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Randomized dual proximal gradient
for large-scale distributed optimization

Ivano Notarnicola and Giuseppe Notarstefano

Abstract— In this paper we consider distributed optimization
problems in which the cost function is separable (i.e., a sum of
possibly non-smooth functions all sharing a common variable)
and can be split into a strongly convex term and a convex
one. The second term is typically used to encode constraints
or to regularize the solution. We propose an asynchronous,
distributed optimization algorithm over an undirected topology,
based on a proximal gradient update on the dual problem. We
show that by means of a proper choice of primal variables, the
dual problem is separable and the dual variables can be stacked
into separate blocks. This allows us to show that a distributed
gossip update can be obtained by means of a randomized block-
coordinate proximal gradient on the dual function.

I. INTRODUCTION

Several estimation, learning, decision and control prob-
lems arising in cyber-physical networks involve the dis-
tributed solution of a constrained optimization problem. Typ-
ically, computing processors have only a partial knowledge
of the problem (e.g. a portion of the cost function or a subset
of constraints) and need to cooperate to compute a global
solution of the whole problem. A key challenge to take into
account when designing distributed optimization algorithms
in peer-to-peer networks is that the communication is time-
varying and possibly asynchronous, see, e.g., [1] for a review.

Early references on distributed optimization algorithms
involved primal and dual subgradient methods and Alter-
nating Direction Method of Multipliers (ADMM), designed
for synchronous communication protocols over fixed graphs.
More recently time-varying versions of these algorithmic
ideas have been proposed to cope with more realistic peer-
to-peer network scenarios. A Newton-Raphson consensus
strategy is proposed in [2] to solve unconstrained, convex
optimization problems under asynchronous, symmetric gos-
sip communications. In [3] the authors propose accelerated
distributed gradient methods for unconstrained problems over
symmetric, time-varying networks connected on average. In
order to deal with (time-varying) directed graphs, in [4] a
push-sum algorithm for average consensus is combined with
a primal subgradient method. Paper [5] extends these meth-
ods to online distributed optimization. In [6] a novel class
of continuous-time, gradient-based distributed algorithms is
proposed. A distributed (primal) proximal-gradient method is
proposed in [7] for separable optimization problems which
can handle only a common constraint. To solve constrained
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convex optimization problems, in [8] a distributed random
projection algorithm is proposed for a balanced time-varying
graph.

In [9] a novel asynchronous ADMM-based distributed
method is proposed for separable, constrained convex opti-
mization problem. In [10] the author proposes (primal) ran-
domized block-coordinate descent methods for minimizing
multi-agent convex optimization problems with linearly cou-
pled constraints over networks. A combination of successive
approximations and block-coordinate updates is proposed in
[11] to solve separable, non-convex optimization problems
in a big-data setting. Another class of algorithms exploits
the exchange of active constraints among the nodes to solve
general constrained convex programs [12]. The constraint
exchange idea has been combined with dual decomposition
and cutting-plane methods to solve robust convex optimiza-
tion problems via polyhedral approximations [13]. These
algorithms work under asynchronous, directed and unreliable
communication.

It is worth noting that the algorithm in [10] uses a
coordinate-descent idea similar to the one we use in this
paper, but it works directly on the primal problem. Similarly,
in [7] the proximal operator is used to handle the sparsity
constraints directly on the primal problem, so that local
constraints cannot be simultaneously taken into account.
Indeed, in this paper we propose a dual approach to handle
both. The optimization set-up in [9] is similar to the one
considered in this paper. Differently from our approach,
which is a dual method, a primal-dual algorithm is proposed
in this reference. This difference results in different algorithm
as well as different requirements on the cost functions.

