − P(k−1)Tp

)
(1)

where ∆d is the perturbation amplitude and Tp is the per-
turbation period, i.e. the time interval between two con-
secutive perturbations. In [1] an in-depth discussion about
the dependency of the MPPT performance with respect to
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these two parameters is given. Such analysis leads to the
following general considerations: as concerns the perturbation
amplitude, a too low value makes the algorithm too sensible
to the measurement errors and disturbances introduced by
the switching converter. Whereas a too high value increases
the oscillations around the MPP reducing the whole MPPT
efficiency. Regarding the perturbation period, a too low value
might be not enough to ensure the steady state regime for the
switching converter, thus leading to an unpredictable MPPT
behaviour. On the other hand, a too high value of Tp slows
down the MPPT controller, worsening the MPPT efficiency.
This is particularly true during cloudy days where a prompt
reaction of the MPPT allows tracking the MPP fastly. As a
consequence the MPPT parameters are usually designed by
considering the worst case conditions and according to the
guidelines given in [1]. Nevertheless, the on-line optimiza-
tion of these two MPPT parameters allows improving the
tracking performance by an adaptation to the time varying
PV operating conditions. Several authors focus their effort on
the optimization of the perturbation amplitude of perturbative
MPPT methods, not only for PV applications [2] [3], but also
for other renewable energy systems [4] [5]. Instead, only in [6]
an on-line optimization of the perturbation period, based on a
non-parametric identification approach, has been proposed.

In this paper the Dual Kalman Filter (DKF), which is
a parametric identification technique, is used to the aim of
adapting the perturbation period. The identification of the
PV parameters allows estimating the settling time of the PV
system, which includes the PV source and the dc/dc converter
actuating the MPPT action, and then, to choose adequately
the MPPT perturbation period. Thus, the standard design of
Tp, based on the worst case, can be advantageously replaced,
once for all, by an on-line estimation of this parameter, leading
a more flexible P&O algorithm. Unfortunately, the MPPT
stepwise perturbation signal is not persistent enough to excite
the PV system for the DKF-based identification [7]. Thus a
Pseudo-Random Binary Sequence (PRBS) is superimposed to
the dc/dc converter duty-cycle only for a suitable time interval
needed by the DKF-based identification process. Hence, in
the paper an appropriate convergence criterion is proposed
for terminating the DKF process when the convergence of
the parameters is reached. If compared with the approach
proposed in [6], the method presented in this paper gives
the estimation of the unknown parameters along with the
confidence intervals. As a consequence, the time needed for
achieving the system identification depends on the required
accuracy. The knowledge of the estimation accuracy avoids
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any underestimation of the settling time and it can be used for
additional diagnosis or monitoring purposes.

In order to achieve an efficient adaptive control, the iden-
tification must be performed in real-time, i.e. before a signif-
icant variation of the system operating conditions occurs. In
addition, a faster identification method is less intrusive than
a slower one, as it perturbs the system during a shorter time.
Moreover, as the DKF is a recursive algorithm, its execution
time must be lower than the sampling period, which is equal
to the switching period. This last point is very challenging in
this study since the power converter operates at high switching
frequency.

In order to cope with these timing constraints, a hardware
solution is adopted. Many studies have confirmed that the
Field Programmable Gate Array (FPGA) technology is a
good candidate when high speed performance is required [8].
Indeed, thanks to the exploitation of the intrinsic parallelism
of the algorithm to be implemented, a significant reduction
of the execution time is achieved. Unfortunately, to design
a high performance hardware architecture for the complex
identification algorithm described above is a challenging task,
because the resources offered by a low cost target component,
like the one used in this work, are limited. To the best of
the authors’ knowledge, this is the first time that the whole
conversion chain, including the PV source and the switching
converter, is modeled into a FPGA device for estimating its
states and parameters through a DKF.

In literature, some authors propose FPGA implementa-
tion of model-based identification techniques. However, the
requirements to be met and the adopted optimizations are
different. For instance, [9] presents the implementation of a
Recursive-Least-Square (RLS) algorithm aimed at identifying
some parameters in order to develop a self-tuning regulator.
The need of high computation precision and large dynamic
range entails the use of a floating-point format. The authors in
[10] propose the FPGA-based sensorless speed control. In this
case the most important aspect is the needed resources, then
a parallel reduced-order extended Kalman filter is proposed.
On the other hand, in PV identification applications, both the
time and area performance are of prime importance. Thus,
specific attention has been paid to the choice of the PV model
and of the parameters to be estimated. Moreover, in order
to reduce the execution time, pipelined multipliers have been
adopted in the developed architecture and the algorithm has
been factorized in order to reduce the required resources.

