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Distributed Partitioned Big-Data Optimization
via Asynchronous Dual Decomposition

Ivano Notarnicola1, Student Member, IEEE, Ruggero Carli2, Member, IEEE, and Giuseppe
Notarstefano1, Member, IEEE

Abstract—In this paper we consider a novel partitioned frame-
work for distributed optimization in peer-to-peer networks. In
several important applications the agents of a network have to
solve an optimization problem with two key features: (i) the
dimension of the decision variable depends on the network size,
and (ii) cost function and constraints have a sparsity structure
related to the communication graph. For this class of problems
a straightforward application of existing consensus methods
would show two inefficiencies: poor scalability and redundancy
of shared information. We propose an asynchronous distributed
algorithm, based on dual decomposition and coordinate methods,
to solve partitioned optimization problems. We show that, by
exploiting the problem structure, the solution can be partitioned
among the nodes, so that each node just stores a local copy of a
portion of the decision variable (rather than a copy of the entire
decision vector) and solves a small-scale local problem.

I. INTRODUCTION

Distributed optimization has received a widespread attention
in the last years due to its key role in multi-agent systems
(also known as large-scale systems, sensor networks or peer-
to-peer networks). Several solutions have been proposed, but
many challenges are still open. In this paper we focus on a
main common limitation of the current approaches. That is, in
all the currently available algorithms the nodes in the network
reach consensus on the entire solution vector. This redundancy
of information may be not necessary or even realizable in
some problem set-ups. Thus, we exploit a new distributed
optimization set-up in which the nodes compute only a portion
of the solution and the whole minimizer may be obtained by
stacking together the local portions.

We divide the relevant literature for our paper in two parts.
That is, we review works on distributed optimization more
closely related to the techniques proposed in this paper, and
the centralized and parallel literature on big-data optimization.

Early references on distributed optimization are [2], [3].
Convex optimization problems are solved by using a primal
distributed subgradient method combined with a consensus
scheme. Dual decomposition methods have been proposed in
early references in order to develop distributed algorithms

A preliminary short version of this paper has appeared as [1], where only
a synchronous dual scheme for the partitioned set-up was considered.
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in a pure peer-to-peer set-up. In [4] a tutorial on network
optimization via dual decomposition can be found. In [5] a
synchronous distributed algorithm based on a dual decompo-
sition approach is proposed for a convex optimization problem
with a common constraint for all the agents. In [6] equality
and inequality constraints are handled in a distributed set-up
based on duality. In [7] a distributed algorithm based on an
averaging scheme on the dual variables is proposed, to solve
convex optimization problems over fixed undirected networks.
A slightly different set-up is considered in [8], where a dual
decomposition method over time-varying graphs is proposed.
In order to induce robustness in the computation and improve
convergence in the case of non-strictly convex functions,
Alternating Direction Methods of Multipliers (ADMM) have
been proposed in the network context [9]. A distributed
consensus optimization algorithm based on an inexact ADMM
is proposed in [10]. In [11] an asynchronous ADMM-based
distributed method is proposed for a separable, constrained
optimization problem. A different class of algorithms, working
under a general asynchronous and directed communication, is
based on the exchange of cutting planes among the network
nodes [12] and can be applied also in its dual form to separable
convex programs.

A common drawback of the above algorithms is that they
are well suited for a set-up in which either the dimension of the
decision variable or the number of constraints is constant with
respect to the number of nodes in the network. In case both
the two features depend on the number of nodes each local
computing agent needs to handle a problem whose dimension
is not scalable with respect to the network dimension. To
cope with big-data optimization problems, deterministic and
randomized coordinate methods for both unconstrained and
constrained optimization have been proposed, see e.g., [13]–
[15]. More general set-ups such as composite and/or separable
optimization in a parallel scenario have been addressed for
convex problems in [16], [17], whereas nonconvex problems
are considered in [18]–[20]. In [21] an edge-based distributed
algorithm is proposed to solve linearly coupled optimization
problems via a coordinate descent method. A distributed
coordinate primal-dual asynchronous algorithm is proposed
in [22] to deal with large-scale problems. A dual approach has
been combined with a coordinate proximal gradient in [23] to
propose an asynchronous distributed algorithm for composite
convex optimization.

In this paper we investigate a class of problems of interest
in several multi-agent applications in which the decision
variable grows as the number of nodes in the network, but
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the cost function and the constraints have a special partitioned
structure. We show that such structure is not derived just as
a pure academic exercise, but vice-versa appears in several
important application scenarios. In particular, we present two
of them that have been widely investigated in the literature,
namely distributed quadratic estimation and network utility
maximization (and its related resource allocation version).

The main contribution of this paper is as follows. For
this problem set-up we provide two distributed optimization
algorithms, based on dual decomposition, with two main
appealing features. First, the algorithms are scalable, in the
sense that each node only processes a portion of the decision
variable vector. As a result, the information stored and the
computation performed by each node does not depend on the
network size as long as the node degree is bounded. Second,
the asynchronous algorithm works under a communication
protocol in which a node wakes-up when triggered by its
local timer or by its neighbors, so that no global clock is
needed. The distributed algorithms are derived by first writing
a suitable equivalent formulation of the original primal opti-
mization problem (which exploits the partitioned structure).
Then its dual problem is derived and solved with suitable
algorithms. A scaled gradient applied to the dual problem
turns out to be a partitioned version of the distributed dual
decomposition (synchronous) algorithm. A randomized ascent
method applied to the dual problem allows us to write an
asynchronous distributed algorithm that converges in objective
value with high probability.

