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Final-State Constrained Optimal Control via a Projection Operator Approach

Ivano Notarnicola1, Florian A. Bayer2, Giuseppe Notarstefano1, and Frank Allgöwer2

Abstract— In this paper we develop a numerical method to
solve nonlinear optimal control problems with final-state con-
straints. Specifically, we extend the PRojection Operator based
Netwon’s method for Trajectory Optimization (PRONTO),
which was proposed by Hauser for unconstrained optimal
control problems. While in the standard method final-state
constraints can be only approximately handled by means of
a terminal penalty, in this work we propose a methodology to
meet the constraints exactly. Moreover, our method guarantees
recursive feasibility of the final-state constraint. This is an ap-
pealing property especially in realtime applications in which one
would like to be able to stop the computation even if the desired
tolerance has not been reached, but still satisfy the constraints.
Following the same conceptual idea of PRONTO, the proposed
strategy is based on two main steps which (differently from
the standard scheme) preserve the feasibility of the final-state
constraints: (i) solve a quadratic approximation of the nonlinear
problem to find a descent direction, and (ii) get a (feasible)
trajectory by means of a feedback law (which turns out to be
a nonlinear projection operator). To find the (feasible) descent
direction we take advantage of final-state constrained Linear
Quadratic optimal control methods, while the second step is
performed by suitably designing a constrained version of the
trajectory tracking projection operator. The effectiveness of the
proposed strategy is tested on the optimal state transfer of an
inverted pendulum.

I. INTRODUCTION

Optimal control problems (OCPs) are an active field of
research in the controls community since they may arise in
many application areas as, e.g., Process Control, Robotics,
Aerospace and Automotive. Throughout the last decades,
many different approaches have been presented to solve these
problems. A possible classification of these methods has
been given in [1]: (i) Dynamic programming, (ii) Indirect
Methods, and (iii) Direct methods. While methods in the first
class solve the OCP by finding optimal input segments using
the Principle of Optimality (see, e.g., [2], or [3]), the ones in
the second area are based on solving the necessary conditions
for optimality using a (two-point) boundary value problem,
which can be solved by means of calculus of variations ([4],
[5]) or Pontryagin’s Maximum Principle ([6], [7]). The third
direction is the most investigated and simplifies the OCP

1Ivano Notarnicola and Giuseppe Notarstefano are with the
Department of Engineering, Università del Salento, Lecce, Italy,
name.lastname@unisalento.it
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by parameterizing the control. According to the way the
dynamics is handled, these methods are classified into fully
discretized (or collocation) methods (see, e.g., [8]) and direct
shooting methods, where the dynamics are included by some
integration scheme (see, e.g., [9]). A detailed overview over
Direct methods can, for example, be found in [10].

Of special interest for our paper is the PRojection Op-
erator based Newton method for Trajectory Optimization
(PRONTO) which was introduced in [11], see also [12]. In
contrast to many other approaches solving optimal control
problems, this method is able to guarantee feasibility of
the dynamics after each iteration of the underlying Newton
method using a “projection operator” defined by a feedback,
closed-loop system. According to the classification in [1] this
can be seen as a combination of shooting and collocation.

This method was designed to handle unconstrained op-
timal control problems (and extended to input-constrained
problems in [13]), considering final-state constraints only
approximately by means of a final penalty. Matching exactly
final-state constraints is of interest in many control applica-
tions. This is the case, for example, in the field of hybrid sys-
tems, that is, systems that consist of continuous and discrete
event dynamics (see, e.g., [14] and the references therein).
Discontinuous jumps of continuous states may occur when
the system state traverses a certain region of the state space.
This demands for an exact satisfaction of constraints on the
final state. Another field where this is of interest is the field
of Model Predictive Control (MPC) (see, e.g., [15] and the
references therein). In MPC, the system is controlled by
means of repeatedly solving a finite-horizon OCP. In many
approaches within MPC, convergence and stability can be
guaranteed if a certain terminal condition is satisfied. This
leads to the need of an algorithm being able to handle final
state constraints.

A first approach to solve the nonlinear transfer problem
was introduced in [16]. In there, the terminal constraint was
satisfied asymptotically by iteratively choosing a terminal
reference until the actual final state matches the target one.