The paper is organized as follows. In section II the Dual
Kalman Filter is firstly introduced. Then, in the following
section, it is applied to the PV system under study. It has to be
mentioned that in the same section explanations are also given
regarding the chosen dynamic model of the PV system that fits
the identification issue to be addressed. Then, having given
in section IV the characteristics of the experimental setup,
the design of the DFK algorithm is presented in section V
and validated by simulation in section VI. In section VII, the
corresponding hardware architecture is given. Experimental
tests for validating the proposed adaptive MPPT algorithm are
given in section VIII and finally, conclusions are drawn.

II. DUAL KALMAN FILTER

A dynamic system can be expressed by its discrete-time
State-Space (SS) model parametrized by the time-varying
parameter vector θ(k), as shown in (2).{

x(k + 1) = f(x(k), u(k), θ(k)) + w(k)

y(k) = g(x(k), u(k), θ(k)) + r(k)
(2)

where x(k) ∈ Rp, u(k) ∈ Rn and y(k) ∈ Rm are the state
vector, the input signals and the output signals, respectively.
f(·) and g(·) are generally non-linear functions that govern
the dynamic behaviour of the system. w(k) and r(k) are the
process noise and measurement noise, respectively. They are
assumed zero-mean white gaussian random processes, with
respective covariance matrices W and R and reciprocally
uncorrelated. θ(k) is the vector of the time-varying parameters,
whose dynamic is approximated by the following state space
model. {

θ(k + 1) = θ(k) + v(k)

y(k) = g(x(k), u(k), θ(k)) + e(k)
(3)

The first equation describes the dynamic of the parameters. As
can be seen, the parameter dynamic is very slow in comparison
with the state dynamic. v(k) is the parameter noise that takes
into account some driving processes that could lead parameter
changes over the time. Its corresponding covariance matrix is
V . Some additive estimation errors are also considered through
the signal e(k) of covariance matrix E. The main dual Kalman
filter expressions are summarized in Table I.

Table I
MAIN DKF RELATIONS

State Prediction

x̂(k| k − 1) = f(x̂(k − 1| k − 1), u(k − 1), θ̂(k| k − 1))

Px̂(k| k − 1) = Â(k − 1)Px̂(k − 1| k − 1)ÂT (k − 1) +W

Parameter Prediction

θ̂(k| k − 1) = θ̂(k − 1| k − 1)

P
θ̂
(k| k − 1) = P

θ̂
(k − 1| k − 1) + V

State Update

SJM Â(k) =
∂f(x̂(k), u(k), θ̂(k))

∂x̂(k)
Ĉx(k) =

∂g(x̂(k), u(k), θ̂(k))

∂x̂(k)

KG Lx(k) =
Px̂(k| k − 1)ĈTx (k)

Cx(k)Px̂(k| k − 1)ĈTx (k) + R

x̂(k| k) = x̂(k| k − 1) + Lx(k) [y(k)− ŷ(k)]

Px̂(k| k) =
(
I − Lx(k)Ĉx(k)

)
Px̂(k| k − 1)

Parameter Update

PJM Ĉθ(k) =
dg(x̂(k), u(k), θ̂(k))

dθ̂(k)

KG Lθ(k) =
Px̂(k| k − 1)ĈTθ (k)

Cθ(k)Pθ̂(k| k − 1)ĈTθ (k) + E

θ̂(k| k) = θ̂(k| k − 1) + Lθ(k) [y(k)− ŷ(k)]

P
θ̂
(k| k) =

(
I − Lθ(k)Ĉθ(k)

)
P
θ̂
(k| k − 1)
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x̂ and θ̂ are the estimated state vector and the estimated
parameter vector, respectively. Px̂ and Pθ̂ are the state error
and parameter error covariance matrices, respectively. If they
reach high values, then the estimations are not reliable. On
the other hand, low values involve a good estimation. Â and
Ĉx are the State Jacobian Matrices (SJM) defined in Table I.
Ĉθ is the Parameter Jacobian Matrix (PJM), which calculation
is described in [11]. Lx and Lθ are the state and parameter
Kalman Gain (KG), respectively.

Once the DKF has been developed, its initialization and
tuning have to be carried out. For this purpose, some guidelines
are provided in [12]. Here a suitable initial choice of the state
vector x̂(0| 0) and of the parameter vector θ̂(0| 0) has to be
adopted according to an a priori knowledge of the system. On
the other hand, the tuning of the DKF is achieved by a trial-
and-error approach.