As opposed to [4]–[7], even though we also consider a
dual decomposition approach, we tailored the methodology
for the partitioned set-up, thus explicitly taking into account
the partitioned structure of the cost and the constraints. This
results in algorithmic formulations that reduce memory and
communication burden. The partitioned set-up considered in
this paper has been introduced in [24], where a distributed
ADMM algorithm is proposed. In [25] a nonconvex max-
imum likelihood localization partitioned problem is solved
via a similar distributed ADMM scheme. In [26] a convex
composite optimization problem is considered where the cost
has a partitioned part and a fully separable remainder. A
parallel coordinate algorithm is proposed with its convergence
analysis. In [27] a robust block-Jacobi algorithm for a parti-
tioned quadratic programming under lossy communications is
proposed. A related formulation of the partitioned problem is
the one considered in [28], where the D-ADMM distributed
algorithm proposed in [29] has been applied. Differently
from the above references, in this paper we propose a dual
decomposition algorithm for optimization problems in which
also the constraints exhibit a partitioned structure. Moreover,
we develop an asynchronous distributed algorithm, inspired
to [23], by combining dual decomposition with coordinate
methods.

The paper is organized as follows. In Section II we present
the partitioned optimization framework and describe two mo-
tivating applications. In Section III we develop a partitioned
distributed dual decomposition approach, then we propose
and analyze our synchronous and asynchronous distributed
algorithms. Finally, in Section IV we run simulations to

corroborate the theoretical results.

II. PROBLEM SET-UP AND MOTIVATING SCENARIOS

A. Problem Set-up

We consider a network of agents aiming at solving a struc-
tured optimization problem in a distributed way. The nodes,
{1, . . . , n}, interact according to a fixed connected, undirected

graph G = ({1, . . . , n}, E). We denote Ni the set of neighbors
of node i in G, that is Ni = {j 2 {1, . . . , n} | (i, j) 2 E}.
As we will see in the following, the graph G is related to the
structure of the optimization problem.

As for the communication, we will consider a synchronous
communication protocol in which nodes communicate over
the fixed graph according to a common clock, and an asyn-
chronous protocol in which, although the neighboring agents
are determined by the fixed graph G, communication happens
asynchronously. We will formally define this last communica-
tion protocol in the next sections.

We start by reviewing a common set-up in distributed
optimization. That is, we consider the minimization of a
separable cost function subject to local constraints,

min
x2RN

nX

i=1

fi(x)

subj. to x 2 Xi, i 2 {1, . . . , n},
(1)

where fi : RN ! R and Xi ✓ RN for all i 2 {1, . . . , n}.
In our set-up the local objective function fi and the local
constraint set Xi are known only by agent i.

In this paper we want to consider problems as in (1) with
a specific feature, that is a partitioned structure, that we next
describe. Let the vector x be partitioned as

x = [x>
1 , . . . , x

>
n ]

>

where, for i 2 {1, . . . , n}, mi 2 N, xi 2 Rmi andPn
i=1 mi = N . The sub-vector xi represents the relevant

information at node i, hereafter referred to as the state of
node i. Additionally, let us assume that the local objective
functions and the constraints have the same sparsity as the
communication graph, namely, for i 2 {1, . . . , n}, the function
fi and the constraint Xi depend only on the state of node i

and on its neighbors, that is, on {xj , j 2 Ni [ {i}}. Then the
problem we aim at solving distributedly is

min
x

nX

i=1

fi(xi, {xj}j2Ni)

subj. to (xi, {xj}j2Ni) 2 Xi, i 2 {1, . . . , n},
(2)

where the notation fi(xi, {xj}j2Ni) means that fi : RN ! R
is in fact a function of xi and xj , j 2 Ni, and the notation
(xi, {xj}j2Ni) 2 Xi means that the constraint set Xi involves
only the variables xi and xj , j 2 Ni.

We stress that the constraint sets Xi can involve all
(neighboring) variables (xi, {xj}j2Ni) of agent i and not just
xi. This apparently minor feature in fact adds much more
generality to the problem and introduces important significant
challenges.

The following assumptions will be used in the paper.
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Assumption II.1. For all i 2 {1, . . . , n}, the function fi :
R

P
j2Ni[{i}mj !R is strongly convex with parameter �i > 0.⇤

Assumption II.2. The constraint sets Xi ✓ R
P

j2Ni[{i} mj
,

i 2 {1, . . . , n} are nonempty convex and compact. ⇤
Assumption II.3 (Constraint qualification). The intersection

of the relative interior of the sets Xi, i 2 {1, . . . , n}, is non-

empty. ⇤
Under Assumptions II.1 and II.2 problem (2) is feasible and

admits a unique optimal solution f
? attained at some x

? 2
RN . Assumption II.3 is a standard requirement to guarantee
that a dual approach will enjoy the strong duality property.

B. Motivating Examples

Next we provide two application scenarios in which the par-
titioned structure of the optimization problem arises naturally.

1) Distributed estimation in power networks: To describe
this example we follow the treatment in [30].

For a power network, the state at a certain instant of
time consists of the voltage angles and magnitudes at all
the system buses. The (static) state estimation problem refers
to the procedure of estimating the state of a power network
given a set of measurements of the network variables, such
as, for instance, voltages, currents, and power flows along
the transmission lines. To be more precise, let x 2 RN and
z 2 RP be, respectively, the state and measurements vector.
Then, the vectors x and z are related by the relation

z = h(x) + ⌘, (3)

where h(·) is a nonlinear measurement function, and where ⌘

is the noise measurement, which is traditionally assumed to
be a zero mean random vector satisfying E[⌘⌘>] = ⌃ � 0.
An optimal estimate of the network state coincides with the
most likely vector x? that solves equation (3). This static state
estimation problem can be simplified by adopting the approxi-
mated estimation model presented in [31], which follows from
the linearization around the origin of equation (3). Specifically,

z = Hx+ v,

where H 2 RP⇥N and where v, the noise measurement, is
such that E[v] = 0 and E[vv>] = ⌃. In this context the
static state estimation problem is formulated as the following
weighted least-squares problem

argmin
x

(z �Hx)>⌃�1(z �Hx). (4)

Assume ker(H) = 0, then the optimal solution to the above
problem is given by

xwls =
�
H

>⌃�1
H
��1

H
>⌃�1

z.