The contribution of this paper is twofold. First, we intro-
duce a new projection operator, inspired by the one presented
in [12], such that not only the dynamics, but also the terminal
constraint is satisfied after each iteration of the optimization
algorithm. We reformulate the constrained projection as a
root-finding of an infinite dimensional functional, which can
be accomplished by means of a Newton root-finding in
Banach spaces. Then, based on this new projection oper-
ator, as main contribution we propose an optimal control
method solving final-state constrained problems which shows
recursive feasibility. The proposed algorithm consists of two



steps. First, a feasible descent direction is determined using
a quadratic approximation of the nonlinear problem. The
descent direction is chosen such that the mismatch on the
final state is zero. Second, the perturbed curve is projected on
the feasible manifold such that the dynamics and the terminal
constraint are satisfied.

An interesting feature of the proposed algorithm is that it
is amenable to realtime, fast MPC schemes. Indeed, in many
applications one may not be able to run the algorithm until
convergence is achieved with a desired tolerance. Due to a
reduced computation time it could be that a (much) shorter
number of iterations can be run. Since feasibility of both
the dynamics and the final state-constraint are guaranteed at
each iteration one can stop the computation and still get a
feasible trajectory.

The paper is organized as follows. In Section II we
introduce the problem setup and recall how to solve final-
state constrained linear quadratic optimal control problems.
PRONTO is introduced in Section III. Our new final-state
constrained PRONTO is presented in Section IV and a
numerical simulation for the optimal state-transfer of an
inverted pendulum is given in Section V.

Notation: Given a smooth vector field f(x, u), we
denote by fx(x̄, ū) its derivative with respect to x evaluated
at (x̄, ū), and, consistently, by fu its derivative with respect
to u. For the curve ⇠ = (x(·), u(·)), we introduce the
projections ⇡1 = [I 0] and ⇡2 = [0 I] such that x(·) = ⇡1⇠

and u(·) = ⇡2⇠. Given a functional G : X ! R, with X a
Banach space, and a point ⇠ 2 X , we denote by DG(⇠) the
first Fréchet derivative of G evaluated at ⇠, and, consistently,
by D

2G(⇠) its second Fréchet derivative, [17].

II. PROBLEM SETUP AND PRELIMINARIES

In this paper we consider a final-state constrained optimal
control problem. That is, we aim at finding a trajectory of a
dynamical system that minimizes a given objective functional
while satisfying an initial and a terminal constraint. Formally,
we consider the problem

minimize
(x(·),u(·))

Z T

0
`(x(⌧), u(⌧)) d⌧

subject to ẋ(t) = f(x(t), u(t))

x(0) = x0, x(T ) = xT ,

(1)

where ` : Rn⇥Rm ! R is the running cost, f : Rn⇥Rm !
Rn is the nonlinear vector field describing the control system,
and x0 2 Rn and xT 2 Rn are the initial and final fixed
states respectively. We assume ` and f to be C2 functions.
Notice that in the rest of the paper, for the sake of brevity,
we will omit the dimensions of the quantities when it will
be clear from the equations.

Before stating the main assumptions for problem (1), we
recall some notation that will be also useful in the rest of
the paper. Consider the Hamiltonian of (1) given by

H(x(t), p(t), u(t)) :=`(x(t), u(t))+p(t)Tf(x(t), u(t)), (2)

where p(·) is the costate. Then, for ⇠ = (x̄(·), ū(·)) define

q(⇠)·(⇣, ⇣) :=
Z T

0


z(⌧)
v(⌧)

�T
Hxx(⌧) Hxu(⌧)
Hux(⌧) Huu(⌧)

�
z(⌧)
v(⌧)

�
d⌧, (3)

where ⇣ = (z(·), v(·)) is a (state-input) curve representing a
variation from ⇠, while Hxx(t), Hxu(t) and Huu(t) denote
the appropriate second derivative of the H evaluated along
the extremal state-control-costate trajectory, e.g., Hxx(t) =
Hxx(x̄(t), p̄(t), ū(t)).

Given a dynamical system ẋ = f(x, u), x(0) = x0, we say
that a state-input curve ⇠ = (x̄(t), ū(t)) is a trajectory of the
system if it satisfies the dynamics, i.e., ˙̄x(t) = f(x̄(t), ū(t))
for all t 2 [0, T ] and x̄(0) = x0. We denote the (infinite-
dimensional) manifold of all system trajectories by T , so
that we write ⇠ 2 T .