The contribution of the paper is twofold. First, for a
fixed graph topology, we develop a distributed optimization
algorithm (based on a centralized dual proximal gradient idea
introduced in Beck [14]) to minimize a separable strongly
convex cost function. The proposed distributed algorithm
is based on a proper choice of primal constraints (suitably
separating the graph-induced and node-local constraints), that
gives rise to a dual problem with a separable structure when
expressed in terms of local conjugate functions. Thus, a
proximal gradient applied to such a dual problem turns out
to be a distributed algorithm where each node updates: (i) its
primal variable through a local minimization and (ii) its dual
variables through a suitable local proximal gradient step. The
algorithm inherits the convergence properties of the central-
ized one and thus exhibits an O(1/t) rate of convergence
in objective value. We point out that the algorithm can be
easily accelerated through a Nesterov’s scheme, [15], thus



obtaining an O(1/t2) rate.
Second, we propose an asynchronous version of this

algorithm for a symmetric gossip communication protocol. In
this event-triggered communication set-up, a node is in idle
mode until its local timer triggers. When in idle, it collects
messages from neighboring nodes that are awake and may
send information if required. When the local timer triggers,
it updates its local (primal and dual) variables and broadcasts
them to neighboring nodes. Under mild assumptions on the
local triggering timers, the whole algorithm results into a ran-
dom choice of one active node per iteration. Convergence is
proven by showing that the distributed algorithm corresponds
to a block-coordinate proximal gradient, as the one proposed
in [16], performed on the dual problem. An important feature
of the distributed algorithm is that each node can use its own
local step-size, based on the Lipschitz constant of its and its
neighbors’ local cost functions. A key distinctive feature of
the algorithm analysis is the combination of duality theory,
coordinate-descent methods and properties of the proximal
operator when applied to conjugate functions.

The paper is organized as follows. In Section II we set-up
the optimization problem and the network model. In Sec-
tion III we introduce and analyze a distributed dual proximal
gradient algorithm for fixed communication graphs, while
in Section IV we extend the algorithm to an asynchronous
scenario. In Section V we show through a numerical example
the convergence properties of the asynchronous algorithm.

Due to space constrains all proofs are omitted in this paper
and will be provided in a forthcoming document.

Notation: Given a closed, nonempty convex set X , the
indicator function of X is defined as IX(x) = 0 if x 2 X

and IX(x) = +1 otherwise. Let f : Rd ! R [ {+1},
its conjugate function f

⇤ : Rd ! R is defined as f
⇤(y) :=

supx
�
y
T
x� f(x)

 
. Let f : Rd ! R [ {+1} be a closed

proper convex function and ↵ a positive scalar, the proximal
operator prox↵f : Rd ! Rd is defined by prox↵f (v) :=
argminx

�
f(x) + 1

2↵kx� vk2
 

.

II. PROBLEM SET-UP AND NETWORK MODEL

We consider the following optimization problem

min
x

nX

i=1

fi(x) + gi(x),

where fi : Rd ! R[ {+1} are proper, closed and strongly
convex extended real-valued functions with strong convexity
parameter �i > 0 and gi : Rd ! R [ {+1} are proper,
closed and convex extended real-valued functions. The next
assumption is standard and will guarantee that the dual
problem is feasible and equivalent to the primal one (strong
duality).

Assumption 2.1 (Constraint qualification): The intersec-
tion of the relative interior of dom

Pn
i=1 fi and the relative

interior of dom
Pn

i=1 gi is non-empty. ⇤

Notice that a convex constrained optimization problem

min
x

nX

i=1

fi(x)

subj. to x 2
n\

i=1

Xi ✓ Rd
.

where Xi are convex set, can be modeled in our framework
by setting gi(x) = IXi(x).

We want this optimization problem to be solved by a
network of processors in a distributed way, i.e., by a set of
peer processors communicating asynchronously and without
the presence of a central coordinator.

Formally, we consider a network of nodes {1, . . . , n} com-
municating according to an asynchronous broadcast protocol.
Each node has its own concept of time defined by a local
timer that randomly and independently of the other nodes
triggers when to awake itself. Between two triggering events
the node is in an idle mode, i.e., it can receive messages
from neighboring nodes. When a trigger occurs, it switches
into an awake mode in which it updates its local variables
and transmits the updated information to its neighbors.