For simplicity let us assume that ⌃ = I . For a large
power network, the centralized computation of xwls might be
too onerous. A possible solution to address this complexity
problem is to distribute the computation of xwls among ge-
ographically deployed control centers (monitors), say n in a
way that each monitor is responsible only for a subpart of

the whole network. Precisely let the matrices H and ⌃ and
the vector z be partitioned as [Hij ]

n
i,j=1, x =

⇥
x
>
1 , . . . , x

>
n

⇤>

and z =
⇥
z
>
1 , . . . , z

>
n

⇤>, where Hij 2 Rpi⇥mj , zi 2 Rpi ,
xi 2 Rmi and

Pn
i=1 mi = N ,

Pn
i=1 pi = P . Observe that, be-

cause of the interconnection structure of a power network, the
measurement matrix H is usually sparse, i.e., many Hij = 0.
Assume monitor i knows zi and Hij , j 2 {1, . . . , n} and it
is interested only in estimating the sub-state xi. Moreover let
Ni = {j 2 {1, . . . , n} | Hij 6= 0}. Observe that in general if
Hij 6= 0 then also Hji 6= 0. Then by defining

fi

�
xi, {xj}j2Ni

�
=
⇣
zi �

X

j2Ni

Hijxj

⌘>⇣
zi �

X

j2Ni

Hijxj

⌘
,

problem (4) can be equivalently rewritten as

argmin
x

nX

i=1

fi

�
xi, {xj}j2Ni

�

which is of the form (2).
It is worth remarking that there are other significant ex-

amples that can be cast as distributed weighted least square
problems similarly to the static state estimation in power
networks we have described in this section; see, for instance,
distributed localization in sensor networks and map building
in robotic networks.

2) Network utility maximization and resource allocation:

We consider the flow optimization problem, or Network Utility

Maximization (NUM) problem introduced in [32] and studied
in [33] in a distributed context. A flow network (which is
different from a communication network) consists of a set L
of unidirectional links with capacities c`, ` 2 L. The network
is shared by a set of n sources. Each source has a strongly
concave utility function Ui(xi) The goal is to calculate source
rates that maximize the sum of the utilities

Pn
i=1 Ui(xi) over

xi subject to capacity constraints. Formally, using a notation
consistent with [33], let L(i) ✓ L be the set of links used by
source i and N(`) = {i 2 {1, . . . , n} | ` 2 L(i)} be the set
of sources that use link `. Note that ` 2 L(i) if and only if
i 2 N(`). Also, let Ii = [i,Ki], with 0  i < Ki, be the
interval of transmission rates allowed to node i. The network
flow optimization problem is given by

max
x1,...,xn

nX

i=1

Ui(xi)

subj. to xi 2 Ii, i 2 {1, . . . , n},
X

j2N(`)

xj  c`, ` 2 {1, . . . , |L|}.

(5)

Notice that problem (5) is well posed and has compact domain.
In Figure 1 (left) we graphically represent an example

of 5 sources (filled circles) that use (dotted arrows) 3 links
(gray stripes). In [33] a distributed optimization algorithm
is proposed in which both the sources and the links are
computation units. Here we consider a set-up in which only the
sources are computation units. In particular, the sources have
the computation and communication capabilities introduced
in the previous subsection. We assume that sources using
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the same links can communicate and both know the capacity
constraint on those links. Formally, we introduce a graph G
having an edge (i, j) connecting source i to j if and only if
there exists ` 2 L such that ` 2 L(i)\L(j). In Figure 1 (right)
we show the induced communication graph (solid lines) for
the considered example.

1

2 3

4

5

` = 1

` = 2

` = 3

1

2 3

4

5

Fig. 1. Network Utility Maximization problem with 5 sources (filled circles)
using 3 links (gray stripes).

Thus, optimization problem (5) can be rewritten as

max
x1,...,xn

nX

i=1

Ui(xi)

subj. to (xi, {xj}j2Ni) 2
Y

j2Ni[{i}

Ij , i 2 {1, . . . , n},

X

j2Ni[{i}

aj,` xj  c`, ` 2 L(i), i 2 {1, . . . , n},

(6)

where Ni is the neighbor set of i in G, aj,` is 1 if agent j

can use link ` and 0 otherwise. Notice that in problem (6) if
sources i and j share a link `, then they both have the capacity
constraint of link `. Moreover, in order to have compactness
of the local constraint set Xi, transmission rate constraints of
neighboring nodes are also taken into account. Finally, in order
to fulfill the strong convexity assumption on the local costs,
two strategies can be used. First, one can assume that each
agent knows the utility functions of neighboring agents, so that
it sets fi(xi, {xj}j2Ni) =

P
j2Ni[{i} Uj(xj). Alternatively,

one can consider an additional separable (small) regularization
term in the NUM problem formulation in (5), e.g., ✏

Pn
i=1 x

2
i

with ✏ > 0. In this case each agent sets its local cost function
to fi(xi, {xj}j2Ni) = Ui(xi) +

P
j2Ni

✏ijx
2
j , where ✏ij > 0

are suitable fractions of ✏. Except for the maximization versus
minimization, this problem is partitioned, that is it has the
same structure as (2).

A problem with this structure can be also found in resource
allocation problems, which are of great importance in several
research areas. In the context of network systems solving
resource allocation problems in a distributed way is a prelim-
inary task to solve several control and estimation problems.
Indeed, it is often the case that the agents in the network have
some local resource that have to share with their neighbors.

Consider a general set-up in which each agent produces a
certain amount of resource, which it can share with its neigh-
bors (i.e., neighboring nodes in the communication graph).

Each agent has a local strongly concave utility function to
maximize. The resulting optimization problem turns out to be

max
x1,...,xn

nX

i=1

Ui(xi)

subj. to
X

j2Ni[{i}

xj  ri, i 2 {1, . . . , n},

where xi is the resource produced by node i, ri is the capacity
of node i and we are assuming that the set of neighbors with
whom node i can share its resource coincides with the set of
neighbors in the communication graph. In other words agents
can share resources only if they can communicate.