Given a trajectory ⇠ = (x̄(t), ū(t)), we denote by T⇠T the
manifold of curves ⇣ = (z(·), v(·)) satisfying the linearized
dynamics

ż = fx(x̄(t), ū(t))z + fu(x̄(t), ū(t))v (4)

with z(0) = 0 and for v(·) 2 L2. We say that T⇠T is the
tangent space of the trajectory manifold at ⇠.

Assumption 2.1 (Linear controllability): The system ẋ =
f(x, u) is linearly controllable around any trajectory. That
is, for any (x̄(·), ū(·)) defined on [0, T ], the linearized
system (4) is controllable over [0, T ].

Assumption 2.2 (Second Order Sufficiency): Given a tra-
jectory ⇠ 2 T , the Hamiltonian H satisfies Huu(t) � r0I

for t 2 [0, T ] and some r0 > 0, and the quadratic functional
q is positive-definite1 on T⇠T . ⇤

Theorem 2.3 ([16, Theorem 2.1]): Let ⇠ = (x(·), u(·)) be
a stationary trajectory of (1) with corresponding costate
trajectory p(·). Suppose that Assumption 2.2 hold at ⇠. If
the system is linearly controllable around ⇠, then ⇠ is an
isolated local minimum of (1). ⇤

Remark 2.4: Assumption 2.1 not only is a sufficient con-
dition for the theorem above, but also guarantees that the
algorithm we propose will be solvable at each iteration. ⇤
A. Linear Quadratic (LQ) optimal state transfer problem

We start by considering a special version of problem (1)
in which the cost is quadratic and the dynamics is linear and
time-varying, i.e., we consider the problem

minimize
(x(·),u(·))

Z T

0
a(⌧)Tx(⌧) + b(⌧)Tu(⌧)

+
1

2


x(⌧)
u(⌧)

�T 
Q(⌧) S(⌧)
S(⌧)T R(⌧)

� 
x(⌧)
u(⌧)

�
d⌧

subject to ẋ = A(t)x+B(t)u, x(0) = x0, x(T ) = xT ,

(5)

where we assume that a(·) and b(·) are piecewise continuous
vectors, and A(·), B(·), Q(·) = Q(·)T , R(·) = R(·)T , and
S(·) are piecewise continuous matrices with R(t) � r0I ,
t 2 [0, T ], for some r0 > 0.

1See, e.g., [17] for the definition of positive definite functional.



Remark 2.5: Problem (5) can be obtained as the linear-
quadratic approximation of problem (1). In particular, A(·)
and B(·) result from the linearization of the nonlinear
dynamics f at a given trajectory, while Q, R, S, a and
b define the quadratic approximation of the nonlinear cost
functional ` at the same trajectory. ⇤

Theorem 2.6 ([16, Proposition 1.1]): If (A(·), B(·)) in
(5) describes a controllable linear time-varying system over
[0, T ] and q is positive definite on the space of the system
trajectories, then problem (5) has a unique solution. ⇤

Next, we recall how to solve problem (5). We start by
imposing the first-order necessary conditions of optimality.

Setting to zero the first variation of the Hamiltonian with
respect to u, we obtain the optimal feedback law

u = �R
�1[ST

x+B
T
p+ b ]. (6)

By setting the first variations of the Hamiltonian with respect
to x and p to zero and by using (6), we obtain the following
linear two-point boundary value problem

ẋ

ṗ

�
=


Ã �BR

�1
B

T

�Q̃ �Ã
T

�
x

p

�
+


�BR

�1
b

SR
�1

b� a

�
,
x(0)=x0

p(T )=p1
, (7)

where p(t) is the costate, p1 is a boundary value to be
determined, Ã := A�BR

�1
S
T and Q̃ := Q� SR

�1
S
T .