The two specific aspects of the DKF application to the PV-
MPPT problem treated in this manuscript are the adoption of
a suitable perturbation signal and the definition of a proper
convergence criterion. As for the first aspect, the perturbation
signal on which the P&O technique is based is not sufficient to
stimulate the system in a proper way, so that the DKF diverges.
As a consequence, the DKF has to be launched in an asyn-
chronous way: the MPPT perturbation process is stopped and a
Pseudo-Random Binary Sequence (PRBS) is superimposed to
the converter duty-cycle [13] in order to stimulate correctly the
system. Thus, it is of interest to define a convergence criterion
in order to assess that the identification procedure is terminated
and the MPPT operation can be reactivated. The DKF reaches
the convergence when the estimation error falls within a given
boundary error, as shown in (4).∣∣∣θn − θ̂n∣∣∣ ≤ θn,err ∀ n

θn,err = θn · errθn
(4)

where θn and θ̂n are the real and the estimated n-th component
of the parameter vector. θn,err defines an error threshold,
which depends on the parameter value θn and on an imposed
relative error errθn . The error covariance matrix Pθ̂, given
by the filter, provides the variance of the estimates and, then,
the standard deviation σ can be derived. Therefore, the DKF
reaches the convergence when σ falls below the imposed error:

σn < θn,err ∀ n (5)

In (5), θn,err depends on the real parameter value, which
is unknown. However, if the consistency is verified [12], it is
possible to replace the real value with the identified one. Then,
the following criterion is obtained.

σn < θ̂n,err ∀ n
θ̂n,err = θ̂n · errθn

(6)

Hence, the DKF reaches the convergence when the standard
deviation is less than the chosen error bound. It is worth to
note that the latter depends on the identified parameters and
the relative error that is fixed by the designer. This introduces
an additional degree of freedom in comparison with the
identification method proposed in [6]. Indeed, a compromise

between the identification time and the identification accuracy
can be reached by tuning the error bound.

III. PV SYSTEM MODEL

The best model structure of the PV system has to be
chosen in order to avoid high algorithm complexity, larger
identification time and divergence of the Kalman filter. The
fast dynamic of the PV source makes the states of the system
not observable in discrete-time with the commercial low-cost
ADC, having a low sampling frequency. Hence, identifying
only the PV source is not possible with the DKF. Therefore,
the whole system has to be identified, where the dynamic is
given by the dc/dc converter. The complete model is achieved
by using the single-diode PV model [1]. However, this model
includes too many parameters (photocurrent, series resistance,
parallel resistance, converter inductance and capacitance with
their parasitic resistance). Moreover, the PV parameters change
too rapidly and too strongly causing mistakes in the identifi-
cation. For these reasons, the small signal model around a
given operating point of both the PV panels and the boost
converter is considered. The DKF will then estimate the time-
varying parameters of this dynamic model. Figure 1 shows the
whole PV system and its small signal model used for the DKF
identification process. The battery can be modelled by means
of a dc generator in series with a series resistance and a number
of series-connected parallel R-C groups. However, the latter
can be neglected in the proposed analysis because the battery
dynamic modelled by these R-C groups is significantly slower
than the PV one. Thus only the series resistance should have
to be taken into account. This parameter can be transferred to
the input terminals of the boost dc/dc converter and joined to
the parasitic resistance of the inductor. This approach has been
considered and then the small signal battery model results in
a short circuit.

DC/DC
Converter

vpv

ipv ibat

vbat

d(t)

DC
BUS

(a)

PWM

Swi tch

rd

ipv

C

RC

RL LPV

vpv

d

(b)

Figure 1. a) whole PV system; b) PV small signal model in the neighbour-
hood of an operating point.

In small-signal the PV modules can be seen as a differential
resistance rd that depends on the irradiance level and the
temperature, as well as the operating point. In [6] the same
model has been shown and the following transfer function
between the panel voltage and the duty cycle has been derived:
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Gvp,d(s) =
ṽpv

d̃
= µ · ω2

n

s2 + 2ζωns+ ω2
n

(7)

where µ, ωn and ζ are the DC gain, the natural frequency and
the damping factor, respectively. The relation between these
parameters and the physical ones (Figure 1) is

ωn =

√
RL + rd

LC(Rc + rd)

ζ =
ωn

2

[
L

RL + rd
+ CRc + C(RL//rd)

]
µ =

−Vbatrd
RL + rd

where Vbat is the nominal battery voltage. From (7), the
Observable Canonical Form (OCF) SS model can be obtained:

ẋ =

[
−2ζωn 1
−ω2

n 0

]
x+

[
0
µω2

n

]
d̃

ṽpv =
[
1 0

]
x

(8)