It is worth noting that dual decomposition is often used
in network utility maximization and resource allocation prob-
lems. See for example [34] for a tutorial on dual decomposition
methods in network utility maximization. Usually, in this con-
text, the capacity constraints are dualized to obtain a master-
subproblem or a distributed algorithm. However, in these early
references, as e.g., in [33], the dual decomposition gives rise to
algorithms that are not suited for a pure peer-to-peer network
as the one we consider. In our partitioned approach the dual
decomposition is used to enforce the coherence constraints,
whereas the capacity constraints are taken into account in the
primal local minimization. These aspects will be more clear
in the next section in which we derive the partitioned dual
decomposition approach.

III. PARTITIONED DUAL DECOMPOSITION FOR
DISTRIBUTED OPTIMIZATION

In order to introduce our distributed algorithms, we derive a
partitioned dual decomposition scheme by introducing suitable
copies of the decision variables.

As a preliminary step, we briefly recall the standard dual
decomposition approach for distributed optimization. In order
to solve problem (1) in a distributed way, a common approach
consists of writing it in the equivalent form

min
x(1),...,x(n)

nX

i=1

fi(x
(i))

subj. to x
(i) 2 Xi, i 2 {1, . . . , n},

x
(i) = x

(j)
, (i, j) 2 E ,

(7)

where each x
(i) can be seen as a copy of x subject to the

additional constraint that all the copies must be equal. Clearly,
the connected nature of the network ensures equality between
all x(i) and, in turn, the equivalence between (7) and (1).

When considering a partitioned problem as in (2), because
of the structure of fi and Xi, i 2 {1, . . . , n}, the formula-
tion (1) is considerably redundant. The idea is to exploit the
partitioned structure to modify (7) in order to limit the range
of equivalences among the auxiliary variables, and, in turn,
their diffusion over the network.

A. Partitioned Dual Decomposition Set-up

Once we create copies of the vector x 2 RN , we enforce
each state xi 2 Rmi to be identical only for the neighboring



5

nodes j 2 Ni [ {i} which use this information. Formally, we
reformulate problem (2) as

min
nX

i=1

fi

�
x
(i)
i , {x(i)

j }j2Ni

�

subj. to
�
x
(i)
i , {x(i)

j }j2Ni

�
2 Xi i 2 {1, . . . , n},

x
(i)
i = x

(j)
i , j 2 Ni, i 2 {1, . . . , n},

x
(i)
j = x

(j)
j , j 2 Ni, i 2 {1, . . . , n},

(8)

where x
(j)
i denotes the copy of state xi stored in memory of

node j. Notice that connected nature of the graph G ensures
equivalence between (2) and (8).

As an example, in Figure 2 we visualize the partitioned
set-up for a path graph of n = 4 nodes. Along i-th column,
we show the coupling due to the local cost fi and the local
constraint Xi, which involves only the states handled by node
i, i.e., x(i)

i and x
(i)
j with j 2 Ni. Along the i-th row, we show

the coupling due to copies x
(j)
i , j 2 Ni, of the variable xi.

x1

x2

x3

x4

X1 X2 X3 X4

f1 f2 f3 f4

path graph

x(4)
4

x(1)
2

x(1)
1

x(2)
3

x(2)
2 x(3)

2

x(3)
4

x(3)
3 x(4)

3

x(2)
1

Fig. 2. Partitioned optimization problem over a path graph of n = 4 nodes.

Before proceeding with presentation of the algorithms, we
discuss two key features in the structure of the above problem.
First, it is worth noting that the problem formulations (7)
and (8), although equivalent, are different. In fact, (8) will
lead to our partitioned algorithm. Second, we point out that a
constraint x(i)

i = x
(j)
i for a pair of agents i and j appears two

times. This redundant formulation is not accidental, but plays
an important role in exploiting the partitioned structure of the
proposed algorithm.

Next, we introduce an aggregate notation for the copies,
which allows us to be more compact in the derivation of the
algorithms and their analysis. We denote by

y
(i) :=

�
x
(i)
i , {x(i)

j }j2Ni

�
(9)

the set of local variables of node i, arranged as a column vector
in R

P
j2Ni[{i} mj . In this way we can write equivalently

fi

�
x
(i)
i , {x(i)

j }j2Ni

�
= fi

�
y
(i)
�

and y
(i) 2 Xi.

To tackle problem (8) in a distributed way, we start by
deriving its dual problem. The partial Lagrangian for problem
(8) is given by

L(x,⇤) =
nX

i=1

✓
fi

�
x
(i)
i , {x(i)

j }j2Ni

�
(10)

+
X

j2Ni

⇣
�
(i,j)>
i (x(i)

i � x
(j)
i ) +�

(i,j)>
j (x(i)

j � x
(j)
j )

⌘◆
,

where x stacks all the (primal) optimization variables in the
network, while ⇤ denotes the stack of dual variables, i.e.,

⇤ =
⇥
⇤>
1 , . . . ,⇤

>
n

⇤>
,

with block ⇤i := [{�(i,j)
i }j2Ni , {�

(i,j)
j }j2Ni ], i 2 {1, . . . , n}.

By exploiting the undirected nature and the connectivity of
graph G, the Lagrangian (10) can be rewritten as

L(x,⇤) =
nX

i=1

✓
fi

�
x
(i)
i , {x(i)

j }j2Ni

�
(11)

+ x
(i)>
i

X

j2Ni

(�(i,j)
i ��

(j,i)
i ) +

X

j2Ni

x
(i)>
j

�
�
(i,j)
j ��

(j,i)
j

�◆

which is separable with respect to y
(i), i 2 {1, . . . , n}.