It can be shown that p and x in (7) are related via an affine
relation, i.e.,

p = Px+ r. (8)

By defining the gain matrix K := R
�1(ST + B

T
P ), the

optimal input (6) results into the affine feedback law u =
�Kx�R

�1(BT
r+b). Then, equation (7) can be decoupled

by means of the sweep method, [3], which leads to the
following differential (Riccati) equations

�Ṗ = A
T
P + PA�K

T
RK +Q, P (T ) = 0 (9)

�ṙ = (A�BK)T r �K
T
b+ a, r(T ) = p1 (10)

where the boundary conditions follow from (8).
The above equations should be integrated to determine the

optimal control (6) and thus solve problem (5). However, the
terminal vector p1 is still unknown. Thus, we need to express
explicitly the relation between p1 and the terminal condition
xT . Plugging (8) into the first equation of (7), we obtain

ẋ = (A�BK)x�BR
�1(BT

r + b), x(0) = x0. (11)

Next, we observe that

x(T ) = xu(T ) + xf,b(T ) + xf,r(T ), (12)

where xu(T ) is the unforced response of system (11) at time
t = T , whereas xf,b(T ) and xf,r(T ) are the forced responses
due to the inputs BR

�1
b and BR

�1
B

T
r, respectively.

Focusing on xf,r(T ), we note that it can be further split
into two contributions related, respectively, to the forced
and unforced responses of r. The latter contribution depends
directly on p1 and it can be shown that equation (12) can

be rewritten as x(T ) = xu(T ) + n(T ) � Wc(T )p1, where
Wc(T ) is the controllability Gramian matrix,

Wc(t) :=

Z t

0
�c(t, ⌧)B(⌧)R(⌧)�1

B(⌧)T�c(t, ⌧)
T d⌧,

evaluated at time T , with �c being the state transition
function associated to closed-loop system with state matrix
A�BK, while n(T ) denotes the terminal state of

ṅ = (A�BK)n�BR
�1(BT

rf + b), n(0) = 0,

where rf denotes the forced response of r, i.e., it solves (10)
with zero terminal condition.

To conclude, p1 can be computed as

p1 = Wc(T )
�1 (xT � xu(T )� n(T )) .

III. PROJECTION OPERATOR NEWTON METHOD FOR
TRAJECTORY OPTIMIZATION (PRONTO)

PRONTO was introduced in [12] to solve the following
finite-horizon optimal control problem

minimize
(x(·),u(·))

Z T

0
`(x(⌧), u(⌧)) d⌧ +m(x(T ))

subject to ẋ(t) = f(x(t), u(t)), x(0) = x0,

(13)

which, differently from problem (1), has a terminal penalty
m : Rn ! R rather than a terminal constraint.

The key idea of PRONTO is to (i) convert the dynamically
constrained (infinite-dimensional) optimization problem into
an unconstrained one by means of a projection operator,
and (ii) solve the unconstrained problem via an infinite-
dimensional Newton method.

We start recalling the projection operator, which is based
on a trajectory tracking feedback law.

A. The trajectory tracking nonlinear projection operator
Suppose that ⇠ := (↵(·), µ(·)) (defined on t � 0) is a

bounded state-input curve and let ⌘ := (x(·), u(·)) be the
trajectory determined by the nonlinear feedback system

(
ẋ(t) = f(x(t), u(t)), x(0) = ↵(0)

u(t) = µ(t) +K(t)[↵(t)� x(t)].
(14)

Under suitable conditions on f and K, the feedback
system in (14) defines a continuous nonlinear projection
operator P : ⇠ = (↵(·), µ(·)) 7! ⌘ = (x(·), u(·)).

The operator P is a projection since P = P � P on
its domain. Indeed, independent of K, if ⇠ is a trajectory
of f , then ⇠ is a fixed point of P , i.e., ⇠ = P(⇠). As
a consequence, a trajectory can be characterized in terms
of the projection operator as ⇠ 2 T if and only if ⇠ =
P(⇠). In [12], the authors have proven that the projection
operator P is as smooth as f and one can compute (and
analyze) its derivatives. In particular, if f is C1, then the first
derivative of the projection operator is the linear mapping
⇣ = (�(·), ⌫(·)) 7! DP(⇠) · ⇣ = (z(·), v(·)) defined by
(
ż(t) = fx(x(t), u(t))z(t) + fu(x(t), u(t))v(t), z(0) = 0

v(t) = ⌫(t) +K(t)[�(t)� z(t)].



which is obtained by linearizing (14) about ⇠ 2 T . It can be
shown that DP(⇠) is itself a projection, so that ⇣ 2 T⇠T if
and only if ⇣ = DP(⇠) · ⇣.