We assume that the asynchronous communication occurs
among nodes that are neighbors in a given fixed, undirected
and connected graph G = ({1, . . . , n}, E), where E ✓
{1, . . . , n}⇥{1, . . . , n} is the set of edges. That is, the edge
(i, j) models the fact that node i can receive (respectively
send) information from (to) node j when in idle (awake)
mode. We denote by Ni the set of neighbors of node i in
the fixed graph G, i.e., Ni := {j 2 {1, . . . , n} | (i, j) 2 E},
and by |Ni| its cardinality.

We make the following assumption on the local timers.
Assumption 2.2 (Exponential i.i.d. local timers):

The waiting times between consecutive triggering events,
Ti, i 2 {1, . . . , n}, are exponential i.i.d. random variables.⇤
Let it 2 {1, . . . , n}, t = 1, 2, . . . be the sequence identifying
the generic t-th triggered node. Assumption 2.2 implies that
it is an i.i.d. uniform process on the alphabet {1, . . . , n}.
Each triggering will induce an iteration of the distributed
optimization algorithm, so that t will be a universal, discrete
time indicating the t-th iteration of the algorithm itself.

To exploit the sparsity of the underlying graph, we intro-
duce copies of x and a coherence consensus constraint, so
that the optimization problem can be equivalently written as

min
x1,...,xn

nX

i=1

fi(xi) + gi(xi)

subj. to xi = xj 8 (i, j) 2 E
(1)

with xi 2 Rd for all i 2 {1, . . . , n}. The connectedness of
G guarantees the equivalence.

III. ALGORITHM FOR FIXED COMMUNICATION GRAPH

In this section we derive and analyze a distributed dual
proximal gradient algorithm for a fixed graph.



A. Dual problem derivation

We derive the dual version of the problem that will allow
us to design our distributed dual proximal gradient algorithm.
To obtain the desired separable structure of the dual problem,
we set-up an equivalent formulation of problem (1) by adding
a new set of slack variables zi, i 2 {1, . . . , n}, i.e.,

min
x1,...,xn
z1,...,zn

nX

i=1

fi(xi) + gi(zi)

subj. to xi = xj 8 (i, j) 2 E
xi = zi 8 i 2 {1, . . . , n}.

(2)

Let x = [xT
1 . . . x

T
n ]

T and z = [zT1 . . . z
T
n ]

T , the La-
grangian of the primal problem (2) is given by

L(x, z,⇤, µ) =
nX

i=1

✓
fi(xi) + gi(zi)

+
X

j2Ni

⇣
�
j
i

⌘T
(xi � xj) + µ

T
i (xi � zi)

◆

=
nX

i=1

✓
fi(xi) +

X

j2Ni

⇣
�
j
i

⌘T
(xi � xj) + µ

T
i xi

+ gi(zi)� µ
T
i zi

◆
,

where ⇤ and µ are respectively the vectors of the Lagrange
multipliers �ji , (i, j) 2 E , and µi, i 2 {1, . . . , n}, and in the
last line we have separated the terms in x and z. Since G is
undirected, the Lagrangian can be equivalently rewritten as

L(x, z,⇤, µ) =
nX

i=1

✓
fi(xi) + x

T
i

✓ X

j2Ni

(�ji � �
i
j) + µi

◆

+ gi(zi)� z
T
i µi

◆

where �ji , j 2 Ni and µi are variables handled by node i

(consistently �ij is handled by node j neighbor of node i).
The dual function is

q(⇤, µ) := min
x,z

L(x, z,⇤, µ)

= min
x

nX

i=1

✓
fi(xi) + x

T
i

✓ X

j2Ni

(�ji � �
i
j) + µi

◆◆

+min
z

nX

i=1

⇣
gi(zi)� z

T
i µi

⌘

=
nX

i=1

min
xi

✓
fi(xi) + x

T
i

✓ X

j2Ni

(�ji � �
i
j) + µi

◆◆

+
nX

i=1

min
zi

⇣
gi(zi)� z

T
i µi

⌘

where we have used the separability of the Lagrangian with
respect to each xi and each zi. Then, by using the definition
of conjugate function, the dual function can be rewritten as

q(⇤, µ) =
nX

i=1

✓
� f

⇤
i

✓
�

X

j2Ni

(�ji � �
i
j)� µi

◆
� g

⇤
i (µi)

◆
.