Remark III.1. It is worth noting that we have not dualized

the local constraints (x(i)
i , {x(i)

j }j2Ni) 2 Xi (thus the notion

of partial Lagrangian) since each of them will be handled by

the agents in their local optimization problem. ⇤
The dual function of (8) is obtained by minimizing the

Lagrangian with respect to the primal variables, which gives

q(⇤) = min
x2X1⇥···⇥Xn

L(x,⇤)

=
nX

i=1

qi

⇣�
�
(i,j)
i ,�

(j,i)
i ,�

(i,j)
j ,�

(j,i)
j

 
j2Ni

⌘

with

qi

⇣�
�
(i,j)
i ,�

(j,i)
i ,�

(i,j)
j ,�

(j,i)
j

 
j2Ni

⌘
=

min�
x(i)
i ,{x(i)

j }j2Ni

�
2Xi

⇣
fi

�
x
(i)
i , {x(i)

j }j2Ni

�
(12)

+ x
(i)>
i

X

j2Ni

(�(i,j)
i ��

(j,i)
i ) +

X

j2Ni

x
(i)>
j (�(i,j)

j ��
(j,i)
j )

⌘
.

Notice that, since each Xi is compact and nonempty,
the minimum in (12) is (uniquely) attained, so that qi is
always finite. Thus, the dual problem of (8) is the following
unconstrained optimization problem

max
⇤

nX

i=1

qi

⇣�
�
(i,j)
i ,�

(j,i)
i ,�

(i,j)
j ,�

(j,i)
j

 
j2Ni

⌘
. (13)

Remark III.2. Let ' : Rd ! R [ {+1}, its conjugate

function '
⇤ : Rd ! R is defined as

'
⇤(z) := sup

x

�
z
>
x� '(x)

�
.
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Then,

qi

⇣�
�
(i,j)
i ,�

(j,i)
i ,�

(i,j)
j ,�

(j,i)
j

 
j2Ni

⌘
=

� f
⇤
i

⇣ X

j2Ni

(�(i,j)
i ��

(j,i)
i ),

�
(�(i,j)

j ��
(j,i)
j )

 
j2Ni

⌘
,

with f
⇤
i being the conjugate function of fi. ⇤

Remark III.3. It is worth noting that each qi does not depend

on the entire set of dual variables ⇤, but it exhibits a sparse

structure, i.e., it is a function of the dual variables of the

neighbors Ni only. ⇤

B. (Synchronous) Partitioned Dual Decomposition (PDD) dis-

tributed algorithm

With the dual problem in hand, a gradient algorithm on the
dual problem, [35, Chapter 6], can be applied. This results into
a minimization on the primal variables and a linear update on
the dual variables. As we will show in the analysis, this gives
rise to the PDD distributed algorithm, which is formally stated,
from the perspective of node i, in the following table.

We point out that each node i 2 {1, . . . , n} stores and
updates the primal variables x

(i)
i and x

(i)
j , j 2 Ni, and the

dual variables �
(i,j)
i and �

(i,j)
j , j 2 Ni.

Distributed Algorithm 1 PDD

Processor states: (x(i)
i , {x(i)

j }j2Ni) and {�(i,j)
i ,�

(i,j)
j }j2Ni

Evolution:
FOR: t = 1, 2, . . . DO
Compute and broadcast primal variables
�
x
(i)
i (t+1), {x(i)

j (t+1)}j2Ni

�
=

argmin
(xi,{xj}j2Ni )2Xi

✓
fi

�
xi, {xj}j2Ni

�

+ x
>
i

X

j2Ni

⇣
�
(i,j)
i (t)� �

(j,i)
i (t)

⌘

+
X

j2Ni

x
>
j

⇣
�
(i,j)
j (t)� �

(j,i)
j (t)

⌘◆
.

(14)

Update and broadcast dual variables via

�
(i,j)
i (t+1) = �

(i,j)
i (t)+↵i

⇣
x
(i)
i (t+1)� x

(j)
i (t+1)

⌘

�
(i,j)
j (t+1) = �

(i,j)
j (t)+↵i

⇣
x
(i)
j (t+1)� x

(j)
j (t+1)

⌘ (15)

for all j 2 Ni.

Before studying the convergence properties of the proposed
algorithm, let us comment on its scalability and how it com-
pares with standard dual gradients algorithms. First, observe
that each node has to keep in memory the set of variables
x
(i)
i ,

�
x
(i)
j

 
j2Ni

,
�
�
(i,j)
i ,�

(i,j)
j

 
j2Ni

, namely a number of
variables equal to 1 + 3|Ni|. Second, the step-sizes ↵i,
i 2 {1, . . . , n} are constant, local and can be initialized via
local computations. More details are given in Theorem III.5.

Remark III.4. Notice that, differently from existing dual

decomposition schemes, our algorithms do not enforce any

symmetry in the dual variables, i.e., in general �
(i,j)
i (t) 6=

��
(j,i)
i (t). The symmetry, although not necessary, can be

imposed if the agents select a common step-size ↵i = ↵,

for all i 2 {1, . . . , n}, and properly initialize their dual

variables. As a consequence, the algorithm can be simplified

to have only one communication round to perform both the

local minimization and the ascent. ⇤
The convergence properties of PDD (Distributed Algo-

rithm 1) are established in the following theorem.

Theorem III.5. Let Assumptions II.1, II.2 and II.3 hold true

and assume the step-sizes ↵i, i 2 {1, . . . , n}, to be constant

and such that 0 < ↵i  1
nLi

, with

Li =

s
2
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
, 8 i 2 {1, . . . , n}. (16)

Then, the sequence {⇤1(t), . . . ,⇤n(t)} generated by PDD

(Distributed Algorithm 1) converges in objective value to

the optimal cost f
?

of problem (2). Moreover, let x
? =

(x?>
1 , . . . , x

?>
n )> be the unique optimal solution of (2), then

each primal sequence x
(i)
i (t) generated by PDD is such that

lim
t!1

kx(k)
i (t)� x

?
i k = 0,

for all i 2 {1, . . . , n} and k 2 {i} [Ni.