B. The PRONTO algorithm

Writing the cost in (13) as the functional

h(⇠) :=

Z T

0
`(x(⌧), u(⌧)) d⌧ +m(x(T )),

we see that the optimal control problem (13) is equivalent
to the constrained optimization problem min⇠2T h(⇠). Using
the trajectory characterization and defining g(⇠) := h(P(⇠))
the constrained problem can be converted into an uncon-
strained one as min⇠2T h(⇠) = min⇠ g(⇠).

The PRONTO algorithm, stated in Algorithm 1, is based
on a Newton method applied to min⇠ g(⇠) and includes two
key steps. First, the search direction ⇣i is determined by
an optimization problem considering the first and second
derivatives of the nonlinear functional g. Since the derivatives
of g are computed, the projection P is inherently considered
within the calculation of the search direction. Moreover,
the search direction is limited to the tangent space of the
trajectory manifold at the current trajectory ⇠i, that is, ⇣i 2
T⇠T . Second, the update is performed using the projection
P in (16), thus a feasible trajectory is determined after each
iteration of the optimization algorithm.

Algorithm 1 PRONTO
GIVEN: initial trajectory ⇠0 2 T
FOR: i = 0, 1, 2, . . .

redesign feedback K if desired/needed
search direction

⇣i = argmin
⇣2T⇠i

T
Dg(⇠i) · ⇣ + 1

2D
2
g(⇠i) · (⇣, ⇣) (15)

step-size
�i = argmin

�2(0,1]
g(⇠i + �⇣i)

update
⇠i+1 = P(⇠i + �i⇣i) (16)

Remark 3.1: Notice that step (15) consists of solving a
(standard) LQR problem in the form

minimize
⇣=(z(·),v(·))

Z T

0
a(⌧)T z(⌧) + b(⌧)T v(⌧)

+
1

2


z(⌧)
v(⌧)

�T 
Q(⌧) S(⌧)
S(⌧)T R(⌧)

� 
z(⌧)
v(⌧)

�
d⌧

+ z(T )TP1z(T ) + r
T
1 z(T )

subject to ż = A(t)z +B(t)v, z(0) = 0.

Step (16) consists of computing the updated trajectory
⇠i+1 = (xi+1(·), ui+1(·)) by running the closed loop system
(14) with (given) curve (↵(·), µ(·)) = ⇠i + �i⇣i = (xi(·) +
�izi(·), ui(·) + �ivi(·)). ⇤

IV. FINAL-STATE CONSTRAINED PRONTO

In this section, we introduce an optimization algorithm
which solves the nonlinear optimal state transfer problem.
The key approach is to: (i) introduce a projection operator,
inspired by the one introduced in [12] (and recalled in
Section III), such that not only the dynamics, but also the
terminal constraint is satisfied, and (ii) compute a descent
direction that satisfies the final-state constraint to first-order.

A. Final-state constrained projection operator

The Projection Operator as recalled in Section III-A is
not able to guarantee an exact matching of the terminal con-
straint. As a key step of our algorithm, we introduce a final-
state constrained projection operator, ⇠ = (↵(·), µ(·)) 7!
Pc(⇠) = ⌘ = (x(·), u(·)), satisfying x(T ) = ↵(T ) where,
as usual, ⇠ is a curve while ⌘ 2 T a trajectory. Our idea is
to design the operator Pc as an iterative routine in which, at
each iteration: (i) we perturb the actual trajectory in order
to hit exactly the terminal constraint and (ii) we project
the resulting curve by means of the standard projection
operator (14).

The final-state constrained projection can be formalized in
terms of an infinite dimensional root-finding. Given xT 2
Rn, let us define a functional F which associates to a
state-input curve ⇠ = (↵(·), µ(·)) the difference between its
terminal state ↵(T ) and xT . Hence, a trajectory ⌘ being
a root of F , i.e., such that F(⌘) = 0, is exactly what we
expect to be the result of the final-state constrained projection
operator Pc when applied to a curve ⇠.

Following the same high level idea in Section III-B to
derive the PRONTO algorithm, we convert the constrained
root-finding of F into the unconstrained root-finding of
G(·) := F(P(·)), with P being the (unconstrained) projec-
tion operator introduced in (14).