According to the time-domain expression of the step re-
sponse of a second-order transfer function [1], the settling time
can be expressed as

Tε ' −
1

ζωn
· ln
(ε

2

)
(9)

Then, the SS Model, parametrized by the Tε, ωn and µ ,
becomes:

ẋ = f(x, u, θ) = Ac x+Bc u =

2 ln( ε2 )Tε
1

−ω2
n 0

x+

[
0
µω2

n

]
u

y = g(x, u, θ) = Cc x+Dc u =
[
1 0

]
x

(10)
where the matrices Ac, Bc, Cc and Dc are the continuous time
matrices of the SS model. The input, the output, the states and
the parameters of this model are:

x =

[
x1
x2

]
=

[
ṽpv(t)∫ (

µ ω2
n d̃(t)− ω2

n ṽpv(t)
)
dt

]

u = d̃(t) y = ṽpv(t) θ =

Tεωn
µ


where d̃ and ṽpv are the perturbation superimposed to the
nominal duty-cycle and the corresponding panel voltage vari-
ation, respectively. The continuous time model achieved in
(10) has to be discretized in order to apply the DKF. A
good accuracy and a low complexity of the discrete model
are necessary in order to achieve good identification results
without increasing the execution time. Excellent accuracy is
obtained by using implicit discretization methods. However,
a complex discrete model is achieved causing a significant
increase of the execution time. For this reason, the attention
has been focused on the explicit approach, in particular on the
explicit midpoint method.

Thus, the states and the output prediction in the DKF
becomes:

x̂ (k| k − 1) =f
(
x̂ (k − 1| k − 1) , u(k − 1), θ̂ (k| k − 1)

)
= Â(k) x̂ (k − 1| k − 1) + B̂(k) u(k − 1)

ŷ (k) = Ĉ(k) x̂ (k| k − 1) + D̂(k) u(k − 1)

(11)

where:

Â = I + Ts · Âc +
T 2
s

2
· Â2

c

B̂ = Ts · B̂c +
T 2
s

2
· Âc B̂c

Ĉ = Ĉc

D̂ = D̂c

IV. SYSTEM SPECIFICATIONS

The synoptic of the whole PV system, including the FPGA
control unit where the DKF-based adaptive MPPT is imple-
mented, is shown in Figure 2. It consists of a Kyocera KC120-
1 PV module characterized by an open circuit voltage and a
short circuit current equal to 21.5 V and 7.45 A, respectively. It
is connected to a boost dc/dc power converter, which nominal
parameters are summarized in Table II. The output of the
converter is linked to a 36 V battery pack. The PV current and
PV voltage are acquired by means of two Analog to Digital
Converters (ADCs) with resolution equal to 40.4 mV and 20
mA, respectively. The sampling frequency is fixed equal to
the switching frequency in order to filter the ripple component
affecting the measurement signals. The whole PV system is
controlled through a low-cost Spartan-6 FPGA hosting both
the MPPT algorithm and the DKF. Real-time transfer of data
between the FPGA board and a host computer is ensured by
a USB-JTAG interface.

ipv[k]

ADC Interface

DC/DC
Converter

ADC Board

P&O
Method

DPWM

DAC Interface

FPGA Control Unit
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vbat
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Figure 2. Synoptic of the adaptive MPPT algorithm based on a DKF and
intended for PV applications

The PRBS signal is chosen according to [6]. It has a
length M equal to 1023, an amplitude of 0.03125 and an
injection frequency equal to the converter switching frequency
(195 kHz). Finally, the P&O algorithm and the DPWM
module are designed according to [14].
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Table II
COMPONENTS NOMINAL VALUES

Parameter Absolute Value
Input inductance L 115 µH
Equivalent loss resistance RL 100 mΩ
Input Capacitance C 50 µF
Capacitor ESR Rin 10 mΩ
Converter switching frequency fs 195 kHz

V. ALGORITHM DEVELOPMENT

The DKF is now validated. In order to prepare its digital im-
plementation, the whole adaptive MPPT algorithm is divided
into modules easier to implement. Then, the normalization
and the quantization of the algorithm are performed. Some
algorithm optimizations are carried out and the procedure for
calculating the settling time is presented. Finally, the flowchart
of the whole adaptive MPPT algorithm is shown.

A. Modular Partitioning

The modular partitioning is a fundamental step to reduce the
time-to-market and to achieve a more flexible and hierarchical
architecture. The designer has to be able to divide the whole
adaptive MPPT algorithm into reusable, independent and sim-
pler sub-algorithms, called modules. Figure 3 shows the five
hierarchy levels determined for the developed adaptive MPPT
algorithm based on DKF.