The dual problem of (2) consists of maximizing the dual
function with respect to dual variables ⇤ and µ, i.e.,

max
⇤,µ

nX

i=1

✓
� f

⇤
i

✓
�

X

j2Ni

(�ji � �
i
j)� µi

◆
� g

⇤
i (µi)

◆
. (3)

By Assumption 2.1 the dual problem (3) is feasible and
strong duality holds, so that (3) can be solved to get a
solution of (2).

B. Distributed Dual Proximal Gradient Algorithm

To develop the algorithm, we start rewriting problem (3)
by using a more compact notation, and in the equivalent
minimization version. We stack the dual variables as y =
[yT1 . . . y

T
n ]

T , where

yi =


⇤i

µi

�
2 Rd|Ni|+d (4)

with ⇤i 2 Rd|Ni| a vector whose block-component associ-
ated to neighbor j is �ji 2 Rd. Thus, the dual problem can
be written as

min
y
�(y) = F

⇤(y) +G
⇤(y), (5)

where

F
⇤(y) :=

nX

i=1

f
⇤
i

⇣
�

X

j2Ni

(�ji � �
i
j)� µi

⌘

G
⇤(y) :=

nX

i=1

g
⇤
i

�
µi

�
.

The proposed distributed algorithm will be based on a
proximal gradient applied to the above formulation of the
dual problem. Next, we describe the local update of each
node i 2 {1, . . . , n} and then, in the next subsection, we
show its convergence properties.

Node i updates its local dual variables �ji , j 2 Ni, and µi

according to a local proximal gradient step, and its primal
variable x

?
i through a local minimization. The step-size of

the proximal gradient step is denoted by ↵. Then, the updated
primal and dual values are exchanged with the neighboring
nodes according to a synchronous communication over a
fixed undirected graph. The local dual variables at node i

are initialized as �ji0, j 2 Ni, and µi0. A pseudo-code of
the local update at each node of the distributed algorithm is
given in Algorithm 1.

Remark 3.1: In order to start the algorithm, a preliminary
communication step is needed in which each node i sends
to each neighbor j its �ji0. This step can be avoided if the
nodes agree to set �ji0 = 0. ⇤
C. Algorithm analysis

Lemma 3.2 ([17], [18]): Let ' be a closed, strictly con-
vex function and '⇤ its conjugate function. Then

r'⇤(y)=argmax
x

�
y
T
x�'(x)

 
=argmin

x

�
'(x)�y

T
x
 
.

Moreover, if ' is strongly convex with convexity parameter
�, then r'⇤ is Lipschitz continuous with Lipschitz constant
given by 1

� . ⇤



Algorithm 1 Distributed Dual Proximal Gradient

Processor states: x?
i , �ji for all j 2 Ni and µi

Initialization: �ji (0) = �
j
i0 for all j 2 Ni, µi(0) = µi0

x?
i (0) = argminxi

n
xT
i

⇣P
j2Ni

�
�j
i0 � �i

j0

�
+µi0

⌘
+fi(xi)

o

Evolution:
FOR: t = 1, 2, . . .
receive x

?
j (t� 1) for each j 2 Ni

update

�
j
i (t) = �

j
i (t� 1) + ↵

⇥
x
?
i (t� 1)� x

?
j (t� 1)

⇤

update

µ̃i = µi(t� 1) + ↵ x
?
i (t� 1)

µi(t) = prox↵g⇤
i

�
µ̃i

�
= µ̃i � ↵ prox 1

↵ gi

✓
µ̃i

↵

◆

receive �ij(t) for each j 2 Ni
update

x?
i (t) = argmin

xi

⇢
xT
i

✓ X

j2Ni

⇣
�j
i (t)� �i

j(t)
⌘
+µi(t)