Given an initial curve ⇠, the root of the functional G is
found by means of an infinite-dimensional Netwon method.
Formally, at each iteration the perturbation ⇣k is obtained by
setting to zero the first order approximation of the perturbed
functional, i.e. by solving for ⇣k the following equation

G(⇠k) +DG(⇠k) · ⇣k = 0. (17)

Using the chain rule, the linear mapping DG(⇠k) applied
to a state-input curve ⇣k can be expressed as DG(⇠k) · ⇣k =
DF(⇠k)·DP(⇠k)·⇣k. When ⇠k is a trajectory, the linear map-
ping DP(⇠k) is a projection on the tangent space T⇠kT (see
[12]). Moreover, the first order expansion of the perturbed
functional F(⇠k+⇣) turns out to be DF(⇠k) ·⇣ = (⇡1⇣)(T ).
Thus, we can conclude that equation (17) simply enforces a
terminal condition on ⇣k, i.e., find the state component zk(·)
of DP(⇠k) · ⇣k 2 T⇠kT such that

xk(T )� xT + zk(T ) = 0. (18)

Note that, since the linear mapping DG(⇠k) is not invertible,
the solution of (17) is not unique.

A finite dimensional counter-part of equation (17) is a
linear system of the form Mz + n = 0. When kerM





is non-empty, the equation has not a unique solution. A
typical approach to overcome this problem is to consider the
equivalent least-square problem, which selects the minimum
norm solution of the linear system.

Motivated by this finite-dimensional observation, a reason-
able choice is to select a ⇣k 2 T⇠kT satisfying condition (18)
with minimum L2 norm. It can be obtained solving the
following linear quadratic optimal state transfer problem

⇣k := (zk(·), vk(·)) = argmin
(z(·),v(·))

1

2

Z T

0

��z(⌧)
��2 +

��v(⌧)
��2 d⌧

subj. to ż = A(t)z +B(t)v

z(0)=0, z(T )=�x(T )+xT ,

where A(·) and B(·) result by the linearization of dynamics
f around the current iterate ⇠k.

A pseudo code of the constrained projection operator Pc

is given in the following table (Algorithm 2).

Algorithm 2 Final-state constrained projection operator
GIVEN: a curve ⇠̄, a projection operator P and a

tolerance value tol, SET: ⇠0 = ⇠̄

FOR: k = 0, 1, 2, . . .
search direction

⇣k = argmin
⇣

1
2

��⇣
��2
L2

subj. to ⇣ 2 T⇠kT
(⇡1⇣)(T ) = �F(⇠k)

update

⇠k+1 = P(⇠k + ⇣k)

IF: kF(⇠k+1)k < tol, THEN: break.

SET: Pc(⇠̄) = ⇠
⇤, being ⇠

⇤ the last iteration trajectory.

Remark 4.1: The convergence of Algorithm 2 can be
guaranteed by satisfying the hypotheses of Newton-
Kantorovich theorem (see, e.g., [18], [19]). ⇤
B. fsPRONTO Algorithm

We are ready to present the final-state constrained PRo-
jection Operator Newton method for Trajectory Optimization
(fsPRONTO) algorithm which is an iterative algorithm able
to solve problem (1). The algorithm extends the PRONTO
outlined in Section III-B combining a particular descent
direction and the final-state constrained projection operator
presented in Section IV-A.

First, we search for a descent direction ⇣i 2 T⇠iT
satisfying the final constraint to first-order by means of a
linear-quadratic state transfer problem as in (5). Since each
⇠i is already feasible, in order to maintain feasibility to first
order, the perturbation ⇣i must satisfy the terminal constraint
zi(T ) := (⇡1⇣i)(T ) = 0. Second, we perform a backtracking
line-search to modulate the descent direction. Finally, we
perform the projection step by means of the constrained
projection operator described by Algorithm 2.

The fsPRONTO algorithm is formally stated in the fol-
lowing table (Algorithm 3).

Algorithm 3 Final-state constrained PRONTO.
GIVEN: initial trajectory ⇠0

FOR: i = 0, 1, 2, . . .
redesign feedback K if desired/needed
constrained search direction

⇣i = argmin
⇣2T⇠i

T
Dg(⇠i) · ⇣ + 1

2D
2
g(⇠i) · (⇣, ⇣)

subj. to (⇡1⇣i)(T ) = 0
(19)

step-size
�i = argmin

�2(0,1]
g(⇠i + �⇣i) (20)

constrained update

⇠i+1 = Pc(⇠i + �i⇣i) (21)

In the following, we have a closer look at some of the
specific aspects of our newly presented Algorithm 3.