Logic Operators
Logic Gate, Register, Comparator, 

Shift, Multiplexer

Arithmetic Operators

Adder, Subtractor, Multiplier, 
Divider

State Prediction State UpdateParameter Update

PWM Module PRBS Generator

ADC Interface

P&O
Module

DKF
Module

Adaptive MPPT
Algorithm

L
e
v
e
l
 
1

Pθ CalculationPx Calculation

Lx Calculation Lθ Calculation Cθ Calculation
L
e
v
e
l
 
2

L
e
v
e
l
 
3

L
e
v
e
l
 
4

L
e
v
e
l
 
5

Figure 3. Modular Partitioning of the Adaptive MPPT Controller Based on
DKF

The lowest level is composed of both arithmetic and logic
operators, which can be considered as fine-grain operators [8].
The second level contains the indispensable module for imple-
menting the DKF (KG calculation, SJM and PJM calculation,
covariance matrix calculation), as well as the interface module
(ADC interface). At the third level of hierarchy the modules
dedicated to the control of the converter (PWM module),
the modules concerning the DKF algorithm (state prediction,
state update and parameter update modules) and the PRBS
generator can be found. The fourth level consists of coarse-
grain modules, i.e. the P&O module and the DKF module.
Finally, the whole adaptive MPPT controller is placed into the
highest level.

B. Algorithm Digital Realization

The aim of this step is to prepare the developed identifica-
tion algorithm for the implementation in the FPGA device.
It consists of two main steps: the normalization and the
quantization.

1) Algorithm Normalization: the aim of the normalization
is to facilitate the use of the fixed-point representation for
encoding the variables of the algorithm. To this purpose, each
variable ϕ is divided by its base-value ϕB , obtaining the
corresponding per-unit counterpart ϕn, as shown in (12).

ϕn =
ϕ

ϕB
(12)

The base-values depend on the nominal value of the vari-
ables and the ADC resolution. The defined main base-values
are: vpv,B for the panel voltage, eB for the PRBS sequence,
xk,B for the estimated states, θk,B for the estimated parameters
and the internal variables of the DKF. Their values are given
in Table III.

Table III
BASE-VALUES OF THE MAIN ALGORITHM VARIABLES.

Panel Voltage PRBS sequence
vpv,B = 21.5V eB = 0.03125

DKF States
x1,B = 2.5 V ; x2,B = 35000 rad2V/s

DKF Parameters
fε,B = 5000 Hz ; wn,B = 20000 rad/s ; µB = 50 V

2) Algorithm Quantization: during this step the fixed point
data format is chosen. The identification accuracy, the filter
convergence and the identification time are strongly related
to this choice. Normally, the fixed-point representation can be
expressed using the label s[wQf] for signed data and u[wQf]
for unsigned data, where w and f are the number of bits of the
word and the number of bits of the fractional part, respectively.
After having made several simulations the chosen data formats
are: s[42Q40] for the DKF, s[12Q11] for the MPPT algorithm
and u[10Q9] for the DPWM.

C. Algorithm Optimization

Table IV gives a first evaluation of the DKF complexity de-
veloped till now. In order to reduce the algorithm complexity,
the designer can operate either at the model selection stage or
during the algorithm realization step.

Table IV
NUMBER OF OPERATIONS OF THE PROPOSED DKF ALGORITHM

Kalman Filter Modules + - ∗ ÷

STATE PREDICTION 10 0 20 4

STATE INNOVATION 25 5 90 6

PARAMETER INNOVATION 56 29 215 10

TOTAL 91 34 325 20

On one hand, an accurate choice of the parameters to be
identified has to be made in order to obtain the required
information by using a less complex system model. For the



1551-3203 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2015.2462313, IEEE Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

application under study, a complexity reduction can be reached
estimating instead of the settling time Tε its inverse fε that will
be called ”settling frequency”. This allows avoiding divisions
in the SS model (10). Its base-value is given in Table III.

On the other hand, a good choice of the base-values allows
an important reduction of the number of multiplications. In the
DKF, it is possible to choose the base-values of the internal
variable as power of two. Thus, when a product due to the
normalization has to be carried out, this becomes a simple
shift operation.

Applying these optimizations to the DKF algorithm the
complexity is significantly reduced, as shown in Table V.

Table V
POST-EVALUATION OF THE KF ALGORITHM COMPLEXITY

Kalman Filter Modules + - ∗ ÷

STATE PREDICTION 10 0 24 0

STATE INNOVATION 25 5 51 2

PARAMETER INNOVATION 56 29 137 3

TOTAL 91 34 212 5

With the optimized DKF the fε is estimated. Thus, in order
to evaluate an overestimated settling time, the equation in (13)
is adopted.