Proof. We structure the proof of the first statement in three
parts in which we show that: (i) the dual gradient has a
block structure and smoothness, (ii) the distributed algorithm
implements a diagonally-scaled gradient method, and (iii)
strong duality holds. First, consider the dual problem (13) and
a block partitioning of dual variables ⇤ = [⇤1, . . . ,⇤n], with

⇤i :=
⇣
{�(i,j)

i }j2Ni , {�
(i,j)
j j 2 Ni}

⌘
(17)

representing the local variables of node i, for all i 2
{1, . . . , n}. Under Assumption II.1, the dual function q(⇤)
is guaranteed to have block-coordinate Lipschitz continuous
gradient rq(⇤) with block constants Li, i 2 {1, . . . , n}, given
in (16). In fact, we can explicitly compute the components
of rq(⇤) associated to each block ⇤i, denoted hereafter
as r⇤iq(⇤), by using the chain rule of derivation and the
conjugate function notation. We have that

@q(⇤)

@�
(i,j)
i

= (rf
⇤
i )i � (rf

⇤
j )i, j 2 Ni

@q(⇤)

@�
(i,j)
j

= (rf
⇤
i )j � (rf

⇤
j )j , j 2 Ni,

(18)

where (rf
⇤
i )i denotes the i-th component of rf

⇤
i and we

omit the argument of rf
⇤
i to take light the notation.

Since for all i 2 {1, . . . , n}, each fi is a strongly convex
function, then the gradient of its conjugate function rf

⇤
i

is Lipschitz continuous with constant 1/�i, [36, Chapter X,
Theorem 4.2.2]. By considering the Euclidean 2-norm, in light
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of (18) and by simple algebraic manipulation, we can conclude
that also r⇤iq(⇤) is Lipschitz continuous with constant

Li =

sX

j2Ni

⇣ 1

�i
+

1

�j

⌘2
+

X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
,

which matches (16).
Second, we show that our PDD distributed algorithm imple-

ments a scaled gradient ascent method to solve problem (13).
Consider a diagonal positive definite matrix defined as

W := diag(↵1, . . . ,↵n) � diag( 1
nL1

, . . . ,
1

nLn
). Formally,

the scaled gradient ascent method can be written as

⇤(t+ 1) = ⇤(t) +Wrq(⇤(t)), (19)

where t denotes the iteration counter. Since each entry of the
scaling matrix satisfies 0 < ↵i  1

nLi
for all i 2 {1, . . . , n},

then the following condition holds [17, Theorem 8]

q(⇤(t) + �) � q(⇤(t)) +rq(⇤(t))>� � n

2
�
>

2

4
L1 . . .

Ln

3

5�,

for every perturbation �. Thus, using the same line of proof of
the gradient algorithm [35, Chapter 2], we can conclude that
the sequence {⇤(t)} generated by iteration (19) converges in
objective value to the optimal cost q? of (13).

Since W is diagonal, then (19) splits in a component-wise
fashion giving

⇤i(t+ 1) = ⇤i(t) +Wiir⇤iq(⇤(t)), i 2 {1, . . . , n}, (20)

where Wii denotes the (i, i)-th entry of W .
By using the following property of conjugate functions

r'
⇤(z) = argmin

x

�
'(x)� z

>
x
�
,

we have that the primal minimization (14) computes rf
⇤
i eval-

uated at the point
�P

j2Ni
(�(i,j)

i (t)� �
(j,i)
i (t)), {(�(i,j)

j (t)�
�
(j,i)
j (t))}j2Ni

�
. Then

@q(⇤(t))

@�
(i,j)
i

= x
(i)
i (t+ 1)� x

(j)
i (t+ 1), j 2 Ni

@q(⇤(t))

@�
(i,j)
j

= x
(i)
j (t+ 1)� x

(j)
j (t+ 1), j 2 Ni,

(21)

so that update (15) is the scaled gradient ascent (20).
Third and final, by Assumption II.3 (Slater’s condition),

strong duality between problems (8) and (13) holds. Moreover,
since problems (8) and (2) are equivalent, then they both have
optimal cost q

? = f
?. Thus, the sequence {⇤(t)} generated

by PDD converges in objective value to the optimal cost f?

of (2).
For the second part of the statement, we first notice that

in light of Assumptions II.1 and II.2, problem (2) has a
unique optimal solution x

? = (x?>
1 , . . . , x

?>
n )>. Further, since

problem (8) is equivalent to problem (2), then x
? is the unique

optimal solution also for problem (8). Finally, the first order
optimality condition for the (unconstrained) dual problem (13)
is rq(⇤?) = 0, where ⇤? is a limit point of the sequence
{⇤(t)} (which exists by the Lipschitz continuity of rq(⇤)).
This allows us to conclude, by equation (21), that the limit

point of the primal sequences {x(i)
i (t), {x(i)

j }j2Ni(t)} satisfy
the primal coherence constraints. Thus, in the limit the copies
x
(i)
i , {x(j)

i }j2Ni of the variable xi are equal to the (unique)
optimal x?

i . Iterating on i 2 {1, . . . , n} the proof follows.

Remark III.6. Alternative expressions for Li in (16) can

be used. Larger upper bounds on the step-sizes ↵i can be

established by exploiting tailored descent conditions. See, e.g.,

works [14], [17], [26]. ⇤

C. Asynchronous Partitioned Dual Decomposition (AsynPDD)

distributed algorithm

In this section we present an asynchronous partitioned
distributed algorithm, and prove its convergence with high
probability. This algorithm can be interpreted as an extension
of the PDD distributed algorithm.