Remark 4.2: Notice that step (19) consists of solving a
linear quadratic optimal state transfer problem in the form

minimize
⇣=(z(·),v(·))

Z T

0
a(⌧)T z(⌧) + b(⌧)T v(⌧)

+
1

2


z(⌧)
v(⌧)

�T 
Q(⌧) S(⌧)
S(⌧)T R(⌧)

� 
z(⌧)
v(⌧)

�
d⌧

subject to ż = A(t)z +B(t)v, z(0) = 0, z(T ) = 0,

as discussed in detail in Section II-A. Step (21) consists of
computing the updated trajectory ⇠i+1 = (xi+1(·), ui+1(·))
via Algorithm 2 with a (given) curve ⇠̄ = ⇠i+�i⇣i = (xi(·)+
�izi(·), ui(·) + �ivi(·)). ⇤

V. NUMERICAL COMPUTATIONS

In this section we provide numerical computations show-
ing the effectiveness of the proposed nonlinear algorithm. We
solve the optimal state transfer problem for a driven inverted
pendulum. We consider the problem

minimize
(x(·),u(·))

Z T

0

1
2

��x(⌧)� xd(⌧)
��2
Q
+ 1

2

��u(⌧)� ud(⌧)
��2
R
d⌧

subject to

"
ẋ1

ẋ2

#
=

"
x2

g

L
sinx1 �

u

L
cosx1

#
,
x(0) = x0,

x(T ) = xT ,

with L = 0.5 m being the length of the pendulum and g

the gravity acceleration. We set the time horizon to T =
20s. Moreover, (xd(·), ud(·)) is a (continuous) desired curve,
Q 2 R2⇥2 is a symmetric, positive-definite matrix and R is
a positive scalar.

Before testing the fsPRONTO algorithm, we highlight the
applicability of the final-state constrained projection operator
presented in Algorithm 2.

We consider a given curve ⇠ which is not a feasible
trajectory of the inverted pendulum. The projected state x1

is depicted in Figure 2. Both projections P(⇠) (in magenta)
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Fig. 1. Evolution of x1, x2 and u through the iterations of fsPRONTO (Algorithm 3). The desired curve (dashed blue), the initial (feasible) trajectory
(dashed-dot green) and the optimal trajectory (solid red) are depicted. Intermediate (feasible) trajectories are plotted with light dotted lines.

and Pc(⇠) (in red) provide a trajectory close to the curve
⇠ (in green). However, when closely checking the terminal
state, one can see that only the trajectory projected under
Pc(⇠) satisfies the terminal constraint.

0 5 10 15 20
−60

−40

−20

0

20

40

60

s

d
e
g
re
e
s

19.96 19.98 20
59.5

60

60.5

Fig. 2. Final-state constrained projection operator: x1 state component.
Specifically, the unfeasible curve ⇠ (solid green), the standard projection
P(⇠) (dashed-dot magenta) and the constrained projection Pc(⇠) (dashed-
dot red) are depicted.

Next, we apply the fsPRONTO (Algorithm 3) in order
to optimize the trajectory of an inverted pendulum. We use
Q = diag(100, 1) and R = 1 as cost parameters. The choice
of a higher penalty on the first component x1 of the least-
square distance will result in an optimal solution (solid red)
which almost overlaps the first component of the desired
curve (dashed-dot blue) as shown in Figure 1.

It is worth nothing that, as expected, the algorithm guar-
antees recursive feasibility. In fact, the terminal error, high-
lighted in the inset, is zero at each iteration for both the state
components.

In Figure 3 the descent at each iteration, in logarithmic
scale, is depicted. It gives a measure of the rate of conver-
gence of the algorithm which appears to be quadratic.
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Fig. 3. Convergence Rate of fsPRONTO Algorithm.

VI. CONCLUSIONS

In this paper we have presented a new numerical approach
for solving final-state constrained optimal control problems.
The main advantage of the proposed method is that it

guarantees recursive feasibility of both the dynamics and the
final-state constraint at each iteration. Specifically, we have
proposed a Newton method, inspired to the one introduced
in [11], based on: (i) the design of a final-state constrained
projection operator, being able to find a trajectory satisfying
the final constraint, and (ii) the computation of a descent
direction satisfying the final constraint to first-order.
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