Tε =
1

f̂ε − σfε
(13)

where σfε is the settling frequency standard deviation. In
order to reduce the computational burden, the σfε has been
replaced by an overestimation of it given by the imposed
error in the convergence criterion (5). This guarantees an
additional security margin to the calculation of the MPPT
period in comparison to the adaptive controller proposed in
[6]. Besides, it is worth mentioning that the computation of
the ratio given in (13) does not require an additional divisor
since this computation, taking place after the DKF estimation,
can use one of the divisor of this IP.

Figure 4 shows the flowchart of the whole adaptive MPPT
algorithm implemented in the FPGA. At the beginning, the
MPPT is running with a non-optimized perturbation period.
When the identification procedure is activated and as soon as
the steady-state is reached, the MPPT algorithm is stopped
and the recursive DKF identification technique is launched.
Within the interval between two successive PRBS sample
injections, different steps have to be executed. Firstly, the
evaluation of the prediction of both states and parameters is
carried out. After that, the updating step is made by using the
difference between the actual panel voltage and the predicted
panel voltage. Finally, the DKF convergence is evaluated
according to the previously proposed convergence criterion.
If the convergence is reached, the identification procedure,
as well as the PRBS injection, are stopped and the MPPT
is reactivated with a new optimized Tp equal to the new
estimation of Tε. When the identification is reactivated the
initial states and parameters are fixed equal to those obtained
during the last estimation.

Non-Optimized Tp

MPPT

Identification 
Activated?

Steady-State
Reached?

NO

NO

YES

YES

STOP MPPT

PRBS Injection
(one sample)

State & Parameter
Prediction

State & Parameter
Update

Filter 
Converged?

NO

YES

START

Tp=
1

fε - σfε

Figure 4. Flowchart of the whole adaptive MPPT algorithm implemented in
the FPGA.

VI. ALGORITHM VALIDATION

The model in Figure 1 has been simulated in Mat-
lab/Simulink. Due to the recursive formulation of the DKF,
the initialization of the filter is necessary. In (14), a reasonable
choice of the initial conditions of the filter is shown.

x0 =
[
0 0

]T
Px,0 =

[
1 1

0.01 10000

]

θ0 =
[
500 10000 −10

]T
Pθ,0 =


24 · 104 0 0

0 25 · 106 0

0 0 9 · 102


(14)

Moreover, a trial-and-error approach has been used for
tuning the filter [12]. The parameters in (15) have been adopted
during the simulation and experimental tests.

W =

[
3.145 · 10−7 3.125 · 10−8

3.125 · 10−8 3.125 · 10−11

]
R = 0.00025

V =


6.25 · 10−7 0 0

0 0.1 0

0 0 3.125 · 10−3


E = 0.8

(15)

Figure 5 shows the identified parameters obtained with the
nominal boost parameters presented in Table II and with a
differential resistance rd equal to 5 Ω.

The green curves in Figure 5 define the confidence interval
of the estimated parameter, which is equal to the estimated
parameter ± the corresponding standard deviation σ. The latter
corresponds to the square root of the variance given by the
error covariance matrix Pθ̂. The dotted red curves correspond
to the reference values of the small-signal model. As it can be
seen in Figure 5, the estimated values of the PV parameters
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Figure 5. Estimated parameters by the DKF by using Matlab/Simulink tool
with the nominal boost parameters presented in Table II and with a differential
resistance equal to 5 Ω: a) Estimated settling frequency b) Estimated natural
frequency c) Estimated DC gain.

tend to the actual ones.
Some simulations have been performed by changing the

parameters in the following ranges: C = [50, 80] µF , RC =
[10, 20] mΩ, L = [80, 115] µH , RL = [100, 200] mΩ, with
rd = 5 Ω. The results reveal that the method in [6] gives
an error in estimating the settling time that is in the range
[−12.7,+3.4]%, where its sign is not predictable. Thus an
underestimation as well as an overestimation of the settling
time can be obtained. Conversely, the DKF method proposed
in the manuscript gives an error in the range [+0.9,+2.9]%,
so that an overestimation of the settling time is always given.
This ensures that the DKF method prevents a poor behaviour
of the MPPT technique.

VII. ARCHITECTURE DEVELOPMENT

In order to better cope with the different application
constraints (modularity constraint, area constraint and time
constraint), the developed FPGA-based architecture has been
hand-coded. For such complex algorithms, the fulfilment of

all these constraints is a difficult challenge for designers. The
main steps to design an FPGA-based architecture are presented
below.