We consider an asynchronous protocol where each node
has its own concept of time defined by a local timer, which
randomly and independently of the other nodes triggers when
to awake itself. Each node is in an idle mode, wherein it
continuously receives messages from neighboring nodes, until
it is triggered either by the local timer or by a message from
neighboring nodes. When a trigger occurs, it switches into
an awake mode in which it updates its local variables and
possibly transmits the updated information to its neighbors.
The timer is modeled by means of a local clock ⌧i 2 R�0 and
a randomly generated waiting time Ti. The timer triggers the
node when ⌧i = Ti, so that the node switches to the awake
mode and, after running the local computation, resets ⌧i = 0
and extracts a new realization of Ti. We make the following
assumption on the local waiting times Ti.

Assumption III.7 (Exponential i.i.d. local timers). The wait-

ing times between consecutive triggering events are i.i.d.

random variables with same exponential distribution. ⇤
Informally, the asynchronous distributed optimization algo-

rithm is as follows. When a node i is in idle, it continuously
receives messages from awake neighbors. If the local timer
⌧i triggers or new dual variables �

(j,i)
i , �(j,i)

j are received, it
wakes up. When node i wakes up, it updates and broadcasts its
primal variable y

(i) =
�
x
(i)
i , {x(i)

j }j2Ni

�
, computed through

a local constrained minimization. Moreover, if the transition
was due to the local timer triggering, then it also updates and
broadcasts its local dual variables �

(i,j)
i and �

(i,j)
j , j 2 Ni.

Since there is no global iteration counter, we highlight the
difference between updated and not updated values during the
“awake” phase, by means of a “+” superscript symbol, e.g.,
we denote the updated primal variable as x

(i)+
i .

We want to stress some important aspects of the idle/awake
cycle. First, these two phases are regulated by local timers and
local information exchange, without the need of any central
clock. Second, we assume that the computation in idle takes a
negligible time compared to the one performed in the awake
phase. Moreover, a constant, local step-size ↵i is used in
the ascent step, which can be initialized by means of local
exchange of information between neighboring nodes. Finally,
we point out that each agent uses the most updated values that
are locally available to perform every computation.
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The AsynPDD distributed algorithm is formally described
in the following table.

Distributed Algorithm 2 AsynPDD

Processor states: (x(i)
i , {x(i)

j }j2Ni) and {�(i,j)
i ,�

(i,j)
j }j2Ni

Set ⌧i = 0 and get a realization Ti

Evolution:
IDLE:

WHILE: ⌧i < Ti DO:

Receive �
(j,i)
i , �(j,i)

j and/or x(j)
i , x(j)

j from j 2 Ni.
IF: dual variables are received go to AWAKE.

go to AWAKE.

AWAKE:
Compute and broadcast
�
x
(i)+
i , {x(i)+

j }j2Ni

�
=

argmin
(xi,{xj}j2Ni )2Xi

fi(xi, {xj}j2Ni)

+ x
>
i

X

j2Ni

�
�
(i,j)
i � �

(j,i)
i

�
+

X

j2Ni

x
>
j

�
�
(i,j)
j � �

(j,i)
j

�

IF: ⌧i = Ti THEN: update and broadcast

�
(i,j)+
i = �

(i,j)
i + ↵i

�
x
(i)+
i � x

(j)
i

�
, 8 j 2 Ni,

�
(i,j)+
j = �

(i,j)
j + ↵i

�
x
(i)+
j � x

(j)
j

�
, 8 j 2 Ni,

(22)

set ⌧i = 0 and get a new realization Ti.

Go to IDLE.

It is worth pointing out that being the algorithm asyn-
chronous, for the analysis we need to carefully formalize
the concept of algorithm iterations. We will use a nonnega-
tive integer variable t indexing a change in the whole state
⇤ = [⇤1 . . .⇤n] of the distributed algorithm. In particular,
each triggering will induce an iteration of the distributed
optimization algorithm and will be indexed with t. We want to
stress that this (integer) variable t does not need to be known
by the agents. That is, this timer is not a common clock and
is only introduced for the sake of analysis.

Theorem III.8. Let Assumptions II.1, II.2 and II.3 hold true.

Let the timers ⌧i satisfy Assumption III.7 and step-sizes ↵i be

constant and such that 0 < ↵i  1/Li, with

Li =

s
2
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
, 8 i 2 {1, . . . , n}. (23)

Then, the random sequence {⇤1(t), . . . ,⇤n(t)} generated by

the AsynPDD (Distributed Algorithm 2), converges with high

probability in objective value to the optimal cost f
?

of problem

(2), i.e., for any " 2 (0, q0), with q0 := q(⇤(0)), and target

confidence 0 < ⇢ < 1, there exists t̄(", ⇢) such that for all

t � t̄(", ⇢) it holds

Pr
⇣��q(⇤(t))� f

?
��  "

⌘
� 1� ⇢.

Proof. Our proof strategy is based on showing that the it-
erations of the asynchronous distributed algorithm can be
written as the iterations of an ad-hoc version of the coordinate
method [16], applied to the dual problem (13).

Let the optimization variable ⇤ be partitioned in n blocks
[⇤1, . . . ,⇤n] as in (17), then a coordinate approach consists
in an iterative scheme in which only a block-per-iteration, say
⇤it at time t, of the entire optimization variable ⇤ is updated at
time t, while all the other components ⇤j with j 2 {1, . . . , n}\
{it} stay unchanged. Formally, a coordinate iteration can be
summarized as

⇤it(t+ 1) = ⇤it(t) +r⇤it
q(⇤(t))

⇤j(t+ 1) = ⇤j(t), j 6= it.
(24)

In the following, we show that the AsynPDD distributed
algorithm implements (24) with a uniform random selection of
the blocks. Since the timers ⌧i trigger independently according
to the same exponential distribution, then from an external,
global perspective, the induced awaking process of the nodes
corresponds to the following: only one node per iteration,
say it, wakes up randomly, uniformly and independently
from previous iterations. Thus, each triggering, which induces
an iteration of the distributed optimization algorithm and is
indexed with t, corresponds to the (uniform) selection of a
node in {1, . . . , n} that becomes awake.