◆
+fi(xi)

�

Lemma 3.3 (Moreau decomposition, [19]): Let f : Rd !
R [{+1} be a closed, strictly convex function and f

⇤ its
conjugate, then 8x 2 Rd, x = proxf (x) + proxf⇤(x). ⇤

Lemma 3.4 (Extended Moreau decomposition): Let ' :
Rd ! R [ {+1} be a closed, strictly convex function and
'
⇤ its conjugate. Then for any x 2 Rd and ↵ > 0, it holds

x = prox↵' {x}+ ↵prox 1
↵'⇤

�
x
↵

 
.

Lemma 3.5: Let y = [yT1 . . . y
T
n ]

T 2 Rn(D+d) where
yi = [⇤T

i µ
T
i ]

T with ⇤i 2 RD and µi 2 Rd, i 2 {1, . . . , n}.
Let G

⇤(y) =
Pn

i=1 g
⇤
i (µi), then the proximal operator of

↵G
⇤ evaluated at y is given by

prox↵G⇤
�
y
�
=

2

666664

⇤1

prox↵g⇤
1
(µ1)

...
⇤n

prox↵g⇤
n
(µn)

3

777775
.

⇤
Theorem 3.6: For each i 2 {1, . . . , n}, let fi be a proper,

closed, strongly convex extended real-valued function with
strong convexity parameter �i > 0, and let gi be a proper,
convex extended real-valued function. Let y

? be the mini-
mizer of (5). Suppose that in Algorithm 1 the step-size ↵ is
chosen such that 0 < ↵  1Pn

i=1
1
�i

. Then the sequence

y(t) = [y1(t)T . . . yn(t)T ]T generated by the Distributed
Dual Proximal Gradient (Algorithm 1) converges to y

? and
in objective value satisfies

�(y(t))� �(y?) 

⇣Pn
i=1

1
�i

⌘
ky0 � y

?k2

2t
,

where y0 = [y1(0)T . . . yn(0)T ]T is the initial condition.

Remark 3.7 (Nesterov’s acceleration): We can include a
Nesterov’s extrapolation step in the algorithm, which ac-
celerates the algorithm ([15] for further details), attaining
a faster O(1/t2) convergence rate in objective value. ⇤

IV. ASYNCHRONOUS DISTRIBUTED DUAL PROXIMAL
GRADIENT

In this section we present an asynchronous distributed dual
proximal gradient and prove its convergence in probability.

We start by describing the local evolution at each node i 2
{1, . . . , n}. First, recall from the network model introduced
in Section II that a node can be into two different modes:
when in idle it continuously listens to incoming messages
from its neighbors (and, if needed, may send them auxiliary
information back), while when in awake it updates its local
variables and transmits them to its neighbors. The transition
between modes is asynchronously ruled via local timers,
⌧i 2 R, i 2 {1, . . . , n} (they are assumed to have infinite
precision). As from Assumption 2.2, timers trigger according
to n exponential i.i.d. random variables Ti, i 2 {1, . . . , n}.
In the algorithm we make a slight abuse of notation denoting
by Ti the realization of the random variables Ti.

Each node i updates its local dual variables �ji , j 2 Ni and
µi by a local proximal gradient step, and its primal variable
x
?
i through a local minimization. Each node uses a properly

chosen, local step-size ↵i for the proximal gradient step.