A. Peformance Evaluation

Firstly, an evaluation of the time/area performance of the
developed identification algorithm preserving the whole paral-
lelism is carried out. The aim is to verify if the corresponding
FPGA architecture satisfies all the constraints. If this is the
case, it is possible to go directly to the architecture design.
Otherwise, if the fully parallel architecture does not meet the
previous constraints, some architecture optimizations have to
be made, like in the studied case.

B. Architecture Optimization

In order to cope with the time constraint, a fully pipelined
architecture has been developed in order to increase the
maximum possible clock frequency to drive the architecture. It
consists in placing registers between operators in order to cut
the maximum delay path and then to decrease the propagation
delay. However, the corresponding architecture exhibits a
low maximum clock frequency (53 MHz), limited by the
multipliers, and requires a large amount of hardware resources.
In order to deal with these issues, pipelined multipliers have
been adopted and the Algorithm Architecture Adequation
(A3) methodology has been used [8]. In the following, both
optimizations are discussed.

1) Pipelined Multiplier: A pipelined multiplier with area
optimization strategy can be used in order to increase the
clock frequency and decrease the number of used DSP units.
However, the pipelining leads to increase the latency (number
of clock cycles). Therefore, a compromise between the maxi-
mum clock frequency and the latency has to be made. Several
multipliers with different pipeline levels have been tested.

50 100 150 200 250
0

500

1000

1500

2000

Maximum Clock Frequency [MHz]

L
U

T
s 

N
u

m
b

er

 

 

Divider
Multiplier
Pipeline Multiplier

PRs: 0 DSPs: 9

PRs: 3 DSPs: 4

PRs: 4 DSPs: 4

PRs: 9 DSPs: 4

PRs: 8 DSPs: 4

PRs: 7 DSPs: 4

PRs: 6 DSPs: 4

PRs: 5 DSPs: 4

Figure 6. Comparison between multipliers with different pipeline levels and
the divider in terms of maximum clock frequency, used DSP units and LUT
number.

Figure 6 shows the comparison between different multipliers
with different Pipeline Register (PR) number. Their maximum
clock frequency, Look Up Table (LUT) number and DSP
number are compared. The maximum clock frequency equal
to 190 MHz is imposed by the divider. Therefore, supposing
to work at least with a clock frequency equal to 100MHz,
the multiplier with 4 pipeline registers is chosen. With this
choice, a significant reduction of the required DSP blocks and
an increase of the clock frequency are achieved.
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2) Algorithm Architecture Adequation (A3): The aim
of this step is to deal with the area mismatching between
the available FPGA resources and the ones required by the
DKF algorithm. Being the heaviest operators in the proposed
algorithm, a factorization is applied to the dividers and the
multipliers. The A3 algorithm consists in three steps:
• Data Flow Graph (DFG) Design: the algorithm is repre-

sented through its corresponding graph.
• Data Dependency Evaluation: the data dependency is

evaluated and the best factorization level is determined
taking into account the limitation of the FPGA internal
resources.

• Factorized DFG Design: the factorized algorithm is rep-
resented through its corresponding factorized graph. In
order to delimit the factorized border some nodes have
to be introduced: Fork (F), Join (J) and Iterate (I) [8].

The factorization level is determined as described below.
In a XC6SLX45 Xilinx Spartan-6 FPGA 58 DSPs Slices are
available. Of the 5 dividers necessary to this design, 3 are used
in the state Kalman gain calculation and 2 in the parameter
Kalman gain calculation. Using only one divider for the both
Kalman filters will be too confusing. So, in order to preserve
the architecture modularity, two dividers have to be used in the
architecture, one for each KF. As a consequence only 26 DSPs
remain to implement all the requested multipliers. As each
multiplier is requiring 4 DSP units, at most 6 multipliers can
be implemented. According to the modularity constraint, they
are allocated in the following way: one in the State Prediction
module, two in the State Innovation module and three in the
Parameter Innovation module.

C. Architecture Design

It consists in developing the hardware architecture of each
modules. This architecture is constituted by a data path and a
control unit. The final data flow graph is obtained after having
factorized the initial data flow graph that included all the po-
tential parallelism of the targeted algorithm. Each factorization
node (F, J and I) is then replaced by its corresponding operator.
A multiplexer is used for implementing a fork and registers
with the adequate enable control signals in place of the join
and the iterative nodes. The control unit has to ensure the
proper synchronization between all the tasks of the process.

The state prediction architecture is shown in Figure 7, and
the whole DKF architecture is presented in Figure 8.