Next we show by induction that if each node i has an
updated version of the neighboring variables before it gets
awake, then the same holds after the update. When node
i wakes up, it uses for its update its own primal variables
x
(i)
i and x

(i)
j , j 2 Ni, which are clearly updated since i

is the one modifying them. Moreover, node i uses also x
(j)
i

and x
(j)
j , j 2 Ni, which are received by neighboring nodes

j 2 Ni. These variables are updated by j if itself or one of
its neighbors becomes awake. In both cases node j sends the
updated variable to its neighbors (which include node i). An
analogous argument holds for the dual variables.

Thanks to the argument just shown and by noticing that
�
(it,j)
it

and �
(it,j)
j , j 2 Nit are the components of ⇤it , we

have that step (22) corresponds to step (24) with it randomly
uniformly distributed over {1, . . . , n}. Finally, recalling that (i)
the cost function q(⇤) of problem (13) has block-coordinate
Lipschitz continuous gradient with respect to the blocks ⇤i

(see proof of Theorem III.5) and (ii) the step-sizes ↵i are
constant and such that 0 < ↵i  1/Li with Li in (23), we
can invoke [16, Theorem 5] to conclude that the coordinate
method (24) (and equivalently the AsynPDD distributed al-
gorithm) converges with high probability to the optimal cost
q
? of problem (13). Recalling that strong duality between

problems (2) and (13) holds (see proof of Theorem III.5), then
q
? = f

?, and the proof follows.

Remark III.9. As highlighted in Theorem III.8 in order to

set the local step-sizes ↵i, each node i should know the

convexity parameter �j of its neighbors but, differently from

the synchronous case (cf. condition (16)), does not need to

know the total number of agents n in the network. ⇤
To conclude this section, we notice that the asynchronous

model employed in our distributed algorithm can be general-



9

ized. In fact, in the considered model timers are drawn from
a common exponential distribution, while independent and
completely uncoordinated rules might be more desiderable.
This generalization is currently under investigation.

IV. NUMERICAL SIMULATIONS

In this section we provide a numerical example show-
ing the effectiveness of the proposed techniques. We test
the proposed distributed algorithms on a quadratic program
enjoying the partitioned structure described in the previous
sections. Specifically, we consider a network of n = 100
agents communicating according to an undirected connected
Erdős-Rényi random graph G with parameter p = 0.2. Thus,
letting

�
xi,

�
xj

 
j2Ni

�
denote a column vector, we consider

the following partitioned optimization problem

min
x

nX

i=1

�
xi,

�
xj

 
j2Ni

�>
Qi

�
xi,

�
xj

 
j2Ni

�

+ r
>
i

�
xi,

�
xj

 
j2Ni

�

subj. to Ai

�
xi,

�
xj

 
j2Ni

�
� bi, i 2 {1, . . . , n},

(25)

where each xi 2 Rmi and mi is uniformly drawn from
{1, 2, 3, 4}. This optimization problem has the same parti-
tioned structure discussed in Section III-A. In particular, we
have quadratic cost functions fi(xi, {xj}j2Ni) and linear con-
straints Xi = {(xi,

�
xj

 
j2Ni

) | Ai(xi,
�
xj

 
j2Ni

) � bi}. The
matrices Qi are positive definite with eigenvalues uniformly
generated in [1, 20], while the vectors ri have entries randomly
generated in [0, 100]. Moreover, each pair Ai, bi describes a
linear constraint having a number of rows uniformly drawn
from {1, 2}. Each Ai has entries normally distributed with zero
mean and unitary variance, while bi are suitably generated to
always obtain feasible linear constraints.

For all i 2 {1, . . . , n}, we use constant step-sizes ↵i = Li

with Li computed as in (16) for the synchronous algorithm and
as in (23) for the asynchronous case. All the dual variables are
initialized to zero.

In Figure 3 we show the convergence rate of the syn-
chronous distributed algorithm by plotting the difference be-
tween the dual cost q(⇤(t)) at each iteration t and the optimal
value q

? = f
? of problem (25).

In Figure 4 we show the evolution of the difference between
the generated primal sequence {x(1)

1 (t), . . . , x(n)
n (t)} and the

(unique) optimal primal solution x
?.

In Figure 5 we show the disagreement on the primal variable
x2 between neighboring nodes N2[{2}. In particular, we plot
the norm of x(2)

2 (t)� x
(j)
2 (t), for all j 2 N2 [ {2}.

Finally, in Figure 6 we show the convergence rate for the
AsynPDD distributed algorithm. Since we are dealing with an
asynchronous algorithm, we normalize the iteration counter t

with respect to the total number of agents n. It is worth noting
the cost evolution is not monotone as expected for the class
of randomized algorithms.

V. CONCLUSIONS

In this paper we have proposed a synchronous and an asyn-
chronous distributed optimization algorithms, based on dual
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Fig. 3. Evolution of the cost error for the synchronous distributed algorithm.
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Fig. 4. Evolution of the error on primal variables x
(i)
i , i 2 {1, . . . , n}, for

the synchronous distributed algorithm.
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Fig. 5. Evolution of the disagreement on x2 between agents 2 and its
neighbors j 2 N2 for the synchronous distributed algorithm.
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Fig. 6. Evolution of the cost error for the asynchronous distributed algorithm.

decomposition, for a novel partitioned distributed optimization
framework. In this framework each node in the network is
assigned a local state, objective function and constraint. The
objective function and the constraints only depend on the node
state and on its neighbors’ states. This scenario includes sev-
eral interesting problems as network utility maximization and
resource allocation, static state estimation in power networks,
localization in wireless networks, and map building in robotic
networks. The proposed algorithms are distributed and scalable
and are shown to be convergent under standard assumptions
on the cost functions and on the constraints sets.

REFERENCES

[1] R. Carli and G. Notarstefano, “Distributed partition-based optimization
via dual decomposition,” in IEEE 52nd Conference on Decision and

Control (CDC), 2013, pp. 2979–2984.
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