Algorithm 2 Asynchronous Distributed Dual Proximal Gradient

Processor states: x?
i , �ji for all j 2 Ni and µi

Initialization: �ji = �
j
i0 for all j 2 Ni, µi = µi0 and

x?
i (0) = argminxi

n
xT
i

⇣P
j2Ni

�
�j
i0 � �i

j0

�
+µi0

⌘
+fi(xi)

o

set ⌧i = 0 and get Ti

Evolution:
IDLE:

WHILE ⌧i  Ti

receive x
?
j and/or �ij from each j 2 Ni

IF �ij is received THEN compute and broadcast

x?
i = argmin

xi

⇢
xT
i

✓ X

`2Ni

✓
�`
i � �i

`

◆
+ µi

◆
+ fi(xi)

�

AWAKE:
update and broadcast

�
j
i

+
= �

j
i + ↵i

�
x
?
i � x

?
j

�
, 8 j 2 Ni

update

µ̃i = µi + ↵i x
?
i

µ
+
i = prox↵ig⇤

i

�
µ̃i

�
= µ̃i � ↵i prox 1

↵i
gi

⇣
µ̃i

↵i

⌘

compute and broadcast

x?
i = argmin

xi

⇢
xT
i

✓ X

j2Ni

✓
�j
i

+ � �i
j

◆
+ µ+

i

◆
+ fi(xi)

�

set ⌧i = 0, get a new Ti and go to IDLE.



Remark 4.1: In order to set the step-size ↵i, node i needs
a preliminary communication step to receive the convexity
parameters from its neighbors. ⇤
From an external, global perspective, the described local
asynchronous updates result into an algorithmic evolution, in
which at each iteration only one node wakes up randomly,
uniformly and independently from previous iterations. This
follows from the memoryless property of the exponential
distribution. Thus, in this high-level view, we can consider
a universal (discrete) time-variable t, which counts the
iterations of the whole algorithm evolution. This variable will
be used in the statement of Theorem 4.2.

Theorem 4.2: For each i 2 {1, . . . , n}, let fi be a proper,
closed and strongly convex extended real-valued function
with strong convexity parameter �i > 0, and let gi be a
proper convex extended real-valued function. Let y? be the
minimizer of (5). Suppose that in Algorithm 2 each local
step-size ↵i is chosen such that 0 < ↵i  1

Li
with

Li =

s
1

�2
i

+
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
.

Then the sequence y(t) = [y1(t)T . . . yn(t)T ]T generated
by the Asynchronous Distributed Dual Proximal Gradient
(Algorithm 2) converges in probability to y

?, i.e., for any " 2�
0,�(y0)

�
, where y0 = [y1(0)T . . . yn(0)T ]T is the initial

condition, and target confidence 0 < ⇢ < 1, there exists
t̄(", ⇢) > 0 such that for all t � t̄ it holds

P
⇣
�(y(t))� �(y?)  "

⌘
� 1� ⇢.

V. SIMULATIONS

In this section we provide a numerical example showing
the effectiveness of the proposed Asynchronous Distributed
Dual Proximal Gradient.

We consider an undirected connected Erdős-Rényi graph
G with parameter 0.2, connecting n = 15 nodes. We
assume each decision variable xi 2 R2, i 2 {1, . . . , n}. Let
each local objective function fi be quadratic and randomly
generated as

fi(xi) = x
T
i Qixi + r

T
i xi

where Qi 2 R2⇥2 is diagonal with diagonal elements
uniformly distributed in [1, 2] and ri 2 R2 has elements
uniformly randomly distributed in [�5, 5]. We let each gi be
the indicator function of a convex polytope Xi = {xi 2 R2 |
a
T
i xi  bi}, with components of ai generated uniformly in

[ 0, 10] and components of bi in [�5, 5]. We initialize to zero
the dual variables �ji , j 2 Ni, and µi for all i 2 {1, . . . , n},
and use a constant step-size ↵i = 1 for all nodes.

Figure 1 shows the convergence of the primal (and dual)
cost to the optimal centralized value. We recall that the
primal cost is ��(y(t)), with �(y(t)) being the dual cost
in the minimization version (5). In Figure 2 we plot the
behavior of the first component of primal variables x

?
i (t).