D. Time-Area Analysis

After synthesis, the execution time is determined by eval-
uating the latency number of each module. Table VI shows
the latency and the corresponding execution time of the ADC
block and the internal DKF modules.
Tclk,ADC is the clock of the ADC blocks, being equal to

12, 5 MHz. It is worth to note that the total execution time
is the sum of the ADC time, the State Prediction time and the
biggest time between the State Innovation and the Parameter
Innovation, since the latter two are executed in parallel. The
total DKF execution time is less than the used sampling period
(5 µs), thus the timing constraint is fulfilled.

Figure 7. Hardware FPGA Architecture : State Prediction Module.

Figure 8. Hardware FPGA Architecture : Dual Kalman Filter Module.

Table VI
EXECUTION TIME FOR THE DUAL KALMAN FILTER.

Latency Number Execution time
ADC Conversion tADC 16 Tclk,ADC 1,28 µs

State Prediction tSP NSP = 29 290 ns

State Innovation tSI NSI = 123 1,23 µs

Parameter Innovation tPI NPI = 192 1,92 µs

Ttot = tADC + tSP + tI 3,49 µs

On the other hand, the area analysis is carried out by the
synthesizer tool. Table VII shows the needed resources to
implement the proposed algorithm as well as the interface
hardware blocks. As can be seen, the area constraint is
fulfilled.
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Table VII
CONSUMED HARDWARE RESOURCES OF THE ADAPTIVE MPPT

CONTROLLER

Hardware Resource Available Consumed Percentage
Slice Registers 54576 20770 38 %

Slice LUTs 27288 15733 57 %

Occuped Slices 6822 6094 89 %

16-KByte RAM Blocks 116 99 85 %

DSP48A1s Slices 58 51 87 %

Hence, the implemented hardware architecture fulfils both
the area and the timing constraints, while preserving as well
the modular constraint.

VIII. EXPERIMENTAL TESTS

In this section the experimental validation of the proposed
adaptive MPPT algorithm based on the DKF is presented.
The experimental test bench has been described in Section
IV. The ChipScope tool is adopted for real-time transfer of
data in order to acquire the internal signals of the FPGA.
The whole algorithm is implemented in a Xilinx XC6SLX45
Spartan-6 FPGA device, with a 100 MHz clock frequency.

Figure 9 shows the identified settling frequency and the
corresponding confidence interval. According to the proposed
convergence criterion, two identification times have been
pointed out in Figure 9: the first one corresponds to the time
achieved by using an error bound equal to 15 %, whereas, the
second one by using an error bound equal to 12, 5 %. In these
two cases the DKF is converging in less than 15 ms. Once
the convergence is reached, the value of the identified settling
frequency and of the corresponding standard deviation are
used for evaluating the settling time as explained in section
V-C.
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Figure 9. Settling Frequency estimation with the corresponding confidence
interval.

The perturbation amplitude of the P&O MPPT has been
selected according to the guidelines shown in [1], so that its
value is equal to 0.03125. Figure 10(a) shows the behaviour
of the PV voltage and current when the perturbation period
Tp of the MPPT is equal to the settling time estimated by the
DKF algorithm adopting an error bound equal to 15 %. In this
condition, the system exhibits a stable steady-state behaviour.
This means that a proper value of Tp has been used. On
the contrary, a different Tp value can deteriorate the MPPT

performance. Indeed, as shown in Figure 10(b), choosing a
value of Tp smaller than the estimated one makes the PV
voltage and the PV current oscillating with an unpredictable
behaviour, deteriorating the MPPT efficiency. Conversely, a
bigger value slows down the MPPT controller as already
mentioned in the Introduction.

Voltage

Current

(a)

Voltage

Current

(b)

Figure 10. MPPT behaviour by using C = 50µF: (a) Tp = Tp,min =
940µs, (b) Tp = 500µs.

These tests confirm the effectiveness of the proposed adap-
tive MPPT method. Besides, the estimated parameters can also
be used for diagnosis or monitoring purposes.

IX. CONCLUSIONS

An FPGA-based adaptive MPPT controller for PV appli-
cations based on DKF has been presented in this paper.
The developed adaptive controller allows optimizing the per-
turbation period of the P&O algorithm during the normal
operation of the system. In comparison to the non parametric
identification technique presented in [6] the DKF supplies not
only the parameter values but also their confidence intervals.
These quantities allow avoiding any underestimation of the
settling time. Moreover, this additional information can be
advantageously used for monitoring and diagnosis purposes.

In order to cope with the different and conflicting re-
quirements, a proper design methodology has been adopted
and several optimizations, both on the algorithm and on the
architecture, have been made. Both the timing requirement and
the area constraint have been fulfilled and the experimental
results confirm the interest of the implemented adaptive MPPT
controller.
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