The horizontal dotted-line is the optimal primal solution.
In the inset the first iterations for five selected nodes, x

?
i ,

i = 1, 5, 6, 7, 13, are highlighted, in order to better show
the transient, piece-wise constant behavior due to the gossip
update.
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Then we show the evolution of the dual variables. First,
note that µi is associated to the local constraint Xi of xi.
We obtain that only µ13, the multiplier relative to the only
active constraint, converges to a nonzero value, whereas all
the other µis, associated to the inactive constraints, converge
to 0. In Figure 3 the first component of µ13 is plotted.

Finally, we plot the evolution of �ji , j 2 Ni, for node
i = 5 (with Ni = {3, 6, 10, 12, 14}), see Figure 4 for the first
component. As expected the multipliers converge to nonzero
values representing the “price” needed to enforce equality
constraints on the primal variables xi and xj .
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VI. CONCLUSIONS

In this paper we have proposed an asynchronous, dis-
tributed optimization algorithm, based on a block-coordinate
dual proximal gradient method to solve separable, con-
strained optimization problems. The main idea is to construct
a suitable, separable dual problem via a proper choice of
primal constraints. Then, the dual problem is solved through
a proximal gradient algorithm. Thanks to the separable struc-
ture of the dual problem in terms of local conjugate func-
tions, the proximal gradient update results into a distributed
algorithm, where each node performs a local minimization on
its primal variable, and a local proximal gradient update on
its dual variables. An asynchronous version of the distributed
algorithm is obtained by exploiting a randomized, block-
coordinate descent approach.



APPENDIX

A. Randomized coordinate descent for composite functions

Consider the following optimization problem

min
y2RN

�(y) := �(y) + (y) (A.6)

where � : RN ! R and  : RN ! R [ {+1} are convex
functions.

We decompose the decision variable as y = [yT1 . . . y
T
n ]

T

and, consistently, we decompose the space RN into n

subspaces as follows. Let U 2 RN⇥N be a column per-
mutation of the N ⇥ N identity matrix and, further, let
U = [U1 U2 . . . Un] be a decomposition of U into n

submatrices, with Ui 2 RN⇥Ni and
P

i Ni = N . Thus, any
vector y 2 RN can be uniquely written as y =

P
i Uiyi and,

viceversa, yi = U
T
i y.

We let problem (A.6) satisfy the following assumptions.
Assumption A.1 (Smoothness of �): The gradient of �

is block coordinate-wise Lipschitz continuous with positive
constants L1, . . . , Ln. That is, for all y 2 RN and si 2 RNi

it holds

kri�(y + Uisi)�ri�(y)k  Liksik,

where ri�(y) is the i-th block component of r�(y). ⇤
Assumption A.2 (Separability of  ): The function  is

block-separable, i.e., it can be decomposed as  (y) =Pn
i=1  i(yi), with each  i : RNi ! R[{+1} a proper,

closed convex extended real-valued function. ⇤
Assumption A.3 (Feasibility): The set of minimizers of

problem (A.6) is non-empty. ⇤

Algorithm 3 UCDC
Initialization: y(0) = y0

for t = 0, 1, 2, . . . do
choose it 2 {1, . . . , n} with probability 1

n
compute

T
(it)

�
y(t)

�
= argmin

wit2RNit

n
Vit(y(t), wit)

o

where

Vit(y, sit) := rit�(y)
T
sit+

Lit

2
ksitk2+ it(yit+sit)

update y(t+ 1) = y(t) + UitT
(it)

�
y(t)

�

The convergence result for UCDC (Algorithm 3) is given
in [16, Theorem 5], here reported for completeness.

Theorem A.4 (Theorem 5, [16]): Let Assumptions A.1,
A.2 and A.3 hold. Then, for any " 2

⇣
0,�(y0) � �(y?)

⌘
,

there exists t̄(", ⇢) > 0 such that if y(t) is the random
sequence generated by UCDC applied to problem (A.6), then
for all t � t̄ it holds that

P
⇣
�(y(t))� �(y?)  "

⌘
� 1� ⇢,

where y
? is a minimizer of problem (A.6), y0 2 RN is the

initial condition and ⇢ 2 (0, 1) is the target confidence. ⇤
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